首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The vacuolar and epicuticular flavonoids and the volatiles of the leaves and parts of flower of P. spectabilis Tratt., an endemic species in the Italian Oriental Alps, were investigated. From a MeOH extract of the leaves two flavone glycosides, 8-C-β-glucopyranosylluteolin 7-O-α-arabinofuranoside (1) and 6-C-α-arabinofuranosylapigenin (2) were isolated, in addition to a flavone and three flavonols already known from species of Primula. From an EtOH extract of leaf exudates, 7,3',4'-tri-O-methylquercetin was obtained. The structures were elucidated on the basis of their 1D 1H- and 13C NMR data and 2D NMR techniques, as well as of HPLC-MS. The volatiles emitted by the leaves were mainly constituted by non-terpene derivatives, followed by comparable proportions of hemiterpens, oxygenated monoterpenes and sesquiterpene hydrocarbons. In flowers, monoterpene hydrocarbons were the most represented chemical class followed by non-terpene derivatives. Different proportions of compounds were found when individual parts of flowers were examined separately; calyx produced a greater proportion (approx. 49.5%) of non-terpenes as its volatile metabolites. P. spectabilis has glandular trichomes in the hyaline margins of the epidermal depressions, distributed on the adaxial leaf blade. Glandular hairs were also present on the corolla. Correlations of phytochemical data with the morphological features of leaf, flower and glandular hair are discussed, and a hypothesis is proposed on the ecological roles of the flavonoids and volatile compounds on the general fitness of the species and cross-pollination strategies.  相似文献   

2.
Leaf flavonoid compounds from six olive (Olea europaea L.) cultivars were analysed by HPLC. The composition of the soluble fractions of the dehaired lamina and the isolated trichome layers of the abaxial leaf surface were analysed in separate, as to study the distribution of flavonoids between the two leaf parts. Quercetin and quercetin 3-O-rhamnoside that have been reported to occur in the leaves seem to be located exclusively in the trichome layer. A greater variety of flavonoids was found in the lamina but the trichome layer was richer in terms of total flavonoids per unit mass. Trichome layer demonstrated an independent chemical character since its flavonoid concentration and composition was not coordinated with that of the lamina. The occurrence of flavonoid compounds in trichomes is related to the UV-filtering capacity of these cells. The results of the present study showed that apart from the soluble fraction, the cuticular waxes and cell walls of the trichomes also showed significant UV-absorbing capacity, indicating the occurrence of UV-absorbing compounds in these fractions as well. Moreover, the cuticular waxes of the trichome layer exhibited not only a higher investment of mass per unit of leaf area, but also a higher UV-absorbing capacity expressed per unit mass as compared to the cuticular waxes of the lamina surface. The importance for the separate chemical investigation of the phenolic composition of the leaf lamina and the trichome layers as well as the ecological significance of the findings is discussed.  相似文献   

3.
It is widely accepted that the mix of flavonoids in the cell vacuole is the source of flavonoid based petal colour, and that analysis of the petal extract reveals the nature and relative levels of vacuolar flavonoid pigments. However, it has recently been established with lisianthus flowers that some petal flavonoids can be excluded from the vacuolar mix through deposition in the cell wall or through complexation with proteins inside the vacuole, and that these flavonoids are not readily extractable. The present work demonstrates that flavonoids can also be compartmented within the cell cytoplasm. Using adaxial epidermal peels from the petals of lisianthus (Eustoma grandiflorum), Lathyrus chrysanthus and Dianthus caryophyllus, light and laser scanning confocal microscopy studies revealed a significant concentration of petal flavonoids in the cell cytoplasm of some tissues. With lisianthus, flavonoid analyses of isolated protoplasts and vacuoles were used to establish that ca 14% of petal flavonoids are located in the cytoplasm (cf. 30% in the cell wall and 56% in the vacuole). The cytoplasmic flavonoids are predominantly acylated glycosides (cf. non-acylated in the cell wall). Flavonoid aggregation on a cytoplasmic protein substrate provides a rational mechanism to account for how colourless flavonoid glycosides can produce yellow colouration in petals, and perhaps also in other plant parts. High vacuolar concentrations of such flavonoids are shown to be insufficient.  相似文献   

