首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phagocytosis and the ensuing NADPH-mediated respiratory burst are important aspects of microglial activation that require calcium ion (Ca(2+)) influx. However, the specific Ca(2+) entry pathway(s) that regulates this mechanism remains unclear, with the best candidates being surface membrane Ca(2+)-permeable ion channels or Na(+)/Ca(2+) exchangers. In order to address this issue, we used quantitative real-time RT-PCR to assess mRNA expression of the Na(+)/Ca(2+) exchangers, Slc8a1-3/NCX1-3, before and after phagocytosis by rat microglia. All three Na(+)/Ca(2+) exchangers were expressed, with mRNA levels of NCX1 > NCX3 > NCX2, and were unaltered during the one hour phagocytosis period. We then carried out a biophysical characterization of Na(+)/Ca(2+) exchanger activity in these cells. To investigate conditions under which Na(+)/Ca(2+) exchange was functional, we used a combination of perforated patch-clamp analysis, fluorescence imaging of a Ca(2+) indicator (Fura-2) and a Na(+) indicator (SBFI), and manipulations of membrane potential and intracellular and extracellular ions. Then, we used a pharmacological toolbox to compare the contribution of Na(+)/Ca(2+) exchange with candidate Ca(2+)-permeable channels, to the NADPH-mediated respiratory burst that was triggered by phagocytosis. We find that inhibiting the reversed mode of the Na(+)/Ca(2+) exchanger with KB-R7943, dose dependently reduced the phagocytosis-stimulated respiratory burst; whereas, blockers of store-operated Ca(2+) channels or L-type voltage-gated Ca(2+) channels had no effect. These results provide evidence that Na(+)/Ca(2+) exchangers are potential therapeutic targets for reducing the bystander damage that often results from microglia activation in the damaged CNS.  相似文献   

2.
K Pritchard  C C Ashley 《FEBS letters》1986,195(1-2):23-27
Fura-2, a novel fluorescent indicator of cytoplasmic calcium concentrations ([Ca2+i]), was 'loaded' into smooth muscle cells isolated from guinea pig taenia coli. Resting cells maintained a stable [Ca2+i] of 107 +/- 26 nM (n = 13), which could be perturbed with ionomycin. [Ca2+i] was elevated by stimulation of the cells with carbachol or 50 mM KCl. Reduction of the plasmalemmal Na+ concentration gradient by inhibition of the Na+/K+-ATPase with ouabain markedly elevated [Ca2+i]; this elevation was dependent on extracellular Ca2+. [Ca2+i] was also increased by replacement of the extracellular Na+ with an organic cation.  相似文献   

3.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

4.
Sarcoplasmic reticulum (SR) Ca2+ release and plasma membrane Ca2+ influx are key to intracellular Ca2+ ([Ca2+]i) regulation in airway smooth muscle (ASM). SR Ca2+ depletion triggers influx via store-operated Ca2+ channels (SOCC) for SR replenishment. Several clinically relevant bronchodilators mediate their effect via cyclic nucleotides (cAMP, cGMP). We examined the effect of cyclic nucleotides on SOCC-mediated Ca2+ influx in enzymatically dissociated porcine ASM cells. SR Ca2+ was depleted by 1 microM cyclopiazonic acid in 0 extracellular Ca2+ ([Ca2+]o), nifedipine, and KCl (preventing Ca2+ influx through L-type and SOCC channels). SOCC was then activated by reintroduction of [Ca2+]o and characterized by several techniques. We examined cAMP effects on SOCC by activating SOCC in the presence of 1 microM isoproterenol or 100 microM dibutryl cAMP (cell-permeant cAMP analog), whereas we examined cGMP effects using 1 microM (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO nitric oxide donor) or 100 microM 8-bromoguanosine 3',5'-cyclic monophosphate (cell-permeant cGMP analog). The role of protein kinases A and G was examined by preexposure to 100 nM KT-5720 and 500 nM KT-5823, respectively. SOCC-mediated Ca2+ influx was dependent on the extent of SR Ca2+ depletion, sensitive to Ni2+ and La3+, but not inhibitors of voltage-gated influx channels. cAMP as well as cGMP potently inhibited Ca2+ influx, predominantly via their respective protein kinases. Additionally, cAMP cross-activation of protein kinase G contributed to SOCC inhibition. These data demonstrate that a Ni2+/La3+-sensitive Ca2+ influx in ASM triggered by SR Ca2+ depletion is inhibited by cAMP and cGMP via a protein kinase mechanism. Such inhibition may play a role in the bronchodilatory response of ASM to clinically relevant drugs (e.g., beta-agonists vs. nitric oxide).  相似文献   

