首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The L intermediate in the proton-motive photocycle of bacteriorhodopsin is the starting state for the first proton transfer, from the Schiff base to Asp85, in the formation of the M intermediate. Previous FTIR studies of L have identified unique vibration bands caused by the perturbation of several polar amino acid side chains and several internal water molecules located on the cytoplasmic side of the retinylidene chromophore. In the present FTIR study we describe spectral features of the L intermediate in D(2)O in the frequency region which includes the N-D stretching vibrations of the backbone amides. We show that a broad band in the 2220-2080 cm(-1) region appears in L. By use of appropriate (15)N labeling and mutants, the lower frequency side of this band in L is assigned to the amides of Lys216 and Gly220. These amides are coupled to each other, and interact with Thr46 and Val49 in helix B and Asp96 in helix C via weakly H-bonding water molecules that exhibit O-D stretching vibrations at 2621 and 2605 cm(-1). These water molecules are part of a hydrogen-bonded network characteristic of L which includes other water molecules located closer to the chromophore that exhibit an O-D stretching vibration at 2589 cm(-1). This structure, extending from the Schiff base to the internal proton donor Asp96, stabilizes L and affects the L-to-M transition.  相似文献   

2.
An M intermediate of wild-type bacteriorhodopsin and an N intermediate of the V49A mutant were accumulated in photostationary states at pH 5.6 and 295 K, and their crystal structures determined to 1.52A and 1.62A resolution, respectively. They appear to be M(1) and N' in the sequence, M(1)<-->M(2)<-->M'(2)<-->N<-->N'-->O-->BR, where M(1), M(2), and M'(2) contain an unprotonated retinal Schiff base before and after a reorientation switch and after proton release to the extracellular surface, while N and N' contain a reprotonated Schiff base, before and after reprotonation of Asp96 from the cytoplasmic surface. In M(1), we detect a cluster of three hydrogen-bonded water molecules at Asp96, not present in the BR state. In M(2), whose structure we reported earlier, one of these water molecules intercalates between Asp96 and Thr46. In N', the cluster is transformed into a single-file hydrogen-bonded chain of four water molecules that connects Asp96 to the Schiff base. We find a network of three water molecules near residue 219 in the crystal structure of the non-illuminated F219L mutant, where the residue replacement creates a cavity. This suggests that the hydration of the cytoplasmic region we observe in N' might have occurred spontaneously, beginning at an existing water molecule as nucleus, in the cavities from residue rearrangements in the photocycle.  相似文献   

3.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), protonated Schiff base of the retinal chromophore and Asp85 form ion-pair state, which is stabilized by a bridged water molecule. After light absorption, all-trans to 13-cis photoisomerization takes place, followed by the primary proton transfer from the Schiff base to Asp85 that triggers sequential proton transfer reactions for the pump. Fourier transform infrared (FTIR) spectroscopy first observed O-H stretching vibrations of water during the photocycle of BR, and accurate spectral acquisition has extended the water stretching frequencies into the entire stretching frequency region in D(2)O. This enabled to capture the water molecules hydrating with negative charges, and we have identified the water O-D stretch at 2171 cm(-1) as the bridged water interacting with Asp85. We found that retinal isomerization weakens the hydrogen bond in the K intermediate, but not in the later intermediates such as L, M, and N. On the basis of the observation particularly on the M intermediate, we proposed a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have raised the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85.  相似文献   

4.
In the photocycle of bacteriorhodopsin (BR), the first proton movement, from the Schiff base to Asp85, occurs after the formation of the L intermediate. In L, the C [double bond] N bond of the Schiff base is strained, and the nitrogen interacts strongly with its counterion. The present study seeks to detect the interaction of internal water molecules with the Schiff base in L using difference FTIR spectroscopy at 170 K. The coupled modes of the hydrogen-out-of plane bending vibrations (HOOPs) of the N-H and C(15)-H of the protonated Schiff base are detected as a broad band centered at 911 cm(-1) for BR. A set of bands at 1073, 1064, and 1056 cm(-1) for L is shown to arise from the coupling of the HOOP with the overtones of interacting water O-H vibrations. Interaction with water was shown by the decreased intensity of the HOOPs of L in H(2)(18)O and by the influence of mutants that have been shown to perturb specific internal water molecules in BR. In contrast, the HOOP band of initial BR was not affected by these mutations. In D85N, the coupled HOOP of BR is depleted, while the coupled HOOPs of L are shifted. The results indicate that the Schiff base interacts with water in the L state but in a different manner than in the BR state. Moreover, the effects of mutations suggest that cytoplasmic water close to Thr46 (Wat46) either interacts stronger with the Schiff base in L or that it is important in stabilizing another water that does.  相似文献   