4.
In many cases, the vacuolar uptake of secondary metabolites has been demonstrated to be strictly specific for a given compound and plant species. While most plants contain glycosylated secondary substances, few cases are known where flavonoids may also carry negative charges, e.g. as glucuronide conjugates. Vacuolar transport of glucosylated phenylpropanoid derivatives has been shown to occur by proton substrate antiport mechanisms (Klein, M., Weissenb?ck. G., Dufaud, A., Gaillard, C., Kreuz, K., Martinoia, E., 1996. Different energization mechanisms drive the vacuolar uptake of a flavonoid glucoside and a herbicide glucoside. J. Biol. Chem. 271, 29,666-29,671). In contrast, flavone glucuronides appearing specifically in rye mesophyll vacuoles are taken up by direct energisation utilising MgATP, strongly arguing for the presence of an ATP-binding cassette (ABC) transporter belonging to the subfamily of multidrug resistance-associated proteins (MRP) on the rye vacuolar membrane (Klein, M., Martinoia, E., Hoffmann-Thoma, G., Weissenb?ck, G., 2000. A membrane-potential dependent, ubiquitous ABC-like transporter mediates the vacuolar uptake of rye flavone glucuronides regulation of glucturonide uptake by glutathione and its conjugates. Plant Journal 21, 289-304). MRPs are known to transport negatively charged organic anions. Results presented here suggest that the vacuolar directly energised MRP-like glucuronate pump for plant-specific flavone glucuronides is ubiquitously present in diverse plant species since rye flavone glucuronides are taken up into vacuoles isolated from the barley mesophyll or from the broccoli stalk parenchyma representing two species which do not synthesise glucuronidated secondary compounds. According to the transport characteristics and inhibition profile observed we propose the existence of a high-capacity, uncoupler-insensitive vacuolar ABC transporter for flavone glucuronides and possibly other negatively charged organic compounds -- plant-born or xenobiotic -- irrespective of the plant's capability to endogenously produce glucuronidated compounds.  相似文献   

5.
The morphology, ultrastructure, density and distribution of trichomes on leaves of Betula pendula, B. pubescens ssp. pubescens, B. pubescens ssp. czerepanovii and B. nana were examined by means of light, scanning and transmission electron microscopy. The composition of flavonoids in ethanolic leaf surface extracts was analysed by high pressure liquid chromatography. All taxa examined contained both glandular and non-glandular trichomes (short and/or long hairs) but differed from each other in trichome ultrastructure, density and location on the leaf. Leaves of B. pubescens were more hairy than those of B. pendula, but the latter species had a higher density of glandular trichomes. Of the two subspecies of B. pubescens, leaves of ssp. pubescens had more short hairs on the leaf surface and four times the density of glandular trichomes of leaves of ssp. czerepanovii, whereas, in the latter subspecies, short hairs occurred largely on leaf veins, as in B. nana. The glandular trichomes were peltate glands, consisting of medullar and cortical cells, which differed structurally. Cortical cells possessed numerous small, poorly developed plastids and small vacuoles, whereas medullar cells had several large plastids with well-developed thylakoid systems and fewer vacuoles. In B. pubescens subspecies, vacuoles of the glandular cells contained osmiophilic deposits, which were probably phenolic, whereas in B. pendula, vacuoles of glandular trichomes were characterized by the presence of numerous myelin-like membranes. The composition of epicuticular flavonoids also differed among species. The two subspecies of B. pubescens and B. nana shared the same 12 compounds, but five of these occurred only in trace amounts in B. nana. Leaf surface extracts of B. pendula contained just six flavonoids, three of which occurred only in this species. In summary, the structure, density and distribution of leaf trichomes and the composition of epicuticular flavonoids represent good taxonomic markers for Finnish birch species.  相似文献   

