首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
Six months old in vitro-grown Anoectochilus formosanus plantlets were transferred to ex-vitro acclimation under low irradiance, LI [60 μmol(photon) m−2 s−1], intermediate irradiance, II [180 μmol(photon) m−2 s−1], and high irradiance, HI [300 μmol(photon) m−2 s−1] for 30 d. Imposition of II led to a significant increase of chlorophyll (Chl) b content, rates of net photosynthesis (P N) and transpiration (E), stomatal conductance (g s), electron transfer rate (ETR), quantum yield of electron transport from water through photosystem 2 (ΦPS2), and activity of ribulose-1,5-bisphosphate carboxylase/ oxygenase (RuBPCO, EC 4.1.1.39). This indicates that Anoectochilus was better acclimated at II compared to LI treatment. On the other hand, HI acclimation led to a significant reduction of Chl a and b, P N, E, g s, photochemical quenching, dark-adapted quantum efficiency of open PS2 centres (Fv/Fm), probability of an absorbed photon reaching an open PS2 reaction centre (Fv′/Fm′), ETR, ΦPS2, and energy efficiency of CO2 fixation (ΦCO2PS2). This indicates that HI treatment considerably exceeded the photo-protective capacity and Anoectochilus suffered HI induced damage to the photosynthetic apparatus. Imposition of HI significantly increased the contents of antheraxanthin and zeaxanthin (ZEA), non-photochemical quenching, and conversion of violaxanthin to ZEA. Thus Anoectochilus modifies its system to dissipate excess excitation energy and to protect the photosynthetic machinery.  相似文献   

2.
改进指数模型对紫茉莉光合-光响应及CO2响应适用性研究   总被引:1,自引:0,他引:1  
五种模型分别运用于紫茉莉的光合—光响应及CO2响应曲线的拟合,研究其光合效率参数的变化,探讨紫茉莉光合—光响应及CO2响应的最适模型。结果表明:(1)紫茉莉的光合—光响应及CO2响应改进指数模型拟合R2均为0.999,拟合效果优于非直角双曲线、直角双曲线和直角双曲线修正模型。其饱和光强和最大净光合速率分别为797.299和7.879 μmolCO2·m-2·s-1,饱和CO2浓度和最大光合能力分别为1 264.447和16.783 μmol CO2·m-2·s-1,均与实测值最接近;(2)五个模型拟合和预测的均方误差(MSE)、平均绝对误差(MAE),都是改进指数模型小于其他模型。改进指数模型为紫茉莉光合—光响应及CO2响应曲线的最佳模型,实验结果可为紫茉莉的生理生态应用研究提供参考。  相似文献   

3.
Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate sunlight [a maximal photosynthetic photon flux density (PPFD) of 500–600 μmol m−2 s−1] than in leaves grown under full sunlight (a maximal PPFD of 1 000–1 200 μmol m−2 s−1) and shade (a maximal PPFD of 200–250 μmol m−2 s−1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants. Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance (HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade, is not necessarily a shade plant.  相似文献   

4.
五种模型分别运用于紫茉莉的光合—光响应及CO2响应曲线的拟合,研究其光合效率参数的变化,探讨紫茉莉光合—光响应及CO2响应的最适模型。结果表明:(1)紫茉莉的光合—光响应及CO2响应改进指数模型拟合R2均为0.999,拟合效果优于非直角双曲线、直角双曲线和直角双曲线修正模型。其饱和光强和最大净光合速率分别为797.299和7.879 μmolCO2·m-2·s-1,饱和CO2浓度和最大光合能力分别为1 264.447和16.783 μmol CO2·m-2·s-1,均与实测值最接近;(2)五个模型拟合和预测的均方误差(MSE)、平均绝对误差(MAE),都是改进指数模型小于其他模型。改进指数模型为紫茉莉光合—光响应及CO2响应曲线的最佳模型,实验结果可为紫茉莉的生理生态应用研究提供参考。  相似文献   

5.
Summary MicropropagatedSpathiphyllum “Petite” plantlets were acclimatized at low- or high-light intensities [photosynthetic photon flux density (PPFD) 100 or 300 μmol·m−2·s−1]. During the first days chlorophyll fluorescence measurements show a partial photoinhibition of the photosynthetic apparatus, expressed by a decrease of the variable over maximal fluorescence ratio (Fv/Fm). This inhibition of Fv/Fm was significantly higher for plants grown at high-light intensity, leading to a photooxidation of chlorophyll. Newly formed leaves were better adapted to the ex vitro climatic condition (as shown by the increase of the Fv/Fm ratio) and had a higher net photosynthesis compared with in vitro formed leaves. Nevertheless, plants grown at 300 μmol·m−2·s−1 were photoinhibited, compared with those at 100 μmol·m−2·s−1. A sudden exposure to high-light intensity of 1-, 10- or 25-d-old transplanted plants (shift in PPFD from 100 to 300 μmol·m−2·s−1) gave a linear decrease of Fv/Fm over a 12-h period, which was reflected in a 50% reduction of net photosynthesis. No significant interaction between day and hour was found, indicating high-light exposure causes the same photoinhibitory effect on in vitro and ex vitro formed leaves.  相似文献   

6.
Kao  Wen-Yuan  Tsai  Hung-Chieh 《Photosynthetica》1999,37(3):405-412
Kandelia candel (L.) Druce is the dominant mangrove species on the west coast of northern Taiwan. We have measured the net photosynthetic rate (P N) and chlorophyll (Chl) a fluorescence of seedlings grown at combinations of two nitrogen (0.01 and 0.1 mM) and two NaCl (250 and 430 mM NaCl) controls. With the same nitrogen level, seedlings grown at higher salinity (HS) had a significantly lower P N and stomatal conductance (g s) than those at lower salinity (LS). An increase in nitrogen availability significantly elevated P N and g s of the LS-grown seedlings. Compared to dark adapted leaves, the maximum quantum yield of photosystem 2 (PS2) (Fv/Fm) of leaves exposed to PFDs of 1200 and 1600 μmol m-2 s-1 for 2 h was significantly reduced. The degree of Fv/Fm reduction differed among leaves of the four types of treated plants. Chl fluorescence quenching analysis revealed differences among the examined plants in coefficients of non-photochemical and photochemical quenching. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
武夷山国家公园不同林地土壤呼吸动态变化及其影响因素   总被引:2,自引:0,他引:2  
探明亚热带山岳型国家公园不同林地利用方式下土壤呼吸(Rs)的动态变化规律以及影响因素,对准确评价和预测该区域以国家公园为主体的自然保护地体系的碳收支具有重要的现实意义。以武夷山国家公园为研究对象,利用Li-8100开路式土壤碳通量测定系统对茶园、锥栗(Castanea henryi(Skam) Rehd.et Wils.)林、马尾松(Pinus massoniana Lamb.)林和裸地的土壤呼吸及近地面气温、土壤温度、土壤湿度、土壤养分和土壤微生物碳(MBC)、氮(MBN)进行测定。结果显示:(1)与近地面气温、土壤温度和土壤湿度相同,不同林地的Rs均呈现夏 > 春 > 秋 > 冬的季节动态,Rs的季节均值按大小排序为茶园(3.10 μmol m-2 s-1) > 马尾松(2.96 μmol m-2 s-1) > 锥栗(2.32 μmol m-2 s-1) > 裸地(1.43 μmol m-2 s-1),锥栗和裸地之间、锥栗与马尾松之间均差异显著(P<0.01)。除马尾松林外,其他林地水热因子(近地面气温、土壤温度和土壤湿度)的单因子二次多项式模型对Rs的拟合度最高。水热因子共同建立的复合模型中,土壤温度、湿度的幂-指数模型对茶园Rs的拟合度较高,土壤温度和土壤湿度能够解释Rs变化的80%,马尾松林的Rs较适用于土壤温度、湿度建立的对数函数模型,而三因子线性模型(进入回归法)对锥栗林和裸地的Rs的拟合度最优,R2分别为0.565和0.281。(2)茶园和锥栗林的碳、氮、磷含量均高于马尾松林和裸地,MBN含量茶园 > 马尾松 > 锥栗 > 裸地。茶园的Rs与全磷(TP)、有效磷(AP)、全钾(TK)、速效钾(AK)含量呈极显著(P<0.01)正相关,马尾松林的Rs受TP、TK、AK含量的影响极显著(P<0.01),锥栗林的Rs与TK、AK、MBN含量呈现显著(P<0.05)正相关,裸地的Rs受MBN含量影响较为显著(P<0.05),4种林地土壤呼吸与养分的多元逐步回归方程R2均接近1。综上,茶园和马尾松林土壤呼吸速率较高,且所有林地的土壤呼吸均呈现夏 > 春 > 秋 > 冬的季节动态。温度和湿度与土壤呼吸的相关性强,是水热条件丰富的亚热带山岳地区土壤呼吸季节变化的主导因素,其中武夷山茶园土壤呼吸对水热因子的响应在4种林地中最为敏感。除温度和湿度外,各林地土壤呼吸受P、K元素的影响较大,其中茶园主要受P元素影响,马尾松林地受K元素影响较多。  相似文献   

8.
A yellow leaf colouration mutant (named ycm) generated from rice T-DNA insertion lines was identified with less grana lamellae and low thylakoid membrane protein contents. At weak irradiance [50 μmol(photon) m−2 s−1], chlorophyll (Chl) contents of ycm were ≈20 % of those of WT and Chl a/b ratios were 3-fold that of wild type (WT). The leaf of ycm showed lower values in the actual photosystem 2 (PS2) efficiency (ΦPS2), photochemical quenching (qP), and the efficiency of excitation capture by open PS2 centres 1 (Fv′/Fm′) than those of WT, except no difference in the maximal efficiency of PS2 photochemistry (Fv/Fm). With progress in irradiance [100 and 200 μmol(photon) m−2 s−1], there was a change in the photosynthetic pigment stoichiometry. In ycm, the increase of total Chl contents and the decrease in Chl a/b ratio were observed. ΦPS2, qP, and Fv′/Fm′ of ycm increased gradually along with the increase of irradiance but still much less than in WT. The increase of xanthophyll ratio [(Z+A)/(V+A+Z)] associated with non-photochemical quenching (qN) was found in ycm which suggested that ycm dissipated excess energy through the turnover of xanthophylls. No significant differences in pigment composition were observed in WT under various irradiances, except Chl a/b ratio that gradually decreased. Hence the ycm mutant developed much more tardily than WT, which was caused by low photon energy utilization independent of irradiance.  相似文献   

9.
Leaf Photosynthesis of the Mangrove Avicennia Germinans as Affected by NaCl   总被引:2,自引:0,他引:2  
In leaves of the mangrove species Avicennia germinans (L.) L. grown in salinities from 0 to 40 ‰, fluorescence, gas exchange, and δ13C analyses were done. Predawn values of Fv/Fm were about 0.75 in all the treatments suggesting that leaves did not suffer chronic photoinhibition. Conversely, midday Fv/Fm values decreased to about 0.55-0.60 which indicated strong down-regulation of photosynthesis in all treatments. Maximum photosynthetic rate (P max) was 14.58 ± 0.22 μmol m-2 s-1 at 0 ‰ it decreased by 21 and 37 % in plants at salinities of 10 and 40 ‰, respectively. Stomatal conductance (g s) was profoundly responsive in comparison to P max which resulted in a high water use efficiency. This was further confirmed by δ13C values, which increased with salinity. From day 3, after salt was removed from the soil solution, P max and g s increased up to 13 and 30 %, respectively. However, the values were still considerably lower than those measured in plants grown without salt addition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
左嫚  陈奇伯  黎建强  杨关吕  胡景  孙轲 《生态学报》2021,41(11):4552-4561
为研究枯落物输入变化对云南松(Pinus yunnanensis)林地CO2释放的影响。本研究于2018年3月至2020年2月,应用枯落物添加和去除实验(DIRT),设置对照(CK)、双倍枯落物(DL)、去除枯落物(NL)、去除有机层和A层(O/A-Less)、去除根系(NR)和无输入(NI)6个处理水平,采用Li-6400便携式光合作用测量仪及TRIME-PICO 64/32土壤温度水分测定仪对不同处理样地每月的CO2通量(Rs)、土壤温度和土壤水分(15cm)进行了测定。结果表明:(1)不同处理样地CO2通量均呈现出明显的月变化,7至8月最高,1至4月最低,平均值表现为Rs (DL)=8.10 μmol m-2 s-1 > Rs (CK)=6.27 μmol m-2 s-1 > Rs (NL)=5.44 μmol m-2 s-1 > Rs (NR)=4.46 μmol m-2 s-1 > Rs (O/A-Less)=3.86 μmol m-2 s-1 > Rs (NI)=2.94 μmol m-2 s-1。(2)与CK相比,DL样地CO2通量升高了29.12%,而去除地上枯落物和地下根系样地CO2通量显著降低,CO2通量平均变幅分别为α(NR)=-28.85%,α(NI)=-53.14%,α(O/A-Less)=-38.46%,α(NL)=-13.29%。(3)不同处理土壤水分和土壤温度均存在显著的月变化(P<0.01),NL和O/A-Less的土壤水分显著低于CK,而其余处理与CK间无显著差异(P>0.05);不同处理间土壤温度表现为NR和NI均显著高于CK,其余处理与CK间无显著差异(P>0.05)。(4)不同处理样地CO2通量与土壤温度呈显著指数相关(P<0.01),与土壤水分在NI和O/A-Less处理中无显著相关(P>0.05);与CK相比,NI、O/A-Less和NL处理的Q10增加,而NR和DL处理的Q10则降低;不同处理林地CO2通量与土壤水热因子双因素模型能更好的解释林地CO2通量的变化。本研究表明枯落物不同处理通过改变土壤碳输入和土壤环境因子从而影响生态系统碳排放,研究结果可为未来气候变化和人为干扰下云南松林的碳循环提供基础数据。  相似文献   