5.
Shimono K  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(25):7801-7806
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. Recent X-ray crystallographic structures showed that ppR and bacteriorhodopsin (BR), a light-driven proton pump, possess similar molecular environments of the retinal Schiff base. Nevertheless, absorption spectra are different by 70 nm between ppR and BR, suggesting the different chromophore-protein interactions involving the Schiff base region. In this article, we identify frequencies of the Schiff base vibrations in the ppR(K) minus ppR difference spectra by means of low-temperature FTIR spectroscopy of [zeta-(15)N]lysine-labeled ppR. The N-D stretch in D(2)O was found at 2140 and 2091 cm(-1) for ppR, which are shifted to a lower frequency by 32-33 cm(-1) compared to those for BR. This observation indicates the stronger hydrogen bond of the Schiff base in ppR than in BR. The N-D stretch of the Schiff base and O-D stretch of water molecules are located at the different frequencies in ppR, while they appear in the same frequency region in BR [Kandori, H., Belenky, M., and Herzfeld, J. (2002) Biochemistry 41, 6026-6031]. These differences could be correlated with the distorted pentagonal cluster structure in ppR. In contrast, the N-D stretch of ppR(K) was found at 2474 cm(-1), which is close in frequency to that of BR(K). The O-D stretch of Thr79 was also assigned at 2512 and 2474 cm(-1) for ppR and ppR(K), respectively. These frequencies are close to those of BR, suggesting the interaction of Thr79 and Asp75 in ppR is similar to that of Thr89 and Asp85 in BR.  相似文献   

6.
In previous Fourier transform infrared (FTIR) studies of the photocycle intermediates of bacteriorhodopsin at cryogenic temperatures, water molecules were observed in the L intermediate, in the region surrounded by protein residues between the Schiff base and Asp96. In the M intermediate, the water molecules had moved away toward the Phe219-Thr46 region. To evaluate the relevance of this scheme at room temperature, time-resolved FTIR difference spectra of bacteriorhodopsin, including the water O-H stretching vibration frequency regions, were recorded in the micro- and millisecond time ranges. Vibrational changes of weakly hydrogen-bonded water molecules were observed in L, M, and N. In each of these intermediates, the depletion of a water O-H stretching vibration at 3645 cm-1, originating from the initial unphotolyzed bacteriorhodopsin, was observed as a trough in the difference spectrum. This vibration is due to the dangling O-H group of a water molecule, which interacts with Asp85, and its absence in each of these intermediates indicates that there is perturbation of this O-H group. The formation of M is accompanied by the appearance of water O-H stretching vibrations at 3670 and 3657 cm-1, the latter of which persists to N. The 3670 cm-1 band of M is due to water molecules present in the region surrounded by Thr46, Asp96, and Phe219. The formation of L at 298 K is accompanied by the perturbations of Asp96 and the Schiff base, although in different ways from what is observed at 170 K. Changes in a broad water vibrational feature, centered around 3610 cm-1, are kinetically correlated with the L-M transition. These results imply that, even at room temperature, water molecules interact with Asp96 and the Schiff base in L, although with a less rigid structure than at cryogenic temperatures.  相似文献   