5.
Excessive salt intake is a major risk factor for hypertension. Here we identify the role of Na(+)/Ca(2+) exchanger type 1 (NCX1) in salt-sensitive hypertension using SEA0400, a specific inhibitor of Ca(2+) entry through NCX1, and genetically engineered mice. SEA0400 lowers arterial blood pressure in salt-dependent hypertensive rat models, but not in other types of hypertensive rats or in normotensive rats. Infusion of SEA0400 into the femoral artery in salt-dependent hypertensive rats increases arterial blood flow, indicating peripheral vasodilation. SEA0400 reverses ouabain-induced cytosolic Ca(2+) elevation and vasoconstriction in arteries. Furthermore, heterozygous NCX1-deficient mice have low salt sensitivity, whereas transgenic mice that specifically express NCX1.3 in smooth muscle are hypersensitive to salt. SEA0400 lowers the blood pressure in salt-dependent hypertensive mice expressing NCX1.3, but not in SEA0400-insensitive NCX1.3 mutants. These findings indicate that salt-sensitive hypertension is triggered by Ca(2+) entry through NCX1 in arterial smooth muscle and suggest that NCX1 inhibitors might be useful therapeutically.  相似文献   

6.
The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 μmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 μmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 μmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 μmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 μmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.  相似文献   

7.
We examined the effect of cGMP on Na+/Ca2+ exchange in rat aortic smooth muscle cells (VSMCs) in primary culture. The intracellular Ca2+ concentration [( Ca2+]i) was raised by adding ionomycin to VSMCs incubated at high extracellular pH (pH0) (pH0 = 8.8) and high extracellular Mg2+ (Mg2+0) (Mg2+0 = 20 mM), conditions that inhibit activity of the sarcolemmal Ca2+ pump. 45Ca2+ efflux observed under these conditions was mostly extracellular Na+ (Na+0)-dependent and thus presumably catalyzed by the Na+/Ca2+ exchanger. Brief treatment of VSMCs with 8-bromo-cGMP or atrial natriuretic peptide increased this Na+0-dependent 45Ca2+ efflux by about 50%. The 8-bromo-cGMP treatment did not significantly influence total cell Na+, membrane potential, and cell pH. Conversely, when VSMCs were loaded with Na+ and then exposed to a Na+0-free medium, the rate of 45Ca2+ uptake into VSMCs increased as cell Na+ increased. Prior treatment of VSMCs with 8-bromo-cGMP accelerated 45Ca2+ uptake by up to 60% without influencing Na+ loading itself. Treatment of VSMCs with 25 microM 2,5-di-(tert-butyl)-1,4-benzohydroquinone, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, induced a transient elevation of [Ca2+]i. 8-Bromo-cGMP stimulated the rate of recovery phase of this Ca2+ transient measured in the high pHo/high Mg2+o medium. All these results indicate that cGMP stimulates Na+/Ca2+ exchange in VSMCs.  相似文献   

8.
The sodium/proton exchanger type 1 (NHE-1) plays an important role in the proliferation of vascular smooth muscle cells (VSMC). We have examined the regulation of NHE-1 by two potent mitogens, serotonin (5-HT, 5-hydroxytryptamine) and angiotensin II (Ang II), in cultured VSMC derived from rat aorta. 5-HT and Ang II rapidly activated NHE-1 via their G protein-coupled receptors (5-HT(2A) and AT(1)) as assessed by proton microphysiometry of quiescent cells and by measurements of intracellular pH on a FLIPR (fluorometric imaging plate reader). Activation of NHE-1 was blocked by inhibitors of phospholipase C, CaM, and Jak2 but not by pertussis toxin or inhibitors of protein kinase C. Immunoprecipitation/immunoblot studies showed that 5-HT and Ang II induce phosphorylation of Jak2 and induce the formation of signal transduction complexes that included Jak2, CaM, and NHE-1. The cell-permeable Ca(2+) chelator BAPTA-AM blocked activation of Jak2, complex formation between Jak2 and CaM, and tyrosine phosphorylation of CaM, demonstrating that elevated intracellular Ca(2+) is essential for those events. Thus, mitogen-induced activation of NHE-1 in VSMC is dependent upon elevated intracellular Ca(2+) and is mediated by the Jak2-dependent tyrosine phosphorylation of CaM and subsequent increased binding of CaM to NHE-1, similar to the pathway previously described for the bradykinin B(2) receptor in inner medullary collecting duct cells of the kidney [Mukhin, Y. V., et al. (2001) J. Biol. Chem. 276, 17339-17346]. We propose that this pathway represents a fundamental mechanism for the rapid regulation of NHE-1 by G(q/11) protein-coupled receptors in multiple cell types.  相似文献   

9.
The mechanism of Ca2+ influx stimulated by arginine vasopressin (AVP) was studied in cultured rat smooth muscle cells. AVP stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel. NaF, a GTP-binding protein activator, mimicked the AVP-stimulated 45Ca2+ influx. The 45Ca2+ influx stimulated by a combination of AVP and NaF was not additive. The affinity of AVP receptor was decreased by guanosine 5'-O-(3-thiotriphosphate). Pertussis toxin failed to affect the AVP-stimulated 45Ca2+ influx. AVP did not stimulate cAMP production, but increased inositol trisphosphate generation. Both AVP-stimulated 45Ca2+ influx and inositol trisphosphate generation were inhibited by neomycin, a phospholipase C inhibitor, in a dose-dependent manner, and the patterns of both inhibitions were similar. These results suggest that, in rat smooth muscle cells, AVP-stimulated Ca2+ influx is mediated exclusively through phosphoinositide hydrolysis.  相似文献   

10.
Platelet activation is accompanied by an increase of cytosolic free Ca2+ concentration, [Ca2+]i, (due to both extracellular Ca2+ influx and Ca2+ movements from the dense tubular system) and an Na+ influx associated with H+ extrusion. The latter event is attributable to the activation of Na+/H+ exchange, which requires Na+ in the extracellular medium and is inhibited by amiloride and its analogs. The present study was carried out to determine whether a link exists between Ca2+ transients (measured by the quin2 method and the 45CaCl2 technique) and Na+/H+ exchange activation (studied with the pH-sensitive intracellular probe, 6-carboxyfluorescein) during platelet stimulation. Washed human platelets, stimulated with thrombin and arachidonic acid, showed: (1) a large and rapid [Ca2+]i rise, mostly due to a Ca2+ influx through the plasma membrane; (2) a marked intracellular alkalinization. Both phenomena were markedly inhibited in the absence of extracellular Na+ or in the presence of an amiloride analog (EIPA). Monensin, a cation exchanger which elicits Na+ influx and alkalinization, and NH4Cl, which induces alkalinization only, were able to evoke an increase in [Ca2+]i, mostly as an influx from the extracellular medium. Our results suggest that Ca2+ influx induced by thrombin and arachidonic acid in human platelets is strictly dependent on Na+/H+-exchange activation.  相似文献   

11.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

12.
Endothelin stimulates Na+/H+ exchange in vascular smooth muscle cells   总被引:2,自引:0,他引:2  
The effect of endothelin (ET) on the intracellular pH (pHi) of vascular smooth muscle cells (VSMC), was investigated using a fluorescent pH indicator 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). ET at concentrations of over 10(-9) M caused dose-dependent transient acidification followed by Na(+)-dependent and amiloride-sensitive alkalization of the cells due to stimulation of Na+/H+ exchange. The alkalization induced by ET was Ca2(+)-dependent and was inhibited by a calcium channel blocker, nicardipine. Pretreatment with H-7, an inhibitor of protein kinase C, also inhibited the ET-induced cell alkalization. These results indicate that ET stimulates Na+/H+ exchange, resulting in alkalization of VSMC and that this ET-induced cell-alkalization is probably linked to Ca2+ influx and activation of protein kinase C.  相似文献   

