首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exine of birch pollen was examined by scanning and transmission electron microscopy in the native state and after fixation in different aqueous fixatives: glutaraldehyde + OsO4; glutaraldehyde + cetylpyridinium chloride (CPC) + OsO4; glutaraldehyde + cuprolinic blue (CB); and periodate + lysine + paraformaldehyde (PLP). The native pollen exine showed a thin (3-5-nm) border of electron-dense material lining the tectum and electron-dense material within microchannels and bacula cavities. Fixation with the addition of CPC resulted in a voluminous surface coat surrounding the pollen grain, but empty microchannels and bacula cavities. After fixation with the addition of CB, there was a thin surface coat, whereas microchannels and bacula cavities were partially filled with electron-dense material. The other fixatives led to empty microchannels and bacula cavities. There was no surface coat on the pollen grain. However, after all fixation procedures, a thin electron-dense border of the tectum remained visible. Concerning the electron-dense material filling microchannels and bacula cavities in the native pollen grain, the results obtained in the present study suggest that it is either completely lost (after conventional and PLP fixation) or, after fixation with a precipitating additive, partially (CB) or completely (CPC) solubilized and precipitated on the surface of the pollen grain as a surface coat.  相似文献   

2.
The appearance and distribution of the extracellular material glycoprotein, fibronectin, was investigated in gastrulating chick embryos using affinity-purified anti-human plasma fibronectin antibodies. Preservation of tissue structure and immunoreactivity was carried out by ethanol/acetic acid fixation or by formaldehyde/glutaraldehyde fixation. Using the former fixation method, fibronectin immunoreactivity was detected (1) at the ventral surface of the upper layer or epiblast, mainly anterior and lateral to Hensen's node, in regions where middle-layer or mesoblast cells are not yet present, and (2) sparsely in extracellular spaces of the deep layer. Using the latter fixation method, fibronectin immunoreactivity was, moreover, found at the entire ventral surface of the upper layer, i.e., also at the epithelial-mesenchymal interface, where a basement membrane was previously described. At the light microscope level, we could not detect significant immunoreactivity in the middle layer. Treatment of sections of ethanol-fixed blastoderms with testicular hyaluronidase before immunostaining for fibronectin partially demasked the antigenic sites of this glycoprotein at the epithelial-mesenchymal interface. The present report indicates that the different regional patterns of fibronectin immunoreactivity in the basement membrane of the upper layer are spatially and temporally correlated with migration and positioning of mesoblast cells. These regional patterns are probably due to differences in the composition of fibronectin-associated material such as chondroitin sulfate A and/or C proteoglycans, and/or hyaluronate, before and after mesoblast expansion, rather than to differences in the distribution of fibronectin itself. In this respect, it is noteworthy that the chemical composition of the basement membrane of an epithelium changes as mesenchyme cells migrate over it. The results also favor the idea that fibronectin is a structural component of the whole basement membrane which is used as a substrate for migration of mesenchymal cells.  相似文献   

3.
Treatment of cartilage tissue with the cationic dye ruthenium hexammine trichloride (RHT) prior to fixation has been shown to prevent the detachment of chondrocytic plasmalemmata from the pericellular matrix and the aqueous extraction of proteoglycans during the subsequent fixation procedures. However, plasmalemmal rupture is prevented only by the simultaneous addition of RHT and the dialdehydic fixative glutaraldehyde. It is proposed that RHT forms an electrostatic cross-linkage between anionic components within the chondrocytic plasmalemma and proteoglycans of the pericellular matrix; experimental support for this hypothesis is presented. The precise nature of the plasmalemmal components with which RHT interacts is unknown. However, since their anionic properties are apparently lost following treatment with chondroitinase ABC, it seems likely that they represent chondroitin sulfate groups of membrane intercalated proteoglycans.  相似文献   

4.
An ultrastructural study was performed on Arthrinium aureum. The fungi were treated with glutaraldehyde and osmium tetroxide fixation. The hypha and conidia has a concentric membrane system which consisted of multiple membranes of a myelinoid appearance, and continued to the conidia and hypha plasma membrane. The fungi were also treated with periodic acid-alkaline bismuth (PABi) staining after glutaraldehyde and osmium tetroxide fixation. PABi positive materials were found on the marginal glycogen granules, the concentric membrane system and the conidia plasma membrane.  相似文献   