7.
Shibata M  Muneda N  Sasaki T  Shimono K  Kamo N  Demura M  Kandori H 《Biochemistry》2005,44(37):12279-12286
Halorhodopsin is a light-driven chloride ion pump. Chloride ion is bound in the Schiff base region of the retinal chromophore, and unidirectional chloride transport is probably enforced by the specific hydrogen-bonding interaction with the protonated Schiff base and internal water molecules. In this article, we study hydrogen-bonding alterations of the Schiff base and water molecules in halorhodopsin of Natronobacterium pharaonis (pHR) by assigning their N-D and O-D stretching vibrations in D(2)O, respectively. Highly accurate low-temperature Fourier transform infrared spectroscopy revealed that hydrogen bonds of the Schiff base and water molecules are weak in the unphotolyzed state, whereas they are strengthened upon retinal photoisomerization. Halide dependence of the stretching vibrations enabled us to conclude that the Schiff base forms a direct hydrogen bond with Cl(-) only in the K intermediate. Hydrogen bond of the Schiff base is further strengthened in the L(1) intermediate, whereas the halide dependence revealed that the acceptor is not Cl(-), but presumably a water molecule. Thus, it is concluded that the hydrogen-bonding interaction between the Schiff base and Cl(-) is not a driving force of the motion of Cl(-). Rather, the removal of its hydrogen bonds with the Schiff base and water(s) makes the environment around Cl(-) less polar in the L(1) intermediate, which presumably drives the motion of Cl(-) from its binding site to the cytoplasmic domain.  相似文献   

8.
Kandori H  Belenky M  Herzfeld J 《Biochemistry》2002,41(19):6026-6031
Light-driven proton transport in bacteriorhodopsin (BR) is initiated by photoisomerization of the retinylidene chromophore, which perturbs the hydrogen bonding network in the Schiff base region of the active site. This study aimed to identify the frequency and dipolar orientation of the N-D stretching vibrations of the Schiff base before and after photoisomerization, by means of low-temperature polarized FTIR spectroscopy of [zeta-(15)N]lysine-labeled BR in D(2)O. (15)N-shifted modes were found at 2123 and 2173 cm(-1) for BR, and at 2468 and 2495 cm(-1) for the K intermediate. The corresponding N-H stretches are at approximately 2800 cm(-1) for BR and 3350-3310 cm(-1) for the K intermediate. The shift to a 350 cm(-1) higher frequency upon photoisomerization is consistent with loss of the hydrogen bond of the Schiff base. The N-D stretch frequencies of the Schiff base in BR and the K intermediate are close to the O-D stretch frequencies of strongly hydrogen bonded water and Thr89, respectively. The angles of the dipole moments of the N-D stretches to the membrane normal were determined to be 60-65 degrees for BR and approximately 90 degrees for the K intermediate. In the case of BR, the stretch orientation is expected to deviate from the N-D bond orientation due to vibrational mixing in the hydrogen bonding network. In contrast, the data for the K intermediate suggest that the N-D group is not hydrogen bonded and orients along the membrane.  相似文献   

9.
Shibata M  Kandori H 《Biochemistry》2005,44(20):7406-7413
In a light-driven proton pump protein, bacteriorhodopsin (BR), three water molecules participate in a pentagonal cluster that stabilizes an electric quadrupole buried inside the protein. Previously, low-temperature Fourier-transform infrared (FTIR) difference spectra between BR and the K photointermediate in D(2)O revealed six O-D stretches of water in BR at 2690, 2636, 2599, 2323, 2292, and 2171 cm(-)(1), while five water bands were observed at 2684, 2675, 2662, 2359, and 2265 cm(-)(1) for the K intermediate. The frequencies are widely distributed over the possible range of stretching vibrations of water, and water molecules at <2400 cm(-)(1) were suggested to hydrate negative charges because of their extremely strong hydrogen bonds. In this paper, we aimed to reveal the origin of these water bands in the K minus BR spectra by use of various mutant proteins. The water bands were not affected by the mutations at the cytoplasmic side, such as T46V, D96N, and D115N, implying that the water molecules in the cytoplasmic domain do not change their hydrogen bonds in the BR to K transition. In contrast, significant modifications of the water bands were observed for the mutations in the Schiff base region and at the extracellular side, such as R82Q, D85N, T89A, Y185F, D212N, R82Q/D212N, and E204Q. From these results, we concluded that the six O-D stretches of BR originate from three water molecules, water401, -402, and -406, involved in the pentagonal cluster. