首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Substance P (SP) is well known to promote inflammation in acute pancreatitis (AP) by interacting with neurokinin-1 receptor. However, mechanisms that terminate SP-mediated responses are unclear. Neutral endopeptidase (NEP) is a cell-surface enzyme that degrades SP in the extracellular fluid. In this study, we examined the expression and the role of NEP in caerulein-induced AP. Male BALB/c mice (20-25 g) subjected to 3-10 hourly injections of caerulein (50 μg/kg) exhibited reduced NEP activity and protein expression in the pancreas and lungs. Additionally, caerulein (10(-7) M) also downregulated NEP activity and mRNA expression in isolated pancreatic acinar cells. The role of NEP in AP was examined in two opposite ways: inhibition of NEP (phosphoramidon [5 mg/kg] or thiorphan [10 mg/kg]) followed by 6 hourly caerulein injections) or supplementation with exogenous NEP (10 hourly caerulein injections, treatment of recombinant mouse NEP [1 mg/kg] during second caerulein injection). Inhibition of NEP raised SP levels and exacerbated inflammatory conditions in mice. Meanwhile, the severity of AP, determined by histological examination, tissue water content, myeloperoxidase activity, and plasma amylase activity, was markedly better in mice that received exogenous NEP treatment. Our results suggest that NEP is anti-inflammatory in caerulein-induced AP. Acute inhibition of NEP contributes to increased SP levels in caerulein-induced AP, which leads to augmented inflammatory responses in the pancreas and associated lung injury.  相似文献   

4.
5.
Apoptosis is a mode of cell death currently thought to occur in the absence of inflammation. In contrast, inflammation follows unscheduled events such as acute tissue injury which results in necrosis, not apoptosis. We examined the relevance of this paradigm in three distinct models of acute lung injury; hyperoxia, oleic acid, and bacterial pneumonia. In every case, it was found that apoptosis is actually a prominent component of the acute and inflammatory phase of injury. Moreover, using strains of mice that are differentially sensitive to hyperoxic lung injury we observed that the percent of apoptotic cells was well correlated with the severity of lung injury. These observations suggest that apoptosis may be one of the biological consequences during acute injury and the failure to remove these apoptotic cells may also contribute to the inflammatory response.  相似文献   

6.
Neprilysin (NEP) is a plasma membrane-bound peptidase with wide expression in kidney, lung, brain and bone. Decreased NEP activity has been linked to increased growth of some cancer cells, but it is unknown whether its activity is related to growth of cells belonging to the osteoblast lineage. We assessed NEP activity in an osteoblastic cell line, PyMS, by cleavage of N-Dansyl-d-Ala-Gly-p-nitro-Phe-Gly to Dansyl-d-Ala-Gly. NEP activity was completely blocked by 1 muM thiorphan. Most agents affecting growth of these cells (e.g. calcium, insulin-like growth factor I and dexamethasone) did not regulate NEP activity. Ascorbic acid (ASA) increased thymidine incorporation into DNA and potentiated the stimulatory effect of IGF I on DNA synthesis, an effect which was attenuated by echistatin. ASA decreased NEP activity in a dose-dependent manner, and decreased Western-detectable NEP protein in plasma membranes. ASA affects both integrin receptor-mediated signalling and the processing of regulatory peptides.  相似文献   

7.
Plasma tumor necrosis factor (TNF) activity, cardiac index, extravascular lung water, systemic and pulmonary arterial pressures, pulmonary vascular resistance index, and arterial PO2 were monitored for 300 min in four groups of anesthetized pigs: saline-infused animals (n = 5), saline-infused animals given ibuprofen (12.5 mg/kg iv) at 0 and 120 min (n = 4), animals infused for 60 min with live Pseudomonas aeruginosa (Ps, 5 x 10(8) organisms/ml at 0.3 ml.20 kg-1.min-1, n = 6), and animals infused for 60 min with Ps plus ibuprofen administered at 0 and 120 min (n = 4). Infusion of Ps induced significant elevations (greater than 4-fold increase in units/ml of TNF by 60 min, P less than 0.05) in plasma TNF activity (L929 cytolysis assay) and alterations (P less than 0.05) in all hemodynamic and pulmonary parameters within 30-60 min. Ibuprofen administration in sepsis significantly decreased peak TNF activity by 2 units/ml and attenuated many of the physiological alterations due to sepsis. These results show that ibuprofen attenuates sepsis-induced injury and that alterations of acute septic insult are correlated with reduced plasma TNF activity in septic animals given ibuprofen.  相似文献   

