首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
SUMO-1 is a member of a family of ubiquitin-like molecules that are post-translationally conjugated to various cellular proteins in a process that is mechanistically similar to ubiquitylation. To identify molecules that bind noncovalently to SUMO-1, we performed yeast two-hybrid screening with a SUMO-1 mutant that cannot be conjugated to target proteins as the bait. This screening resulted in the isolation of cDNAs encoding the b isoform of thymine DNA glycosylase (TDGb). A deletion mutant of TDGb (TDGb(Delta11)) that lacks a region shown to be required for noncovalent binding of SUMO-1 was also found not to be susceptible to SUMO-1 conjugation at an adjacent lysine residue, suggesting that such binding is required for covalent modification. In contrast, another mutant of TDGb (TDGb(KR)) in which the lysine residue targeted for SUMO-1 conjugation is replaced with arginine retained the ability to bind SUMO-1 non-covalently. TDGb was shown to interact with the promyelocytic leukemia protein (PML) in vitro as well as to colocalize with this protein to nuclear bodies in transfected cells. TDGb(KR) also colocalized with PML, whereas TDGb(Delta11) did not, indicating that the noncovalent SUMO-1 binding activity of TDGb is required for colocalization with PML. Furthermore, SUMO-1 modification of TDGb and PML enhanced the interaction between the two proteins. These results suggest that SUMO-1 functions to tether proteins to PML-containing nuclear bodies through post-translational modification and noncovalent protein-protein interaction.  相似文献   

3.
Over the past years, modification by covalent attachment of SUMO (small ubiquitin-like modifier) has been demonstrated for of a number of cellular and viral proteins. While increasing evidence suggests a role for SUMO modification in the regulation of protein-protein interactions and/or subcellular localization, most SUMO targets are still at large. In this report we show that Topors, a Topoisomerase I and p53 interacting protein of hitherto unknown function, presents a novel cellular target for SUMO-1 modification. In a yeast two-hybrid system, Topors interacted with both SUMO-1 and the SUMO-1 conjugating enzyme UBC9. Multiple SUMO-1 modified forms of Topors could be detected after cotransfection of exogenous SUMO-1 and Topors induced the colocalization of a YFP tagged SUMO-1 protein in a speckled pattern in the nucleus. A subset of these Topors' nuclear speckles were closely associated with the PML nuclear bodies (POD, ND10). A central domain comprising Topors residues 437 to 574 was sufficient for both sumolation and localization to nuclear speckles. One SUMO-1 acceptor site at lysine residue 560 could be identified within this region. However, sumolation-deficient Topors mutants showed that sumolation obviously is not required for localization to nuclear speckles.  相似文献   

4.
5.
6.
SUMO-1 is a small ubiquitin-related modifier that is covalently linked to many cellular protein targets. Proteins modified by SUMO-1 and the SUMO-1-activating and -conjugating enzymes are located predominantly in the nucleus. Here we define a transferable sequence containing the PsiKXE motif, where Psi represents a large hydrophobic amino acid, that confers the ability to be SUMO-1-modified on proteins to which it is linked. Whereas addition of short sequences from p53 and IkappaBalpha, containing the PsiKXE motif, to a carrier protein is sufficient for modification in vitro, modification in vivo requires the additional presence of a nuclear localization signal. Thus, protein substrates must be targeted to the nucleus to undergo SUMO-1 conjugation.  相似文献   

7.
SUMO-1 is an ubiquitin-related protein that is covalently conjugated to a diverse assortment of proteins. The consequences of SUMO-1 modification include the regulation of protein-protein interactions, protein-DNA interactions, and protein subcellular localization. At present, very little is understood about the specific mechanisms that govern the recognition of proteins as substrates for SUMO-1 modification. However, many of the proteins that are modified by SUMO-1 interact directly with the SUMO-1 conjugating enzyme, Ubc9. These interactions suggest that Ubc9 binding may play an important role in substrate recognition as well as in substrate modification. The SUMO-1 consensus sequence (SUMO-1-CS) is a motif of conserved residues surrounding the modified lysine residue of most SUMO-1 substrates. This motif conforms to the sequence "PsiKXE," where Psi is a large hydrophobic residue, K is the lysine to which SUMO-1 is conjugated, X is any amino acid, and E is glutamic acid. In this study, we demonstrate that the SUMO-1-CS is a major determinant of Ubc9 binding and SUMO-1 modification. Mutating residues in the SUMO-1-CS abolishes both Ubc9 binding and substrate modification. These findings have important implications for how SUMO-1 substrates are recognized and for how SUMO-1 is ultimately transferred to specific lysine residues on these substrates.  相似文献   

8.
The tumor suppressor p53 is extensively regulated by post-translational modification, including modification by the small ubiquitin-related modifier SUMO. We show here that MDM2, previously shown to promote ubiquitin, Nedd8 and SUMO-1 modification of p53, can also enhance conjugation of endogenous SUMO-2/3 to p53. Sumoylation activity requires p53-MDM2 binding but does not depend on an intact RING finger. Both ARF and L11 can promote SUMO-2/3 conjugation of p53. However, unlike the previously described SUMO-1 conjugation of p53 by an MDM2-ARF complex, this activity does not depend on the ability of MDM2 to relocalize to the nucleolus. Interestingly, the SUMO consensus is not conserved in mouse p53, which is therefore not modified by SUMO-2/3. Finally, we show that conjugation of SUMO-2/3 to p53 correlates with a reduction of both activation and repression of a subset of p53-target genes.  相似文献   