11.
《Journal of bryology》2013,35(3):167-173
Abstract

The two species of Weymouthia occur in temperate rainforest in south-east Australia, New Zealand and southern Chile. Weymouthia cochlearifolia forms patches on trunks and branches, but can be pendulous under suitable conditions. Weymouthia mollis is typically of 'pendant' life-form, hanging from twigs and branches in the canopy. Photosynthetic electron flow in W. cochlearifolia reached 95% saturation at 160 μmol m-2 s-1 PPFD; corresponding figures for W. mollis ranged from 176 to 307 μmol m-2 s-1 PPFD or more. Both species tolerated 30 d desiccation at -41 MPa (74% r. h.) but survived lower humidities less well; W. mollis was the more desiccation tolerant of the two. The fluorescence parameter Fv/Fm recovered rapidly on rewetting. It is suggested that the main desiderata for the pendant life-form are high and reasonably regular precipitation, some shelter from wind, and moderate (but not extreme) shade. These probably cannot be fully met around the year in deciduous forests at higher latitudes.  相似文献   

12.
We compared four existing process‐based stand‐level models of varying complexity (physiological principles in predicting growth, photosynthesis and evapotranspiration, biogeochemical cycles, and stand to ecosystem carbon and evapotranspiration simulator) and a new nested model with 4 years of eddy‐covariance‐measured water vapor (LE) and CO2 (Fc) fluxes at a maturing loblolly pine forest. The nested model resolves the ‘fast’ CO2 and H2O exchange processes using canopy turbulence theories and radiative transfer principles whereas slowly evolving processes were resolved using standard carbon allocation methods modified to improve leaf phenology. This model captured most of the intraannual variations in leaf area index (LAI), net ecosystem exchange (NEE), and LE for this stand in which maximum LAI was not at a steady state. The model comparisons suggest strong linkages between carbon production and LAI variability, especially at seasonal time scales. This linkage necessitates the use of multilayer models to reproduce the seasonal dynamics of LAI, NEE, and LE. However, our findings suggest that increasing model complexity, often justified for resolving faster processes, does not necessarily translate into improved predictive skills at all time scales. Additionally, none of the models tested here adequately captured drought effects on water and CO2 fluxes. Furthermore, the good performance of some models in capturing flux variability on interannual time scales appears to stem from erroneous LAI dynamics and from sensitivity to droughts that injects unrealistic flux variability at longer time scales.  相似文献   

13.
Flight of the honey bee VII: metabolic power versus flight speed relation   总被引:1,自引:1,他引:0  
The existing experimental data on metabolic power P m of honey bees are critically discussed, partly corrected for real flight conditions and plotted as a function of flight speed v. New wind tunnel measurements of tethered flight under near-natural conditions are added in the range 3.3<v<5.1 m·s-1, derived from exhaustion flight measurements. Within this small sector the latter measurements can be characterised by a linear correlation: P m(mW)=6.72v (m·s-1)+13.83, the slope of which is significantly different from zero. The over-all P m(v) curve is significantly not a straight line of zero slope but a U-shaped minimum curve and may be approximated by a second-order polynom: P m=49.2-8.9v+1.5v 2. The same is true for relative metabolic power, P m rel (e) related to empty body mass of 76.5 mg: P m rel(e)=630.0-114.0v+19.2v 2 (P m in mW: P m rel in mW·g-1; v in m·s-1). The data support the existence of a U-shaped power-versus-speed curve in bees.Abbreviations bm body mass (mg) - f full - e empty - mu muscles - P m (mJ·s-1=mW) metabolic power (input) - P m rel (mW·g-1) relative metabolic power - P mec (mW) mechanical power (output) - efficiency (of the flight musculature) - t(s) flight time - v (m·s-1) relative speed between bee and air  相似文献   

14.
Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs), water‐ and light‐use efficiency and surface–atmosphere coupling of European boreal coniferous forests was explored using eddy‐covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil–vegetation–atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within‐canopy microclimate, sink/source distributions of CO2, H2O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem‐scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry‐canopy evapotranspiration (ET) was reasonably ‘conservative’ over the studied LAI range 0.5–7.0 m2 m?2. Both ET and Gs experienced a minimum in the LAI range 1–2 m2 m?2 caused by opposing nonproportional response of stomatally controlled transpiration and ‘free’ forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m2 m?2) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m2 m?2). This finding emphasizes the significance of stand‐replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light‐saturated water‐use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests.  相似文献   

15.
Understanding of the physiological responses of kelp to environmental parameters is crucial, especially in the context of environmental change that may have contributed to the decline of kelp forests all over the world. The current study presents the photosynthetic characteristics of the macroscopic sporophyte and microscopic gametophyte stages of the brown alga Alaria crassifolia from Hokkaido, Japan, as determined by examining their photosynthetic responses over a range of temperature and irradiance using dissolved oxygen and chlorophyll fluorescence measurements. Net photosynthetic rates of the sporophyte were consistently higher than those of gametophyte across temperature gradients and irradiance levels. Photosynthesis–irradiance curves at 8°C, 16°C, and 20°C revealed similar initial slopes (α = 0.4–0.9) on the two life history stages, but higher compensation (E c = 4–7 μmol photons m?2 s?1) and saturation irradiances (E k = 53–103 μmol photons m?2 s?1) for the sporophyte than for the gametophyte (E c = 0–7 μmol photons m?2 s?1; E k = 7–10 μmol photons m?2 s?1). Both stages exhibited chronic photoinhibition, as shown by the failure of recovery in their maximum quantum yields (F v/F m) following high irradiance stress, with greater possibility of photodamage at low temperature. Gametophytes were less sensitive to low temperatures than sporophytes, given their relatively stable F v/F m response. Nevertheless, temperature optima for photosynthesis of both stages coincide with each other at 20–23°C, which correspond to the growth and maturation periods of A. crassifolia in Japan. This species is also likely to suffer from thermal inhibition as both GP rates and F v/F m decreased above 24°C.  相似文献   

16.
The changes in photosynthetic efficiency and photosynthetic pigments during dehydration of the resurrection plantSelaginella lepidophylla (from the Chiuhahuan desert, S.W. Texas, USA) were examined under different light conditions. Changes in the photosynthetic efficiency were deduced from chlorophyll a fluorescence measurements (Fo, Fm, and Fv) and pigment changes were measured by HPLC analysis. A small decrease in Fv/Fm was seen in hydrated stems in high light (650 μmol photons·m−2·s−1) but not in low light (50 μmol photons·m−2·s−1). However, a pronounced decline in Fv/Fm was observed during dehydration in both light treatments, after one to two hours of dehydration. A rise in Fo was observed only after six to ten hours of dehydration. Concomitant with the decrease in photosynthetic efficiency during dehydration a rise in the xanthophyll zeaxanthin was observed, even in low-light treatments. The increase in zeaxanthin can be related to previously observed photoprotective non-photochemical quenching of fluorescence in dehydrating stems ofS. lepidophylla. We hypothesize that under dehydrating conditions even low light levels become excessive and zeaxanthin-related photoprotection is engaged. We speculate that these processes, as well as stem curling and self shading (Eickmeier et al. 1992), serve to minimize photoinhibitory damage toS. lepidophylla during the process of dehydration.  相似文献   

17.
The physiological ecology of Prasiola stipitata was examined in situ from two supralittoral sites in the Bay of Fundy (Nova Scotian, Canada) during November 2011, when the population was undergoing major expansion. Photosynthetic parameters (effective quantum yield, ΦPSII, maximum quantum yield, Fv/Fm, and relative electron transport rate, rETR) were evaluated using chlorophyll fluorescence of PSII. A largely shaded and continuously moist population showed no change in ΦPSII from one hour after sunrise to sunset in which natural irradiance varied between 3 and 300 μmol photons m?2 s?1. High irradiance (up to 1800 μmol photons m?2 s?1) had no apparent negative impacts on either quantum yield or rETR, but high desiccation in the field reduced quantum yield to almost zero. When thalli were brought into the laboratory, no change in Fv/Fm was observed up to 60% dehydration; however, there was a steep decline in Fv/Fm between 60% and 85% dehydration. Thalli showed complete recovery of Fv/Fm within one hour of reimmersion in seawater after 2 days of desiccation. After 15 days of desiccation full recovery required 24 h and after 30 days of desiccation thalli showed only partial recovery. These observations confirm the adaptation to photosynthesis in high irradiances and the rapid recovery following extreme desiccation observed in other Prasiola species.  相似文献   