5.
We localized heparan sulfate proteoglycan (HSPG) in the basement membranes of ciliary epithelium and plantar epidermis, using Cuprolinic blue to stain its side chains and an immunogold procedure to detect its core protein. In accord with most of the literature, staining with Cuprolinic blue in glutaraldehyde fixative yielded three to five times as many reaction products along the two surfaces than along the center of the lamina densa, whereas immunogold labeling for the core protein after formaldehyde fixation yielded about twice as many gold particles over the center than along the surfaces of the lamina densa. It therefore appeared that HSPG side chains predominated outside, and the core protein within, the lamina densa. To find out whether the discrepancy was true or was an artifact caused by differences in processing, we attempted to combine the two approaches on the same material. This was found possible when Cuprolinic blue was used in formaldehyde fixative, embedding was in LR White, and immunogold labeling was performed on thin sections as usual. Under these conditions, both Cuprolinic blue reaction products and immunogold particles predominated over the lamina densa in the two basement membranes under study. Moreover, evidence was present that reaction products and immunogold particles either overlapped each other or were closely associated. The lens capsule (a thick basement membrane) also showed their co-localization. The discrepancy initially observed between side chains and core protein location was attributed to differences in processing, since Cuprolinic blue staining had been carried out in the course of glutaraldehyde fixation whereas immunogold labeling was done after formaldehyde fixation. The results lead to two conclusions. First, processing differences may alter the localization of HSPG and possibly other proteoglycans. Second, both HSPG side chains and core protein are localized in the same sites within basement membrane.  相似文献   

6.
Antigen retrieval (AR) methods can unmask tissue antigens that have been altered by fixation, processing, storage, or resin interactions. This is particularly important in the study of archival tissues, because primary fixatives and storage times may vary among specimens. We performed an electron microscopic study of basement membrane components of the aqueous humor drainage pathways from archival eye tissue. AR (heated citrate buffer, pH 6.0, LR White resin) increased the amount of label of collagen IV and fibronectin in tissue fixed in four different fixatives, including those containing glutaraldehyde. Labeling density was approximately doubled after AR for most fixatives, with the largest increase for tissues fixed in 4% paraformaldehyde/2% glutaraldehyde. Duration of storage time for archival tissues did not affect AR results. AR did not change the components of the extracellular matrix labeled; no "new" components were labeled after AR. We conclude that AR in citrate buffer can be used on selected extracellular matrix antigens to enhance label that would otherwise be lost due to fixation and storage.  相似文献   

7.
The influence of the fixation procedure on the localization of albumin and transferrin in adult rat liver has been carried out using an indirect immunoperoxidase technique at the light and electron microscopic levels. Perfusion and immersion fixations with different concentrations of paraformaldehyde (with or without addition of glutaraldehyde) have been investigated. According to the mode of fixation (perfusion versus immersion) and the concentration of the fixative, the number of albumin and transferrin containing hepatocytes could vary from 10% to 100%, and different labeling patterns could be observed at the electron microscopic level. For the same concentration of fixative, a perfusion fixation induces a less intense labeling than an immersion fixation. Thus similar results are obtained after immersion fixation in 6% paraformaldehyde + 0.25% glutaraldehyde or after perfusion fixation in 4% paraformaldehyde + 0.025% glutaraldehyde. Similar data are noticed after immersion fixation in 4% paraformaldehyde or after perfusion fixation in 1% paraformaldehyde + 0.025% glutaraldehyde. Moreover, perfusion fixation induced a more fine cell structure preservation than immersion fixations and avoided the appearance of zones of fixation.  相似文献   