13.
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.  相似文献   

14.
It was shown that electrogenic 3Na+/Ca2+ antiport evoked depolarization of the membranes and Ca2+ ions influx through Ca2+ activated channels which lead to the appearance of stable self-oscillation of the membrane potential (MP), as well as Na+ and Ca2+ ions intracellular concentrations.  相似文献   

15.
Ethanol, at low concentrations, specifically stimulates the Na(+)-dependent Ca2(+)-efflux in brain mitochondria. In addition, at higher concentrations, ethanol inhibits the Na(+)-independent Ca2(+)-efflux. The electrogenic Ca(+)-uptake system is not affected by ethanol. The specific stimulation of Na+/Ca2+ exchange reaches a maximum of 60% stimulation, with half-maximal stimulation at 130 mM ethanol. The inhibition of the Na(+)-independent efflux is proportional to the ethanol concentration, becoming significant only above 200 mM, with 50% inhibition at 0.5 M. The inhibition of the Na(+)-independent efflux is, in large part, due to an inhibition of the activation of the Cyclosporin-sensitive pore. Long-term ethanol-feeding had no effect on the Ca2+ transport systems and their sensitivity to acute ethanol treatment. It is suggested that the stimulation of the Na(+)-dependent Ca2(+)-efflux, which is the dominant Ca2+ efflux pathway in brain mitochondria, contributes to the intoxicating effects of ethanol.  相似文献   

16.
We previously observed Ca2+ release from intracellular Ca2+ stores caused by reduction in extracellular Na+ concentration ([Na+]o). The purpose of this study was to determine whether lowering [Na+]o can elicit Ca2+ release from Ca2+ stores via the Na+/Ca2+ exchanger and to elucidate the mechanisms related to the Ca2+ release pathway in cultured longitudinal smooth muscle cells obtained from guinea pig ileum. Low [Na+]o-induced Ca2+ release was inhibited by antisense oligodeoxynucleotides for Na+/Ca2+ exchanger type 1 (anti-NCX). Application of anti-NCX to cells attenuated both the number of Ca2+ responding cells and the expression of the exchanger. Moreover, microinjection of heparin, a blocker of inositol 1,4,5-trisphosphate (IP3) receptors, into the cells inhibited low [Na+]o-induced Ca2+ release. These findings suggest that low [Na+]o-induced Ca2+ release occurs through an IP3-induced Ca2+ release mechanism due to changes in the Ca2+ flux regulated by the Na+/Ca2+ exchanger.  相似文献   

17.
Calcium levels in the presynaptic nerve terminal are altered by several pathways, including voltage-gated Ca(2+) channels, the Na(+)/Ca(2+) exchanger, Ca(2+)-ATPase, and the mitochondria. The influx pathway for homeostatic control of [Ca(2+)](i) in the nerve terminal has been unclear. One approach to detecting the pathway that maintains internal Ca(2+) is to test for activation of Ca(2+) influx following Ca(2+) depletion. Here, we demonstrate that a constitutive influx pathway for Ca(2+) exists in presynaptic terminals to maintain internal Ca(2+) independent of voltage-gated Ca(2+) channels and Na(+)/Ca(2+) exchange, as measured in intact isolated nerve endings from mouse cortex and in intact varicosities in a neuronal cell line using fluorescence spectroscopy and confocal imaging. The Mg(2+) and lanthanide sensitivity of the influx pathway, in addition to its pharmacological and short hairpin RNA sensitivity, and the results of immunostaining for transient receptor potential (TRP) channels indicate the involvement of TRPC channels, possibly TRPC5 and TRPC1. This constitutive Ca(2+) influx pathway likely serves to maintain synaptic function under widely varying levels of synaptic activity.  相似文献   