18.
Recovery from 60 min of photoinhibitory treatment at photosynthetic photon flux densities of 500, 1400 and 2200 μMmol m?2 s? was followed in cells of the green alga Chlamydomonas reinhardtii grown at 125 μMmol m?2 s?1. These light treatments represent photoregulation, moderate photoinhibition and strong photoinhibition, respectively. Treatment in photoregulatory light resulted in an increased maximal rate of oxygen evolution (Pmax) and an increased quantum yield (Φ), but a 15% decrease in Fv/FM. Treatment at moderately photoinhibitory light resulted in a 30% decrease in Fv/FM and an approximately equal decrease in Φ. Recovery in dim light restored Fv/FM within 15 and 45 min after high light treatment at 500 and 1400 μMmol m?2 s?1, respectively. Convexity (Θ), a measure of the extent of co-limitation between PS II turnover and whole-chain electron transport, and Φ approached, but did not reach the control level during recovery after exposure to 1400 μMmol m?2 s?1, whereas Pmax increased above the control. Treatment at 2200 μMmol m?2 s?1 resulted in a strong reduction of the modeled parameters Φ, Θ and Pmax. Subsequent recovery was initially rapid but the rate decreased, and a complete recovery was not reached within 120 min. Based on the results, it is hypothesized that exposure to high light results in two phenomena. The first, expressed at all three light intensities, involves redistribution within the different aspects of PS II heterogeneity rather than a photoinhibitory destruction of PS II reaction centers. The second, most strongly expressed at 2200 μmol m?2 s?1, is a physical damage to PS II shown as an almost total loss of PS IIα and PS II QB-reducing centers. Thus recovery displayed two phase, the first was rapid and the only visible phase in algae exposed to 500 and 1400 μmol m?2 s?1. The second phase was slow and visible only in the later part of recovery in cells exposed to 2200 μmol m?2 s?1.  相似文献   

19.
Soil respiration is affected by vegetation and environmental conditions. The purpose of this study was to investigate the effect of vegetation type on soil respiration, temperature and water content, and their correlations on a small scale. We measured soil respiration rate (Rs) over a 3-year period at biweekly intervals in three plots in the eastern Loess Plateau of China, with the same soil texture but different vegetation types: pine forest, grassland, and shrub land. Simultaneously, soil temperature (Ts) at 10 cm depth and soil water content (Ws) within 10 cm depth were measured. The seasonal course of Rs and Ts showed a similar temporal variation in the three plots, with higher values in summer and autumn and lower values in winter and spring. No significant differences (P>0.05) were found between plots, except for Ws. The mean cumulative release of CO2 efflux from March to December was 962.5, 1027.5, and 1166.5 g C m? 2 a? 1 for plots 1, 2, and 3, respectively, with no significant difference between plots. The fitted exponential equations of Rs versus Ts from the 3-year data-set were significant (P < 0.05) with an R2 of 0.72, 0.64, and 0.72 for plots 1, 2, and 3, respectively. The calculated Q10 from the parameters of the fitted equation was 3.57, 3.52, and 3.61, and the R10 was 2.36, 2.03, and 2.37 μmol CO2 m? 2 s? 1 for plots 1, 2, and 3, respectively. Compared with the Ts, the correlations between Rs and Ws were not significant for the three plots. However, if the Ts was above 10°C, then their correlation was significant, and Ws had an impact on Rs. Four combined regression equations including two variables of Ts and Ws could be well established to model correlations between Rs and both Ts and Ws. Our study demonstrated that the exponential and power model fitted best and no significant different correlations of combined equations existed between the three plots. These results show that vegetation type had little impact on Rs, Ts, Ws, and their correlations, as well as on related parameters such as Q10 and R10. Therefore, while doing Rs research in a horizontal patchy vegetation conditions on a small area, the sampling location of measurements should focus on vertical dominant vegetation and ignore patch vegetation so as to reduce field work load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号