8.
The ultrastructure of anionic sites in the lamina rara externa (LRE) of rat glomerular basement membrane (GBM) was studied in three dimensions by a quick-freezing and deep-etching method using polyethyleneimine (PEI) as a cationic tracer. Results were compared with those obtained with conventional ultrathin sections examined by transmission electron microscopy. Examination with the quick-freezing and deep-etching method was done without (group 1) or with (group 2) contrasting/fixation with a phosphotungstic acid and glutaraldehyde mixture and post-fixation with osmium tetroxide, which were necessary for visualization of PEI particles by conventional ultrathin sections. Using the quick-freezing and deep-etching method without following contrasting/fixation and post-fixation (group 1), many PEI particles were observed to decorate around fibrils, which radiated perpendicularly from the lamina densa to connect with the podocyte cell membrane. The arrangement of PEI particles was not as regular as that previously reported using conventional ultrathin sections. In contrast, the tissue that was studied with quick-freezing and deep-etching followed by contrasting/fixation and post-fixation (group 2) showed a shrunken appearance. The arrangement of PEI particles was regular (about 20 particles/1000 nm of LRE) as that previously observed using conventional ultrathin sections. However, the number of PEI particles on the LRE was markedly decreased and interruption of decorated fibrils was prominent, as compared with group 1. Ultrastructural examination using conventional ultrathin sections with contrasting/fixation and post-fixation (group 3) demonstrated PEI particles on the LRE in reasonable amounts (18-21 particles/1000 nm of LRE) with fairly regular interspacing (45-65 nm) as reported previously.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The degree of infiltration of epoxy resin into pituitary secretory granules was evaluated using X-ray microanalysis of the concentrations of chlorine in the epoxy resins. The effectiveness of infiltration was tested after three different tissue preparation techniques: cryofixation + freeze-drying (CF-FD), glutaraldehyde fixation (GF) + chemical dehydration, and no fixation— no dehydration. Signs of marked incomplete infiltration were found in embedded unfixed tissue while the other two techniques showed 80% infiltration. Uneven penetration was seen after CF-FD and GF. The plastic surface demonstrated a mountain-like appearance over the secretory granules after immunocytochemistry of the glutaraldehyde fixed tissue, whereas the CF-FD tissue showed a less furrowed surface. This probably is due to contact with water, which swells those parts of the granules that are unprotected by the plastic embedding medium. Our findings may explain why it is possible to perform immunocytochemistry on Epon embedded tissue.  相似文献   

10.
T Ajiri  T Kimura  R Ito  S Inokuchi 《Acta anatomica》1978,102(4):433-439
Myotendon junctions in the rectus abdominis muscles of bull frogs were examined by the fixation combination of tannic acid and glutaraldehyde using electron microscopy. The features observed on myotendon junctions were the following: (1) There were many deep invaginations of muscle cell membrane at the end of the muscle fibers. Terminal thin filaments of myofibrils were attached to the electron-dense layer lining under the muscle cell membrane on the lateral walls of invaginations. (2) The basement membrane covering the muscle cell membrane was thicker in the invaginations than on the other sites of muscle fibers. (3) Collagen fibers in the invaginations gradually tapered off toward the bottom of the invaginations. But it was not seen that the collagen fibers were attached to both the basement membrane and cell membrane of muscle cells. (4) On the observations using the tannic acid-glutaraldehyde fixation, it was clearly seen that the microfibrils extend from the outer leaflets of the cell membrane to the collagen fibers in invaginations via the basement membrane. It was concluded that the myofibrils might be fastened to the collagen fibers of the tendon by the intermediates of the microfibrils.  相似文献   

11.
The degree of infiltration of epoxy resin into pituitary secretory granules was evaluated using X-ray microanalysis of the concentrations of chlorine in the epoxy resins. The effectiveness of infiltration was tested after three different tissue preparation techniques: cryofixation + freeze-drying (CF-FD), glutaraldehyde fixation (GF) + chemical dehydration, and no fixation— no dehydration. Signs of marked incomplete infiltration were found in embedded unfixed tissue while the other two techniques showed 80% infiltration. Uneven penetration was seen after CF-FD and GF. The plastic surface demonstrated a mountain-like appearance over the secretory granules after immunocytochemistry of the glutaraldehyde fixed tissue, whereas the CF-FD tissue showed a less furrowed surface. This probably is due to contact with water, which swells those parts of the granules that are unprotected by the plastic embedding medium. Our findings may explain why it is possible to perform immunocytochemistry on Epon embedded tissue.  相似文献   

12.
The presence and distribution of cholesterol in biological membranes can be visualized by complex formation with the polyene antibiotic filipin after or during fixation with glutaraldehyde. In the envelopes of budding and immature retroviruses no filipin-cholesterol complexes are formed, but in the plasma membrane of host cells and in the envelopes of mature viruses filipin-cholesterol complexes are easily detected. However, after treatment of glutaraldehyde-fixed cells with pepsin, the presence of cholesterol in the envelopes of budding and immature viral particles could also be demonstrated. This indicates that in these structures the reaction of cholesterol with filipin is inhibited by proteins associated with the cholesterol-containing membrane. Treatment of fixed cells with trypsin, and of unfixed cells with cytochalasin B (CB) had no effect on detectability of cholesterol in these structures. On no occasion were cholesterol-filipin complexes formed in coated pits. The present findings call for caution when interpretating data on absence of filipincholesterol complexes in those membrane domains that are characterized by the presence of closely associated proteins.  相似文献   

13.
Summary Liver, skeletal muscle, peripheral nerves, pancreas, thyroid and adrenal cortex were prepared for electron microscopy employing microwave energy either during prefixation with glutaraldehyde or instead of prefixation. Microwave irradiation in the presence of glutaraldehyde in Na/K-phosphate or Na-cacodylate containing CaCl2 and MgCl2 led to distinct appearance of membranes, mainly plasma membrane, and membranes of SER, Golgi complex and mitochondria in liver, pancreas and muscle. The area of high quality fixation, however, was limited to the periphery of samples. On the other hand, SER was dilated in cells of the adrenal cortex, and RER markedly vacuolated in thyroid follicular cells.Microwave irradiation in the presence of Na/K-phosphate and subsequent osmication resulted in preservation of the ultrastructure in similar quality as was obtained by osmication without previous immersion in glutaraldehyde. However, the preservation of SER and Golgi complex in liver and pancreas, and of mitochondria in muscle was greatly improved. Small myelin sheaths remained intact whereas large ones showed focal disintegration.We consider that enhancement of fixation by microwave energy may greatly improve preservation of membranes in some tissues. Successful fixation depends on the use of glutaraldehyde during microwave irradiation, the type of buffer, the addition of ions to increase stabilization, the exposure time to heat, and on postosmication.  相似文献   

14.
Toad bladders exposed to vasopressin (ADH) and then fixed on the mucosal surface with 1% glutaraldehyde were highly permeable to water and to urea compared to control bladders fixed in the absence of hormone. When identical conditions of fixation were were used, but the concentration of glutaraldehyde was decreased to 0.25%, the ADH-induced increase in membrane permeability to urea was preserved whereas water permeability was not. About 74% of the hormone-induced urea permeability sites were preserved by glutaraldehyde and were stable to changes in temperature as suggested by a constant value for the activation energy of urea movement of 5.4 kcal/mole (4-33 degrees C). In other studies bladders were exposed at low temperatures to 0.17% glutaraldehyde applied either to the serosal or the mucosal surface. The ADH-induced increase in membrane permeability to urea, bulk water, and tritiated water was well preserved with serosal fixation, but not with mucosal fixation. The observation that the urea pathway can be selectively preserved with 0.25% glutaraldehyde applied to the mucosa indicates that this structure is more accessible and (or) more sensitive to low-dose glutaraldehyde than is the ADH-induced water pathway. The observation that glutaraldehyde is more effective in stabilizing the ADH-induced urea channels from the serosal than from the mucosal surface indicates that these channels are not fixed at the extracellular surface of the apical plasma membrane. It appears, rather, that glutaraldehyde exerts its effects from an intracellular position, where it cross-links components of the urea channels at the cytoplasmic surface of the apical membrane and (or) inactivates the intracellular machinery responsible for the removal or dispersal of the ADH-induced urea permeability sites.  相似文献   

15.
The structure and volume of isolated mitochondria embedded for electron microscopy during different respiratory states were analyzed in thin sections. Three different embedding methods were compared; osmium tetroxide fixation/acetone dehydration, glutaraldehyde fixation/acetone dehydration, and glutaraldehyde fixation-osmium tetroxide postfixation/acetone dehydration. Analysis of fresh mitochondria, isolated in a sucrose medium, revealed the presence of a homogeneous population with respect to structure when any of the three methods were applied. After fixation with osmium alone, or in combination with glutaraldehyde, nearly 100% of the mitochondria were in a "condensed" conformation. Mitochondria fixed with glutaraldehyde alone resulted in a population of mitochondria that had large spaces separating the two membranes of the cristae which corresponds to the condensed conformation as observed after osmium fixation. Transfer of the mitochondria to the incubation medium led to the appearance of two classes of mitochondria with respect to size. One class had a volume close to that observed when suspended in sucrose, and another class was present that was 30-45% larger. In osmium fixed or in double-fixed preparations, these small and large classes corresponded to "condensed" and "orthodox" forms of mitochondria respectively. When glutaraldehyde was used alone as the fixative, the two size classes were also present. However, the mitochondria were homogeneous with respect to structure. In these mitochondria, the width of the space that separated the cristae membranes had become reduced when compared to mitochondria suspended in sucrose. The two size classes were also present in samples of mitochondria prepared during both states 3 and 4. State 4 conditions did not lead to any significant increase of the number of condensed mitochondria. In state 3 preparations, 65-70% of the population were condensed. The condensed and orthodox forms could be related to normal and swollen forms of mitochondria. Conditions that led to a swelling also led to an increase in the number of orthodox mitochondria in osmium-fixed material. The different appearance of the mitochondria is explained by the different conditions for fixation of the mitochondria that exist when nonswollen and swollen mitochondria are fixed. This difference is particularly crucial in the case of osmium tetroxide due to the unique way this fixative, among generally used fixatives, denatures proteins.  相似文献   

16.
Basement membranes were divided into two types: 1) thin basement membranes, such as those of the epidermis, trachea, jejunum, seminiferous tubule, and vas deferens of the rat, the ciliary process of the mouse, and the seminiferous tubule of the monkey, and 2) thick basement membranes, such as the lens capsule of the mouse and Reichert's membrane of the rat. High-magnification electron microscopy was used to examine both types after fixation either in glutaraldehyde followed by postosmication or in potassium permanganate. The basic structure of thin and thick basement membranes was found to be a three-dimensional network of irregular, fuzzy strands referred to as "cords"; the diameter of these cords was variable, but averaged 4 nm in all cases examined. The spaces separating the cords differed, however. In the lamina densa of thin basement membranes, the diameter of these spaces averaged about 14 nm in every case, whereas in the lamina lucida it ranged up to more than 40 nm. Intermediate values were recorded in thick basement membranes. Finally, the third, inconstant layer of thin basement membranes, pars fibroreticularis, was composed of discontinuous elements bound to the lamina densa: i.e., anchoring fibrils, microfibrils, or collagen fibrils. In particular, collagen fibrils were often surrounded by processes continuous with the lamina densa and likewise composed of a typical cord network. Finally, two features were encountered in every basement membrane: 1) a few cords were in continuity with a 1.4- to 3.2-nm thick filament or showed such a filament within them; the filaments became numerous after treatment of the seminiferous tubule basement membrane with the proteolytic enzyme, plasmin, since cords decreased in thickness and could be reduced to a filament, and 2) at the cord surface, it was occasionally possible to see 4.5-nm-wide sets of two parallel lines, referred to as "double tracks." On the basis of evidence that the filaments are type IV collagen molecules and the double tracks are polymerized heparan sulfate proteoglycan, it is proposed that cords are composed of an axial filament of type IV collagen to which are associated glycoprotein components (laminin, entactin, fibronectin) and the double tracks of the proteoglycan.  相似文献   

17.
Considerable amounts of five glycolytic enzymes glucosephosphate isomerase, glyceraldehyde-phosphate dehydrogenase, aldolase, pyruvate kinase, and lactate dehydrogenase, became fixed when intact synaptosomes were incubated with glutaraldehyde. Other glycolytic enzymes were immobilized much less by this procedure. The lactate dehydrogenase isoenzymes showed a variable response to glutaraldehyde fixation. The isoenzymes enriched in muscle subunits were rapidly immobilized by glutaraldehyde, while the isoenzymes enriched in heart subunits, especially H4, were not. It is suggested that the enzymes which were immobilized are located near the synaptosomal membrane, perhaps in association with actin, which is found at this site. The enzymes that showed a much smaller degree of fixation were either randomly distributed in the synaptoplasm or less susceptible to fixation.  相似文献   

18.
Potency of microwave irradiation during fixation for electron microscopy   总被引:1,自引:0,他引:1  
Liver, skeletal muscle, peripheral nerves, pancreas, thyroid and adrenal cortex were prepared for electron microscopy employing microwave energy either during prefixation with glutaraldehyde or instead of prefixation. Microwave irradiation in the presence of glutaraldehyde in Na/K-phosphate or Na-cacodylate containing CaCl2 and MgCl2 led to distinct appearance of membranes, mainly plasma membrane, and membranes of SER, Golgi complex and mitochondria in liver, pancreas and muscle. The area of high quality fixation, however, was limited to the periphery of samples. On the other hand, SER was dilated in cells of the adrenal cortex, and RER markedly vacuolated in thyroid follicular cells. Microwave irradiation in the presence of Na/K-phosphate and subsequent osmication resulted in preservation of the ultrastructure in similar quality as was obtained by osmication without previous immersion in glutaraldehyde. However, the preservation of SER and Golgi complex in liver and pancreas, and of mitochondria in muscle was greatly improved. Small myelin sheaths remained intact whereas large ones showed focal disintegration. We consider that enhancement of fixation by microwave energy may greatly improve preservation of membranes in some tissues. Successful fixation depends on the use of glutaraldehyde during microwave irradiation, the type of buffer, the addition of ions to increase stabilization, the exposure time to heat, and on postosmication.  相似文献   

