首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allosteric ribozymes are engineered RNAs that operate as molecular switches whose rates of catalytic activity are modulated by the binding of specific effector molecules. New RNA molecular switches can be created by using "allosteric selection," a molecular engineering process that combines modular rational design and in vitro evolution strategies. In this report, we describe the characterization of 3',5'-cyclic nucleotide monophosphate (cNMP)-dependent hammerhead ribozymes that were created using allosteric selection (Koizumi et al., Nat Struct Biol, 1999, 6:1062-1071). Artificial phylogeny data generated by random mutagenesis and reselection of existing cGMP-, cCMP-, and cAMP-dependent ribozymes indicate that each is comprised of distinct effector-binding and catalytic domains. In addition, patterns of nucleotide covariation and direct mutational analysis both support distinct secondary-structure organizations for the effector-binding domains. Guided by these structural models, we were able to disintegrate each allosteric ribozyme into separate ligand-binding and catalytic modules. Examinations of the independent effector-binding domains reveal that each retains its corresponding cNMP-binding function. These results validate the use of allosteric selection and modular engineering as a means of simultaneously generating new nucleic acid structures that selectively bind ligands. Furthermore, we demonstrate that the binding affinity of an allosteric ribozyme can be improved through random mutagenesis and allosteric selection under conditions that favor tighter binding. This "affinity maturation" effect is expected to be a valuable attribute of allosteric selection as future endeavors seek to apply engineered allosteric ribozymes as biosensor components and as controllable genetic switches.  相似文献   

2.
Allosteric RNAs operate as molecular switches that alter folding and function in response to ligand binding. A common type of natural allosteric RNAs is the riboswitch; designer RNAs with similar properties can be created by RNA engineering. We describe a computational approach for designing allosteric ribozymes triggered by binding oligonucleotides. Four universal types of RNA switches possessing AND, OR, YES and NOT Boolean logic functions were created in modular form, which allows ligand specificity to be changed without altering the catalytic core of the ribozyme. All computationally designed allosteric ribozymes were synthesized and experimentally tested in vitro. Engineered ribozymes exhibit >1,000-fold activation, demonstrate precise ligand specificity and function in molecular circuits in which the self-cleavage product of one RNA triggers the action of a second. This engineering approach provides a rapid and inexpensive way to create allosteric RNAs for constructing complex molecular circuits, nucleic acid detection systems and gene control elements.  相似文献   

3.
4.
Switches and sensors play important roles in our everyday lives. The chemical properties of RNA make it amenable for use as a switch or sensor, both artificially and in nature. This review focuses on recent advances in artificial RNA switches and sensors. Researchers have been applying classical biochemical principles such as allostery in elegant ways that are influencing the development of biosensors and other applications. Particular attention is given here to allosteric ribozymes (aptazymes) that are regulated by small organic molecules, by proteins, or by oligonucleotides. Also discussed are ribozymes whose activities are controlled by various nonallosteric strategies.  相似文献   

5.
For a long time nucleic acid-based approaches directed towards controlling the propagation of Hepatitis C Virus (HCV) have been considered to possess high potential. Towards this end, ribozymes (i.e. RNA enzymes) that specifically recognize and subsequently catalyze the cleavage of their RNA substrate present an attractive molecular tool. Here, the unique properties of a new generation of ribozymes are taken advantage of in order to develop an efficient and durable ribozyme-based technology with which to target HCV (+) RNA strands. These ribozymes resulted from the coupling of a specific on/off adaptor (SOFA) to the ribozyme domain derived from the Hepatitis Delta Virus (HDV). The former switches cleavage activity “on” solely in the presence of the desired RNA substrate, while the latter was the first catalytic RNA reported to function naturally in human cells, specifically in hepatocytes. In order to maximize the chances for success, a step-by-step approach was used for both the design and the selection of the ribozymes. This approach included the use of both bioinformatics and biochemical methods for the identification of the sites possessing the greatest potential for targeting, and the subsequent in vitro testing of the cleavage activities of the corresponding SOFA-HDV ribozymes. These efforts led to a significant improvement in the ribozymes'' designs. The ability of the resulting SOFA-HDV ribozymes to inhibit HCV replication was further examined using a luciferase-based replicon. Although some of the ribozymes exhibited high levels of cleavage activity in vitro, none appears to be a potential long term inhibitor in cellulo. Analysis of recent discoveries in the cellular biology of HCV might explain this failure, as well as provide some ideas on the potential limits of using nucleic acid-based drugs to control the propagation of HCV. Finally, the above conclusions received support from experiments performed using a collection of SOFA-HDV ribozymes directed against HCV (−) strands.  相似文献   

6.
A prototype biosensor array has been assembled from engineered RNA molecular switches that undergo ribozyme-mediated self-cleavage when triggered by specific effectors. Each type of switch is prepared with a 5'-thiotriphosphate moiety that permits immobilization on gold to form individually addressable pixels. The ribozymes comprising each pixel become active only when presented with their corresponding effector, such that each type of switch serves as a specific analyte sensor. An addressed array created with seven different RNA switches was used to report the status of targets in complex mixtures containing metal ion, enzyme cofactor, metabolite, and drug analytes. The RNA switch array also was used to determine the phenotypes of Escherichia coli strains for adenylate cyclase function by detecting naturally produced 3',5'- cyclic adenosine monophosphate (cAMP) in bacterial culture media.  相似文献   

7.
8.
Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA architectures that allow for the real-time measurement of ribozyme self-cleavage activity in vitro. The engineered nucleic acid molecules implement a split Spinach aptamer sequence that is made accessible for strand displacement upon ribozyme self-cleavage, thereby complementing the fluorescent Spinach aptamer. This fully RNA-based ribozyme performance assay correlates ribozyme cleavage activity with Spinach fluorescence to provide a rapid and straightforward technology for the validation of loop–loop interactions in hammerhead ribozymes.  相似文献   

9.
Target-dependent on/off switch increases ribozyme fidelity   总被引:2,自引:0,他引:2  
  相似文献   

10.
It is becoming increasingly clear that RNA is more than a passive carrier of genetic information. Folded RNA molecules play key roles in almost every aspect of cellular metabolism, including protein transport, RNA splicing, peptide bond formation, and translational regulation. This is facilitated by the multifunctional nature of RNA biopolymers which can serve as rigid structural scaffolds, conformational switches, and catalysts for chemical reactions. In all cases, metal ions play a crucial role in RNA function. For folded RNA molecules, the pathway for adopting proper tertiary structure, and the stabilization of that structure, depends on specific and nonspecific interactions with certain classes of metal ions. There is a rapidly expanding repertoire of RNA structural motifs that typically sequester metal ions, and these are being studied using new spectroscopic and chemical methodologies. Many ribozymes (catalytic RNA molecules) depend on metal ions as cofactors that are explicitly involved in the chemical mechanism of catalysis. All of these functions are exemplified by recent studies of group II introns, which are among the largest ribozymes found in Nature. In this case, there are specific roles for metal ions in the folding pathway, the tertiary structure and the chemical mechanism.  相似文献   

11.
Ribozymes     
The structural molecular biology of ribozymes took another great leap forward during the past two years. Before ribozymes were discovered in the early 1980s, all enzymes were thought to be proteins. No detailed structural information on ribozymes became available until 1994. Now, within the past two years, near atomic resolution crystal structures are available for almost all of the known ribozymes. The latest additions include ribonuclease P, group I intron structures, the ribosome (the peptidyl transferase appears to be a ribozyme) and several smaller ribozymes, including a Diels-Alderase, the glmS ribozyme and a new hammerhead ribozyme structure that reconciles 12 years of discord. Although not all ribozymes are metalloenzymes, acid-base catalysis appears to be a universal property shared by all ribozymes as well as many of their protein cousins.  相似文献   

12.
Encoding folding paths of RNA switches   总被引:1,自引:0,他引:1  
  相似文献   

13.
Mortalin, also known as mot2/mthsp70/GRP75/PBP74, is a member of the heat-shock protein 70 family that is heat-uninducible. It is differentially distributed in cells that have normal and immortal phenotypes, has been localized to various subcellular sites, and has several binding partners and functions. Here, we describe the construction and use of mortalin-specific conventional and hybrid ribozymes to elucidate its crucial role in cell proliferation. Whereas conventional hammerhead ribozymes did not cause any repression of endogenous mortalin expression, RNA-helicase-linked hybrid ribozymes successfully suppressed the expression of mortalin, which resulted in the growth arrest of transformed human cells. We show that, first, RNA helicase-coupled hybrid ribozymes that have a linked unwinding activity can be used to target genes for which conventional hammerhead ribozymes are ineffective; second, the targeting of mortalin by RNA-helicase-coupled hybrid ribozymes causes growth suppression of transformed human cells and could be used as a treatment for cancer.  相似文献   

14.
In the early stages of the hypothetical RNA world, some primitive RNA catalysts (ribozymes) may have emerged through self-assembly of short RNA oligomers. Although they may be unstable against temperature fluctuations and other environmental changes, ligase ribozymes (ribozymes with RNA strand-joining activity) may resolve structural instability of self-assembling RNAs by converting them to the corresponding unimolecular formats. To investigate this possibility, we constructed a model system using a cross-ligation system composed of a pair of self-assembling ligase ribozymes. Their abilities to act as catalysts, substrates, and a cross-ligation system were analyzed with or without thermal pretreatment before the reactions. A pair of self-assembling ligase ribozymes, each of which can form multiple conformations, demonstrated that thermotolerance was acquired and accumulated through complex-formation that stabilized the active forms of the bimolecular ribozymes and also cross-ligation that produced the unimolecular ribozymes.  相似文献   