8.
Neutral endopeptidase (NEP), a proteolytic enzyme, is known to degrade several peptides which control cardiovascular homeostasis. This is a preliminary study of the pattern of the intracardiac regional expression of the NEP gene in the normal heart, and the age-related changes in this expression in the cardiac regions. The relative abundance of NEP mRNA was determined by RT-PCR in the right atrium (RA), right ventricle (RV), left atrium (LA), left ventricle (LV) and interventricular septum (IVS) in 2-month-old (young) and 12-month-old (advanced-age adult) Wistar Kyoto (WKY) rats. The NEP gene was expressed in all 5 cardiac regions in both age groups. In young rats, the NEP expression level was lowest in the RA; this level was significantly lower than in the septum (p > 0.05). In the advanced-age adult rats, the level was lowest in the LA; this level also was significantly lower than in the septum (p > 0.05). The level in the RA in advanced-age rats was higher than that in the young rats (p < 0.01), but the levels in other regions were not significantly different between the young rats and advanced-age adult rats. Our study showed that the NEP gene was expressed in all cardiac regions of both young rats and advanced-age adult rats. However, the regional distribution of the gene was different in each age group. The region-specific expression of the NEP gene and the age-related regional changes in the expression may be due to the structural and functional characteristics of the various regions.  相似文献   

9.
Pulmonary surfactant replacement has previously been shown to be effective in the human neonatal respiratory distress syndrome. The value of surfactant replacement in models of acute lung injury other than quantitative surfactant deficiency states is, however, uncertain. In this study an acute lung injury model using rats with chronic indwelling arterial catheters, injured with N-nitroso-N-methylurethane (NNNMU), has been developed. The NNNMU injury was found to produce hypoxia, increased mortality, an alveolitis, and alterations in the pulmonary surfactant system. Alterations of surfactant obtained by bronchoalveolar lavage included a reduction in the phospholipid-to-protein ratio, reduced surface activity, and alterations in the relative percentages of the individual phospholipids compared with controls. Treatment of the NNNMU-injured rats with instilled exogenous surfactant (Survanta) improved oxygenation; reduced mortality to control values; and returned the surfactant phospholipid-to-protein ratio, surface activity, and, with the exception of phosphatidylglycerol, the relative percentages of individual surfactant phospholipids to control values.  相似文献   

10.
A cDNA encoding the rat enkephalinase protein (neutral endopeptidase; EC 3.4.24.11) has been constructed from overlapping lambda gt10 cDNA clones. This cDNA was inserted into an expression plasmid containing the cytomegalovirus enhancer and promoter. When transfected with this plasmid, Cos 7 cells transiently expressed the enkephalinase protein in a membrane-bound state. Recombinant enkephalinase recovered in solubilized extracts from transfected Cos 7 cells was enzymatically active and displayed properties similar to those of the native enzyme with respect to sensitivity to classical enkephalinase inhibitors.  相似文献   

11.
12.
M.F. Melzig  M. Janka 《Phytomedicine》2003,10(6-7):494-498
Green tea extract (EFLA85942) is able to induce specifically the neutral endopeptidase (NEP) activity and to inhibit the proliferation of SK-N-SH cells; the angiotensin-converting enzyme (ACE) activity is not influenced under the same conditions. The treatment of the cells with arabinosylcytosine and green tea extract results in a strong enhancement of cellular NEP activity whereas cellular ACE activity was not changed significantly, indicating a green tea extract-specific regulation of NEP expression. Because of its role in the degradation of amyloid beta peptides this enzyme induction of NEP by long term treatment with green tea extract may have a beneficial effect regarding the prevention of forming amyloid plaques.  相似文献   

13.
Acute lung injury occurs mostly in the very low birth weight and extremely low birth weight infants. The pathological process leading to acute lung injury includes immature and/or diseased lung that experienced oxidative stress, inflammation and mechanical insult with the bronchial, alveolar and capillary injuries and cell death. It may be the first step to the subsequent development of chronic lung disease of prematurity or bronchopulmonary dysplasia. The mechanisms of lung injury are extensively investigated in the experimental models and clinical studies, mostly performed on the adult patients. At present, the explanations of the mechanism(s) leading to lung tissue injury in tiny premature babies are just derived from these studies. Acute lung injury seems to be rather a syndrome than a well-defined nosological unit and is of multifactorial etiology. The purpose of this review is to discuss the main factors contributing to the development of acute lung injury in the very low or extremely low birth weight infants--lung immaturity, mechanical injury, oxidative stress and inflammation. Nevertheless, numerous other factors may influence the status of immature lung after delivery.  相似文献   

14.
A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia. The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na+ channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation–Ubiquitination–Recognition–Endocytosis–Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKCζ which in turn phosphorylates the Na,K-ATPase at the Ser18 residue in the N-terminus of the α1-subunit leading the ubiquitination of any of the four lysines (K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the α1-subunit recognition by the μ2 subunit of the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes degradation via a lysosome/proteasome dependent mechanism.  相似文献   

15.

Background

Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) have been the leading cause of morbidity and mortality in intensive care units (ICU). Currently, there is no effective pharmacological treatment for acute lung injury. Curcumin, extracted from turmeric, exhibits broad anti-inflammatory properties through down-regulating inflammatory cytokines. However, the instability of curcumin limits its clinical application.

Methods

A series of new curcumin analogs were synthesized and screened for their inhibitory effects on the production of TNF-α and IL-6 in mouse peritoneal macrophages by ELISA. The evaluation of stability and mechanism of active compounds was determined using UV-assay and Western Blot, respectively. In vivo, SD rats were pretreatment with c26 for seven days and then intratracheally injected with LPS to induce ALI. Pulmonary edema, protein concentration in BALF, injury of lung tissue, inflammatory cytokines in serum and BALF, inflammatory cell infiltration, inflammatory cytokines mRNA expression, and MAPKs phosphorylation were analyzed. We also measured the inflammatory gene expression in human pulmonary epithelial cells.

Results

In the study, we synthesized 30 curcumin analogs. The bioscreeening assay showed that most compounds inhibited LPS-induced production of TNF-α and IL-6. The active compounds, a17, a18, c9 and c26, exhibited their anti-inflammatory activity in a dose-dependent manner and exhibited greater stability than curcumin in vitro. Furthermore, the active compound c26 dose-dependently inhibited ERK phosphorylation. In vivo, LPS significantly increased protein concentration and number of inflammatory cells in BALF, pulmonary edema, pathological changes of lung tissue, inflammatory cytokines in serum and BALF, macrophage infiltration, inflammatory gene expression, and MAPKs phosphorylation . However, pretreatment with c26 attenuated the LPS induced increase through ERK pathway in vivo. Meanwhile, compound c26 reduced the LPS-induced inflammatory gene expression in human pulmonary epithelial cells.

Conclusions

These results suggest that the novel curcumin analog c26 has remarkable protective effects on LPS-induced ALI in rat. These effects may be related to its ability to suppress production of inflammatory cytokines through ERK pathway. Compound c26, with improved chemical stability and bioactivity, may have the potential to be further developed into an anti-inflammatory candidate for the prevention and treatment of ALI.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0199-1) contains supplementary material, which is available to authorized users.  相似文献   

16.
The pathophysiology of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), is characterized by increased vascular and epithelial permeability, hypercoagulation and hypofibrinolysis, inflammation, and immune modulation. These detrimental changes are orchestrated by cross talk between a complex network of cells, mediators, and signaling pathways. A rapidly growing number of studies have reported the appearance of distinct populations of microparticles (MPs) in both the vascular and alveolar compartments in animal models of ALI/ARDS or respective patient populations, where they may serve as diagnostic and prognostic biomarkers. MPs are small cytosolic vesicles with an intact lipid bilayer that can be released by a variety of vascular, parenchymal, or blood cells and that contain membrane and cytosolic proteins, organelles, lipids, and RNA supplied from and characteristic for their respective parental cells. Owing to this endowment, MPs can effectively interact with other cell types via fusion, receptor-mediated interaction, uptake, or mediator release, thereby acting as intrinsic stimulators, modulators, or even attenuators in a variety of disease processes. This review summarizes current knowledge on the formation and potential functional role of different MPs in inflammatory diseases with a specific focus on ALI/ARDS. ALI has been associated with the formation of MPs from such diverse cellular origins as platelets, neutrophils, monocytes, lymphocytes, red blood cells, and endothelial and epithelial cells. Because of their considerable heterogeneity in terms of origin and functional properties, MPs may contribute via both harmful and beneficial effects to the characteristic pathological features of ALI/ARDS. A better understanding of the formation, function, and relevance of MPs may give rise to new promising therapeutic strategies to modulate coagulation, inflammation, endothelial function, and permeability either through removal or inhibition of "detrimental" MPs or through administration or stimulation of "favorable" MPs.  相似文献   

17.
Recent reports presented contradictory results regarding the catabolism of mature atrial (ANP) and brain (BNP) natriuretic peptides in circulation. Especially the role of neutral endopeptidase (NEP) in BNP degradation was conversely discussed. Our present in vitro-studies characterize the NEP-dependent metabolism of ANP and BNP in different tissues via HPLC-analysis using NEP-deficient mice and specific NEP inhibitors. Our results show a strong tissue-dependent degradation pattern of both peptides, which are not only due to the different NEP activities in these tissues. Whereas NEP rapidly degraded ANP, it had no influence in BNP-metabolism. Additional experiments with purified NEP confirmed this result. Moreover, we describe a degradation of ANP and BNP in NEP-deficient- and NEP-inhibited membranes. Consequently, we postulate the existence of at least one further natriuretic peptide (NP) degrading enzyme, which has not been characterized yet. Thus, the commonly accepted model of the natriuretic peptide system with NEP as the central degrading peptidase has to be partly revised. Moreover, the NEP-independent BNP degradation provides an effective means for achieving a beneficial BNP increase in cardiovascular pathology by inhibiting the assumed novel NP-degrading peptidase(s).  相似文献   

18.
Involvement of neutral endopeptidase in neoplastic progression   总被引:5,自引:0,他引:5  
Neutral endopeptidase 24.11 (NEP) is a 90-110 kDa cell surface cell surface peptidase that is normally expressed by numerous tissues, including prostate, kidney, intestine, endometrium, adrenal glands and lung. This enzyme cleaves peptide bonds on the amino side of hydrophobic amino acids and inactivates a variety of physiologically active peptides, including atrial natriuretic factor, substance P, bradykinin, oxytocin, Leu- and Met-enkephalins, neurotensin, bombesin, endothelin-1, and bombesin-like peptides. NEP reduces the local concentration of peptide available for receptor binding and signal transduction. Loss or decreases in NEP expression have been reported in a variety of malignancies. Reduced NEP may promote peptide-mediated proliferation by allowing accumulation of higher peptide concentrations at the cell surface, and facilitate the development or progression of neoplasia. We have used prostate cancer as model in which to study the involvement of NEP in malignancy. Using a variety of experimental approaches, including recombinant NEP, cell lines expressing wild-type and mutant NEP protein, and cell lines expressing NEP protein with a mutated cytoplasmic domain, we have examined the effects of NEP on cell migration and cell survival. We have shown that the effects of NEP are mediated by its ability to catalytically inactivate substrates such as bombesin and endothelin-1, but also through direct protein-protein interaction with other protein such as Lyn kinase [which associates with the p85 subunit of phosphatidylinositol 3-kinase (PI3-K) resulting in NEP-Lyn-PI3-K protein complex], ezrin/radixin/moesin (ERM) proteins, and the PTEN tumor suppressor protein. We review the mechanisms of NEP's tumor suppressive action and how NEP loss contributes to tumor progression.  相似文献   

19.
Elastolytic activity in bronchoalveolar lavage fluid in the lung with acute inflammatory injury and properties of different proteinase inhibitors for its correction was established. It was determined, that 4/5 of elastolytic activities are submitted to neutrophile serine proteinase (EC 3.4.21.37) and 1/5 of elastolytic activities - metalloenzymes macrophages origin (EC 3.4.24.65). Inhibition of elastase-like activity with the use of three proteinase inhibitors: contrycal, ingiprol and thermo- and acid-stable proteinase inhibitor from rabbit blood showed more intensive ability of thermo- and acid-stable proteinase inhibitor to inhibit pancreatic elastase and pull of neutrophil and macrophage elastase. Preventive use and treatment of proteinase inhibitors effectively suppressed activation of proteinases in the acute lung inflammatory injury.  相似文献   

20.
To characterize the tachykininergic effects in fire smoke (FS)-induced acute respiratory distress syndrome (ARDS), we designed a series of studies in rats. Initially, 20 min of FS inhalation induced a significant increase of substance P (SP) in bronchoalveolar lavage fluid (BALF) at 1 h and persisted for 24 h after insult. Conversely, FS disrupted 51.4, 55.6, 46.3, and 43.0% enzymatic activity of neutral endopeptidase (NEP, a primary hydrolyzing enzyme for SP) 1, 6, 12, and 24 h after insult, respectively. Immunolabeling density of NEP in the airway epithelium largely disappeared 1 h after insult due to acute cell damage and shedding. These changes were also accompanied by extensive influx of albumin and granulocytes/lymphocytes in BALF. Furthermore, levels of BALF SP and tissue NEP activity dose dependently increased and decreased, respectively, following 0, low (10 min), and high (20 min) levels of FS inhalation. However, neither the time-course nor the dose-response study observed a significant change in the highest affinity neurokinin-1 receptor (NK-1R) for SP. Finally, treatment (10 mg/kg im) with SR-140333B, an NK-1R antagonist, significantly prevented 20-min FS-induced hypoxemia and pulmonary edema 24 h after insult. Further examination indicated that SR-140333B (1.0 or 10.0 mg/kg im) fully abolished early (1 h) plasma extravasation following FS. Collectively, these findings suggest that a combination of sustained SP and NEP inactivity induces an exaggerated neurogenic inflammation mediated by NK-1R, which may lead to an uncontrolled influx of protein-rich edema fluid and cells into the alveoli as a consequence of increased vascular permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号