19.
Summary The ultrastructure of anionic sites in the lamina rara externa (LRE) of rat glomerular basement membrane (GBM) was studied in three dimensions by a quick-freezing and deep-etching method using polyethyleneimine (PEI) as a cationic tracer. Results were compared with those obtained with conventional ultrathin sections examined by transmission electron microscopy. Examination with the quick-freezing and deep-etching method was done without (group 1) or with (group 2) contrasting/fixation with a phosphotungstic acid and glutaraldehyde mixture and post-fixation with osmium tetroxide, which were necessary for visualization of PEI particles by conventional ultrathin sections. Using the quick-freezing and deep-etching method without following contrasting/fixation and post-fixation (group 1), many PEI particles were observed to decorate around fibrils, which radiated perpendicularly from the lamina densa to connect with the podocyte cell membrane. The arrangement of PEI particles was not as regular as that previously reported using conventional ultrathin sections. In contrast, the tissue that was studied with quick-freezing and deep-etching followed by contrasting/fixation and post-fixation (group 2) showed a shrunken appearance. The arrangement of PEI particles was regular (about 20 particles/1000 nm of LRE) as that previously observed using conventional ultrathin sections. However, the number of PEI particles on the LRE was markedly decreased and interruption of decorated fibrils was prominent, as compared with group 1. Ultrastructural examination using conventional ultrathin sections with contrasting/fixation and post-fixation (group 3) demonstrated PEI particles on the LRE in reasonable amounts (18–21 particles/1000 nm of LRE) with fairly regular interspacing (45–65 nm) as reported previously.This is the first report to identify the three-dimensional ultrastructure of anionic sites of GBM, and provides new information on the location and distribution of anionic sites in the glomerular capillary wall. In addition, these studies suggest that several chemical procedures used in conventional transmission electron microscopy to visualize PEI tracers, may produce structural changes and disarrangement of PEI particles that can be avoided with the quick-freezing and deep-etching method.  相似文献   

20.
《The Journal of cell biology》1986,103(6):2489-2498
Tannic acid in glutaraldehyde fixatives greatly enhanced the visualization of two developmentally and morphologically distinct stages in glomerular basement membrane (GBM) formation in newborn rat kidneys. First, in early stage glomeruli, double basement membranes between endothelial cells and podocytes were present and, in certain areas, appeared to be fusing. Second, in maturing stage glomeruli, elaborate loops and outpockets of basement membrane projected into epithelial, but not endothelial, sides of capillary walls. When Lowicryl thin sections from newborn rat kidneys were sequentially labeled with rabbit anti-laminin IgG and anti-rabbit IgG-colloidal gold, gold bound across the full width of all GBMs, including double basement membranes and outpockets. The same distribution was obtained when sections from rats that received intravenous injections of rabbit anti-laminin IgG 1 h before fixation were labeled directly with anti- rabbit IgG-colloidal gold. When kidneys were fixed 4 d after anti- laminin IgG injection, however, loops beneath the podocytes in maturing glomeruli were usually unlabeled and lengths of unlabeled GBM were interspersed with labeled lengths. In additional experiments, rabbit anti-laminin IgG was intravenously injected into newborn rats and, 4-14 d later, rats were re-injected with sheep anti-laminin IgG. Sections were then doubly labeled with anti-rabbit and anti-sheep IgG coupled to 10 and 5 nm colloidal gold, respectively. Sheep IgG occurred alone in outpockets of maturing glomeruli and also in lengths of GBM flanked by lengths containing rabbit IgG. These results indicate that, after fusion of double basement membranes, new segments of GBM appear beneath developing podocytes and are subsequently spliced into existing GBM. This splicing provides the additional GBM necessary for expanding glomerular capillaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号