9.
The HIPK2 protein is a critical regulator of apoptosis and functionally interacts with p53 to increase gene expression. Here we show that human HIPK2 is modified by sumoylation at lysine 25, as revealed by in vivo and in vitro experiments. While SUMO-1 modification of HIPK2 has no influence on its ability to phosphorylate p53 at serine 46, to induce gene expression, and to mediate apoptosis, a non-sumoylatable HIPK2 mutant displays a strongly increased protein stability. The N-terminal SUMO-1 modification site is conserved between all vertebrate HIPK2 proteins and is found in all members of the HIPK family of protein kinases. Accordingly, also human HIPK3 is modified by sumoylation.  相似文献   

10.
11.
The tumor suppressor p53 is extensively regulated by post-translational modification, including modification by the small ubiquitin-related modifier SUMO. We show here that MDM2, previously shown to promote ubiquitin, Nedd8 and SUMO-1 modification of p53, can also enhance conjugation of endogenous SUMO-2/3 to p53. Sumoylation activity requires p53-MDM2 binding but does not depend on an intact RING finger. Both ARF and L11 can promote SUMO-2/3 conjugation of p53. However, unlike the previously described SUMO-1 conjugation of p53 by an MDM2-ARF complex, this activity does not depend on the ability of MDM2 to relocalize to the nucleolus. Interestingly, the SUMO consensus is not conserved in mouse p53, which is therefore not modified by SUMO-2/3. Finally, we show that conjugation of SUMO-2/3 to p53 correlates with a reduction of both activation and repression of a subset of p53-target genes.Key words: p53, SUMO-2/3, sumoylation, MDM2, ARF, L11  相似文献   

12.
13.
The OZF (ZNF146) protein is a 33 kDa Kruppel protein, composed solely of 10 zinc finger motifs. It is overexpressed in the majority of pancreatic cancers and in more than 80% of colorectal cancers. We have identified OZF interacting factors with a yeast two-hybrid screen. Half of the positive clones characterized encoded UBC9, the E2 enzyme involved in the covalent conjugation of the small ubiquitin-like modifier 1 (SUMO-1). SUMO-1 is a 17 kDa migrating protein that is conjugated to several proteins and has been reported to exhibit multiple effects, including modulation of protein stability, subcellular localization, and gene expression. In HeLa cells transfected with OZF and SUMO-1 expression vectors, immunoblot revealed a major band migrating at 50 kDa and a minor band at 67 kDa, corresponding to the attachment to OZF of one and two SUMO-1 proteins, respectively. The relative amount of the sumoylated proteins increased following transfection with a UBC9 expression vector. The presence of the sumoylated form in HeLa cells solely transfected by OZF indicates the physiological activity of the endogenous SUMO-1 conjugation pathway. Using deletion mutants, we showed that two SUMO-1 modification sites are located on the sixth zinc finger. Mutation of two lysine residues greatly reduced the amount of the sumoylated form of OZF though their surrounding sequences differ from the consensus sequence reported for most proteins modified by SUMO-1 conjugation. Despite the presence of the sixth zinc finger, an OZF mutant containing zinc fingers 1–6 was not modified by SUMO-1 and failed to interact with UBC9. Addition of zinc finger 7 restored SUMO-1 modification and UBC9 interaction and provides evidence that a region downstream of the target lysines is required for interaction with UBC9, in order to achieve SUMO-1 modification. This is the first report of in vivo conjugation of a SUMO-1 protein to a Kruppel zinc finger motif. (Mol Cell Biochem 271: 215–223, 2005)  相似文献   

14.
PML nuclear bodies (NBs) are subnuclear structures whose integrity is compromised in certain human diseases, including leukemia and neurodegenerative disorders. Infection by a number of DNA viruses similarly triggers the reorganization of these structures, suggesting an important role for the NBs in the viral infection process. While expression of the adenovirus E4 ORF3 protein leads to only a moderate redistribution of PML to filamentous structures, the herpes simplex virus (HSV) ICP0 protein and the cytomegalovirus (CMV) IE1 protein both induce a complete disruption of the NB structure. Recently, we and others have shown that the NB proteins PML and Sp100 are posttranslationally modified by covalent linkage with the ubiquitin-related SUMO-1 protein and that this modification may promote the assembly of these structures. Here we show that the HSV ICP0 and CMV IE1 proteins specifically abrogate the SUMO-1 modification of PML and Sp100, whereas the adenovirus E4 ORF3 protein does not affect this process. The potential of ICP0 and IE1 to alter SUMO-1 modification is directly linked to their capacity to disassemble NBs, thus strengthening the role for SUMO-1 conjugation in maintenance of the structural integrity of the NBs. This observation supports a model in which ICP0 and IE1 disrupt the NBs either by preventing the formation or by degrading of the SUMO-1-modified PML and Sp100 protein species. Finally, we show that the IE1 protein itself is a substrate for SUMO-1 modification, thus representing the first viral protein found to undergo this new type of posttranslational modification.  相似文献   

15.
16.
17.
18.
19.
Uchimura Y  Nakao M  Saitoh H 《FEBS letters》2004,564(1-2):85-90
Here, we developed a binary vector system that introduces a synthetic SUMO-1 conjugation pathway into Escherichia coli and demonstrated that large amounts of sumoylated Ran GTPase activating protein 1 C-terminal region (RanGAP1-C2), Ran binding protein 2 internal repeat domain, p53 and promyelocytic leukemia were efficiently produced. The sumoylated recombinant RanGAP1-C2 appeared to retain the in vivo properties, since it was specifically sumoylated at lysine 517 as expected from in vivo studies. Our findings indicate the establishment of a biosynthetic route for producing large amounts of sumoylated recombinant proteins that will open up new avenues for studying the biochemical and structural aspects of the SUMO-1 modification pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号