15.
The concept of allosteric regulation has already been exploited in the creation of artificial ribozymes and the activities of certain ribozymes can be controlled allosterically by specific effectors. Ribozymes with such properties are in the spotlight as biosensors. Such artificial allosterically regulated ribozymes have potential utility as nucleic-acid-based biosensors.  相似文献   

16.
Before the discovery of ribozymes, RNA had been proposed to function as a catalyst, based on the discovery that RNA folded into high-ordered structures as protein did. This hypothesis was confirmed in the 1980s, after the discovery of Tetrahymena group I intron and RNase P ribozyme. There have been about ten ribozymes identified during the past thirty years, as well as the fact that ribosomes function as ribozymes. Advances have been made in understanding the structures and functions of ribozymes, with numerous crystal structures resolved in the past years. Here we review the structure-function relationship of both small and large ribozymes, especially the structural basis of their catalysis. ribozyme, structure, catalysis Supported by National Natural Science Foundation of China (Grant No. 30330170) and National Key Basic Research and Development Program of China (Grant No. 2005CB724604)  相似文献   

17.
The Hepatitis Delta Virus (HDV) ribozyme, which is well adapted to the environment of the human cell, is an excellent candidate for the future development of gene-inactivation systems. On top of this, a new generation of HDV ribozymes now exists that benefits from the addition of a specific on/off adaptor (specifically the SOFA-HDV ribozymes) which greatly increases both the ribozyme's specificity and its cleavage activity. Unlike RNAi and hammerhead ribozymes, the designing of SOFA-HDV ribozymes to cleave, in trans, given RNA species has never been the object of a systematic optimization study, even with their recent use for the gene knockdown of various targets. This report aims at both improving and clarifying the design process of SOFA-HDV ribozymes. Both the ribozyme and the targeted RNA substrate were analyzed in order to provide new criteria that are useful in the selection of the most potent SOFA-HDV ribozymes. The crucial features present in both the ribozyme's biosensor and blocker, as well as at the target site, were identified and characterized. Simple rules were derived and tested using hepatitis C virus NS5B RNA as a model target. Overall, this method should promote the use of the SOFA-HDV ribozymes in a plethora of applications in both functional genomics and gene therapy.  相似文献   

18.
The identification of proficient target sites within long RNA molecules, as well as the most efficient ribozymes for each, is a major concern for the use of ribozymes as gene suppressers. In vitro selection methods using combinatorial libraries are powerful tools for the rapid elucidation of interactions between macromolecules, and have been successfully used for different types of ribozyme study. This paper describes a new method for selecting effective target sites within long RNAs using a combinatorial library of self-cleaving hairpin ribozymes that includes all possible specificities. The method also allows the identification of the most appropriate ribozyme for each identified site. Searching for targets within the lacZ gene with this strategy yielded a clearly accessible site. Sequence analysis of ribozymes identified two variants as the most appropriate for this site. Both selected ribozymes showed significant inhibitory activity in the cell milieu.  相似文献   

19.
Hammerhead ribozymes were transcribed from a dsDNA template containing four random nucleotides between stems II and III, which replace the naturally occurring GAA nucleotides. In vitro selection was used to select hammerhead ribozymes capable of in cis cleavage using denaturing polyacrylamide gels for the isolation of cleaving sequences. Self-cleaving ribozymes were cloned after the first and second rounds of selection, sequenced and characterised. Only sequences containing 5'-HGAA-3', where H is A, C or U, between stems II and III were active; G was clearly not tolerated at this position. Thus, only three sequences out of the starting pool of 256 (4(4)) were active. The Michaelis-Menten parameters were determined for the in trans cleaving versions of these ribozymes and indicate that selected ribozymes are less efficient than the native sequence. We propose that the selected ribozymes accommodate the extra nucleotide as a bulge in stem II.  相似文献   

20.
We have engineered allosteric ribozymes by combining modular rational design with combinatorial strategies. This new procedure was used to create allosteric ribozymes that are activated by specific nucleoside 3',5'-cyclic monophosphates (cNMPs). A random-sequence domain was attached to stem II of hammerhead ribozymes via a communication module that serves as an interface between ribozyme and the effector binding site. Subjecting this initial random pool to in vitro selection methods produced populations that respond, or cleave, only in the presence of specific effector molecules. From generation 18, 20 and 23, cGMP, cCMP and cAMP-specific responsive ribozymes, respectively, were isolated and characterized. These methods show great promise for engineering allosteric ribozymes and for creating new ligand-specific aptamers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号