6.
J L Rios  S Ma?ez  M Paya  M J Alcaraz 《Phytochemistry》1992,31(6):1947-1950
Five flavonoid glycosides, 4'-O-methylisoscutellarein 7-O-[6"'-acetylallopyranosyl(1----2)glucopyranoside], 4'-O-methylisoscutellarein 7-O-allopyranosyl(1----2)glucopyranoside, 3'-hydroxy-4'-O-methylisoscutellarein 7-O-[6"'-acetylallopyranosyl(1----2) glucopyranoside], and hypolaetin-8-glucoside have been isolated from Sideritis javalambrensis aerial parts and identified by standard methods. These glycosides have been tested for their antioxidant properties alongside other 7,8-substituted flavonoids using FeSO4/cysteine-induced microsomal lipid peroxidation. Superoxide scavenging activity was assessed in the nitroblue tetrazolium test. Among this series of flavonoids, hypolaetin-8-glucoside is the most potent inhibitor of nonenzymic lipid peroxidation. The antiperoxidative activity of these flavonoids may be related to their superoxide scavenging ability.  相似文献   

7.
Previous studies on the mechanisms of birch resistance to herbivores and foliar micro-fungi (both pathogenic and endophytic) have focused mainly on the role of internal leaf chemistry. In the present study, we examined genetic correlations between leaf surface traits (glandular trichome density and total concentrations of surface flavonoid aglycones) and occurrence of three species of foliar micro-fungi, one pathogenic rust (Melampsoridium betulinum) and two endophytic fungi (Fusicladium sp. and Melanconium sp.), and performance of autumnal moth larvae (Epirrita autumnata) in two birch species, Betula pubescens ssp. czerepanovii and B. pendula. The performance of autumnal moth larvae on B. pubescens ssp. czerepanovii was negatively correlated with density of glandular trichomes (RGR: r=–0.855; pupal mass: r=–0.709). In addition, rust infection was negatively correlated with trichome density in B. pendula (r=–0.675) and with epicuticular flavonoid aglycones in B. pubescens ssp. czerepanovii (r=–0.855). The frequency of the endophytic fungus Fusicladium sp., was related to epicuticular flavonoid aglycones (r=–0.782), while another endophytic fungus, Melanconium sp., showed no associations with any of the studied variables in B. pubescens ssp. czerepanovii. Our results indicate that leaf surface traits may be at least as important determinants of herbivore performance and micro-fungi abundance in birch as leaf internal chemistry.  相似文献   

8.
9.
Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae   总被引:1,自引:0,他引:1  
The distinctive foliar trichome of Bromeliaceae has promoted the evolution of an epiphytic habit in certain taxa by allowing the shoot to assume a significant role in the uptake of water and mineral nutrients. Despite the profound ecophysiological and taxonomic importance of this epidermal structure, the functions of nonabsorbent trichomes in remaining Bromeliaceae are not fully understood. The hypothesis that light reflection from these trichome layers provides photoprotection was not supported by spectroradiometry and fluorimetry in the present study; the mean reflectance of visible light from trichome layers did not exceed 6.4% on the adaxial surfaces of species representing a range of ecophysiological types nor was significant photoprotection provided by their presence. Several reports suggesting water repellency in some terrestrial Bromeliaceae were investigated. Scanning electron microscopy (SEM) and a new technique-fluorographic dimensional imaging (FDI)-were used to assess the interaction between aqueous droplets and the leaf surfaces of 86 species from 25 genera. In the majority of cases a dense layer of overlapping, stellate or peltate trichomes held water off the leaf epidermis proper. In the case of hydrophobic tank-forming tillandsioideae, a powdery epicuticular wax layer provided water repellency. The irregular architecture of these indumenta resulted in relatively little contact with water droplets. Most mesic terrestrial Pitcairnioideae examined either possessed glabrous leaf blades or hydrophobic layers of confluent trichomes on the abaxial surface. Thus, the present study indicates that an important ancestral function of the foliar trichome in Bromeliaceae was water repellency. The ecophysiological consequences of hydrophobia are discussed.  相似文献   

10.
Muravnik LE 《Tsitologiia》2008,50(7):636-642
Four types of glandular and non-glandular trichomes of pericarp in four Juglans species (J. ailanthifolia, J. cordiformis, J. mandshurica and J. regia) from Juglandaceae were studied by scanning electron microscopy, fluorescent light microscopy and histochemistry. The capitate trichomes on short stalk, the capitate trichomes on long stalk and the peltate trichomes belong to glandular trichomes; the simple hairs concern to non-glandular trichomes. The investigated species differ one from another in dimensions and distribution oftrichomes as well as the chemical content and the mechanism of secretion. The fluorescent markers and histochemical tests show the presence of flavonoids, tannins and polyphenols in trichomes on short and long stalk. In peltate trichomes the flavonoids and tannins were found in lesser quantity and the polyphenols are absent. In simple hairs the phenolic substances have not been recognized. It has been come out with the suggestion about a functional role of each type of trichomes.  相似文献   

11.
水团花黄酮类成分及其体外抗病毒活性   总被引:3,自引:1,他引:2  
从水团花乙醇提物的乙酸乙酯部位分离到6个黄酮类化合物,根据光谱数据分别鉴定为柚皮素(1)、圣草酚(2)、槲皮素(3)、柚皮素-7-O-β-D-葡萄糖苷(4)、圣草酚-7-O-β-D-葡萄糖苷(5)、槲皮素-3-O-β-D-葡萄糖苷(6),化合物1、2,4和5为首次从该植物中分离得到。采用细胞病变抑制法(CPEr eductionassay)和MTT法测定化合物的体外抗病毒活性,结果显示,三个黄酮苷元1、2和3均具有不同程度的体外抑制呼吸道合胞病毒(RSV)和柯萨奇B3型病毒(CVB3)活性,反之,3个黄酮苷均不显示活性。  相似文献   

12.
Kite GC  Rowe ER  Lewis GP  Veitch NC 《Phytochemistry》2011,72(4-5):372-384
The foliar metabolome of Cladrastis kentukea (Leguminosae) contains a complex mixture of flavonoids including acylated derivatives of the 3-O-rhamnosyl(1→2)[rhamnosyl(1→6)]-galactosides of kaempferol and quercetin and their 7-O-rhamnosides, together with an array of non-acylated kaempferol and quercetin di-, tri- and tetraglycosides. Thirteen of the acylated flavonoids, 12 of which had not been reported previously, were characterised by spectroscopic and chemical methods. Eight of these were the four isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) and their 7-O-α-l-rhamnopyranosides, and three were isomers of quercetin 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E/Z-p-coumaroyl-β-d-galactopyranoside) - the remaining 4Z isomer was identified by LC-UV-MS analysis of a crude extract. The final two acylated flavonoids characterised by NMR were the 3E and 4E isomers of kaempferol 3-O-α-l-rhamnopyranosyl(1→2)[α-l-rhamnopyranosyl(1→6)]-(3/4-O-E-feruloyl-β-d-galactopyranoside)-7-O-α-l-rhamnopyranoside while the 3Z and 4Z isomers were again detected by LC-UV-MS. Using the observed fragmentation behaviour of the isolated compounds following a variety of MS experiments, a further 18 acylated flavonoids were given tentative structures by LC-MS analysis of a crude extract. Acylated flavonoids were absent from the flowers of C. kentukea, which contained an array of non-acylated kaempferol and quercetin glycosides. Immature fruits contained kaempferol 3-O-α-rhamnopyranosyl(1→2)[α-rhamnopyranosyl(1→6)]-β-galactopyranoside and its 7-O-α-rhamnopyranoside as the major flavonoids with acylated flavonoids, different from those in the leaves, only present as minor constituents. The presence of acylated flavonoids distinguishes the foliar flavonoid metabolome of C. kentukea from that of a closely related legume, Styphnolobium japonicum, which contains a similar range of non-acylated flavonoids.  相似文献   

13.
This review summarizes the flavonoids isolated from three genera, namely, Aconitum, Delphinium, and Consolida, belonging to tribe Delphineae in the Ranunculaceae family for the first time. A total of 104 distinct flavonoid components, including 85 flavonols, 13 anthocyanins, four flavones, and two neoflavones, have been isolated from 44 members of tribe Delphineae. Flavonols account for the largest proportion and can be regarded as the dominant group of flavonoids in this tribe. Of the 104 isolated flavonoids, 55 are novel, indicating the high chemical diversity among the flavonoid constituents of Delphineae plants. Flavonoids in Delphineae plants exhibit chemotaxonomic significance, characterizing certain Delphineae species well. Flavonol glycosides, as the major flavonoid constituents in the investigated Delphineae species, could also serve as valuable chemotaxonomic markers in addition to diterpenoid alkaloids for the identification of Delphineae species.  相似文献   

14.
Summary A vacuolar continuum exists from base to tip in the secretory trichomes of chickpea (Cicer arietinum). This continuum is seen in living trichomes which have been labeled with Lucifer yellow CH and examined with confocal microscopy. It encompasses the large vacuole of the lower stalk cell, the vacuoles and tubules of the central stalk cell, the thin tubules of the upper stalk cell, and the tubules and vacuoles of the secretory head cells. The vacuolar-tubular system is structurally distinct within each cell, forming a gradient of large vacuoles in the lower stalk cell, thick tubules in the central stalk cell, and thin anastamozing tubules in the upper stalk cell. This membrane system appears to be continuous between trichome cells, as thin tubules emanate from plasmodesmata between stalk cells and between the upper stalk and lower head cell. In the upper stalk cell, the thin tubules of this continuum are streaming up and down the long axis of the cell at 0.67 m/s. The larger vacuolar-tubular system in the central and lower stalk cells is also slowly moving, with apparent peristalsis occurring in the central cell. The vacuolar-tubular system of the secretory head cells is completely labeled with Lucifer yellow when the dye has only partly diffused up the long walls of the trichome, indicating that the streaming tubular system delivers solute through the stalk cells to the secretory head cells faster than diffusion through the trichome walls. In the lower head cells, tubules emanate from the plasmodesmata connecting to the upper stalk cell, and these tubules are continuous with the head cell vacuoles. In addition, another layer of thin tubules forms along the edges of the secretory head cells, at the site of exocytotic secretion. We propose that the continuous vacuolar-tubular system in these trichomes functions to rapidly deliver solute from the base of the trichome to the secretory head cells. This system provides a pathway for the transport of secretory material.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

15.
From the aerial parts of Marrubium velutinum, one acylated flavonoid glycoside, chrysoeriol 7-O-(3",6"-di-O-E-p-coumaroyl)-beta-D-glucopyranoside, and two tetrasaccharidic phenylethanoid glycosides, velutinosides I-II, have been isolated together with ten known flavonoids and seven known phenylethanoid glycosides. The structures of the isolated compounds were established by means of NMR, MS, and UV spectral analyses.  相似文献   

16.
Recently marketed genetically modified violet carnations cv. Moondust and Moonshadow (Dianthus caryophyllus) produce a delphinidin type anthocyanin that native carnations cannot produce and this was achieved by heterologous flavonoid 3',5'-hydroxylase gene expression. Since wild type carnations lack a flavonoid 3',5'-hydroxylase gene, they cannot produce delphinidin, and instead accumulate pelargonidin or cyanidin type anthocyanins, such as pelargonidin or cyanidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester. On the other hand, the anthocyanins in the transgenic flowers were revealed to be delphinidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester (main pigment), delphinidin 3,5-diglucoside-6"-malyl ester, and delphinidin 3,5-diglucoside-6",6"'- dimalyl ester. These are delphinidin derivatives analogous to the natural carnation anthocyanins. This observation indicates that carnation anthocyanin biosynthetic enzymes are versatile enough to modify delphinidin. Additionally, the petals contained flavonol and flavone glycosides. Three of them were identified by spectroscopic methods to be kaempferol 3-(6"'-rhamnosyl-2"'-glucosyl-glucoside), kaempferol 3-(6"'-rhamnosyl-2"'-(6-malyl-glucosyl)-glucoside), and apigenin 6-C-glucosyl-7-O-glucoside-6"'-malyl ester. Among these flavonoids, the apigenin derivative exhibited the strongest co-pigment effect. When two equivalents of the apigenin derivative were added to 1 mM of the main pigment (delphinidin 3,5-diglucoside-6"-O-4,6"'-O-1-cyclic-malyl diester) dissolved in pH 5.0 buffer solution, the lambda(max) shifted to a wavelength 28 nm longer. The vacuolar pH of the Moonshadow flower was estimated to be around 5.5 by measuring the pH of petal. We conclude that the following reasons account for the bluish hue of the transgenic carnation flowers: (1). accumulation of the delphinidin type anthocyanins as a result of flavonoid 3',5'-hydroxylase gene expression, (2). the presence of the flavone derivative strong co-pigment, and (3). an estimated relatively high vacuolar pH of 5.5.  相似文献   

17.
Radiolabelling of epicuticular waxes and cutin of isolated tomato fruit cuticles were determined after fruit surface application of 3 H-phenylalanine precursor. During fruit ripening, the precursor is incorporated in different phenolic components: the flavanone naringenin was found to be the major compound in the epicuticular waxes, while the amount of the labelled flavonoid in the cutin matrix was progressively increased throughout fruit ripening. Confocal microscopy, together with experimental estimation of the mobility (diffusion coefficient, D ) and affinity (partition coefficient, K ) of the flavonoids naringenin and chalconaringenin for the different cuticular components, indicate that these compounds are extruded to the outer surface of tomato fruits, forming molecular clusters.  相似文献   

18.
Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial infection, animal foraging and damage by UV light. PAs are also beneficial in the human diet and livestock farming, preventing diseases of the cardiovascular system and lowering the risk of cancer, asthma and diabetes. Apples (Malus x domestica Borkh.) are naturally rich in flavonoids, but the flavonoid content and composition varies significantly between cultivars. In this work, we applied knowledge from the model plant Arabidopsis thaliana, for which the main features of flavonoid biosynthesis have been elucidated, to investigate PA accumulation in apple. We identified functional homologues of the Multidrug And Toxic compound Extrusion (MATE) gene TRANSPARENT TESTA12 from A. thaliana using a comparative genomics approach. MdMATE1 and MdMATE2 were differentially expressed, and the function of the encoded proteins was verified by complementation of the respective A. thaliana mutant. In addition, MdMATE genes have a different gene structure in comparison to homologues from other species. Based on our findings, we propose that MdMATE1 and MdMATE2 are vacuolar flavonoid/H(+) -antiporters, active in PA accumulating cells of apple fruit. The identification of these flavonoid transporter genes expands our understanding of secondary metabolite biosynthesis and transport in apple, and is a prerequisite to improve the nutritional value of apples and apple-derived beverages.  相似文献   

19.
Flavonoid aglycones found on the surfaces of birch (Betula spp.) leaves may constitute up to 10% of the dry weight of the leaf. A facile extraction and HPLC procedure has been developed that can be used for the preliminary classification of birch species according to the patterns of their leaf surface flavonoids. The procedure involves no complex sample preparation steps, and is able to provide HPLC chromatograms from fresh leaves in less than 30 min. If necessary, leaves do not even need to be removed from the tree. Since the genus Betula is taxonomically complex and separation of different birch species can be problematic, the developed method was applied to 15 Betula species and four sub-species of Betula pendula Seven of the studied species were classified as B. pubescens and eight as B. pendula-type birches. The remaining four species did not belong to either of these two classes on account of their unique pattern of external flavonoids. The difference between the leaf surface flavonoid composition of B. pubescens and B. pendula type birch species was unambiguously clear, and the developed method could reliably distinguish between the two species. Whilst leaf surface flavonoids can be valuable chemotaxonomic markers, they classify birch species differently from morphological markers. Birch species with diploid chromosome sets did not contain any of the flavanones that were present in the leaves of other species. The close relationship between the occurrence of some flavonoid aglycones and the ploidy level of Betula species suggests that these chemotaxonomic markers may be useful both in taxonomic and phylogenetic analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号