18.
The Na+/Ca2+ exchanger plays a prominent role in regulating intracellular Ca2+ levels in cardiac myocytes and can serve as both a Ca2+ influx and efflux pathway. A novel inhibitor, KB-R7943, has been reported to selectively inhibit the reverse mode (i.e., Ca2+ entry) of Na+/Ca2+ exchange transport, although many aspects of its inhibitory properties remain controversial. We evaluated the inhibitory effects of KB-R7943 on Na+/Ca2+ exchange currents using the giant excised patch-clamp technique. Membrane patches were obtained from Xenopus laevis oocytes expressing the cloned cardiac Na+/Ca2+ exchanger NCX1.1, and outward, inward, and combined inward-outward currents were studied. KB-R7943 preferentially inhibited outward (i.e., reverse) Na+/Ca2+ exchange currents. The inhibitory mechanism consists of direct effects on the transport machinery of the exchanger, with additional influences on ionic regulatory properties. Competitive interactions between KB-R7943 and the transported ions were not observed. The antiarrhythmic effects of KB-R7943 were then evaluated in an ischemia-reperfusion model of cardiac injury in Langendorff-perfused whole rabbit hearts using electrocardiography and measurements of left ventricular pressure. When 3 microM KB-R7943 was applied for 10 min before a 30-min global ischemic period, ventricular arrhythmias (tachycardia and fibrillation) associated with both ischemia and reperfusion were almost completely suppressed. The observed electrophysiological profile of KB-R7943 and its protective effects on ischemia-reperfusion-induced ventricular arrhythmias support the notion of a prominent role of Ca2+ entry via reverse Na+/Ca2+ exchange in this process.  相似文献   

19.
Using m-calpain antibody, we have identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of m-calpain in caveolae vesicles isolated from bovine pulmonary artery smooth muscle plasma membrane. In addition, 78, 35, and 18 kDa immunoreactive bands of m-calpain have also been detected. Casein zymogram studies also revealed the presence of m-calpain in the caveolae vesicles. We have also identified Na+/Ca2+ exchanger-1 (NCX1) in the caveolae vesicles. Purification and N-terminal sequence analyses of these two proteins confirmed their identities as m-calpain and NCX1, respectively. We further sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of NCX1 in the caveolae vesicles. Treatment of the caveolae vesicles with the calcium ionophore, A23187 (1 μM) in presence of CaCl2 (1 mM) appears to cleave NCX1 (120 kDa) to an 82 kDa fragment as revealed by immunoblot study using NCX1 monoclonal antibody; while pretreatment with the calpain inhibitors, calpeptin or MDL28170; or the Ca2+ chelator, BAPTA-AM did not cause a discernible change in the NCX protein profile. In vitro cleavage of the purified NCX1 by the purified m-calpain supports this finding. The cleavage of NCX1 by m-calpain in the caveolae vesicles may be interpreted as an important mechanism of Ca2+ overload, which could arise due to inhibition of Ca2+ efflux by the forward-mode NCX and that could lead to sustained Ca2+ overload in the smooth muscle leading to pulmonary hypertension.  相似文献   

20.
Cerebellar granule cells (CGCs) express K+-dependent (NCKX) and K+-independent (NCX) plasmalemmal Na+/Ca2+ exchangers which, under plasma membrane-depolarizing conditions and high cytosolic [Na+], may reverse and mediate potentially toxic Ca2+ influx. To examine this possibility, we inhibited NCX or NCKX with KB-R7943 or K+-free medium, respectively, and studied how gramicidin affects cytosolic [Ca2+] and 45Ca2+ accumulation. Gramicidin forms pores permeable to alkali cations but not Ca2+. Therefore, gramicidin-induced Ca2+ influx is indirect; it results from fluxes of monovalent cations. In the presence of Na+, but not Li+ or Cs+, gramicidin induced Ca2+ influx that was inhibited by simultaneous application of KB-R7943 and K+-free medium. The data indicate that gramicidin-induced Na+ influx reverses NCX and NCKX. To test the role of NCX and/or NCKX in excitotoxicity, we studied how NMDA affects the viability of glucose-deprived and depolarized CGCs. To assure depolarization of the plasma membrane, we inhibited Na+,K+-ATPase with ouabain. Although inhibition of NCX or NCKX reversal failed to significantly limit 45Ca2+ accumulation and excitotoxicity, simultaneously inhibiting NCX and NCKX reversal was neuroprotective and significantly decreased NMDA-induced 45Ca2+ accumulation. Our data suggest that NMDA-induced Na+ influx reverses NCX and NCKX and leads to the death of depolarized and glucose-deprived neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号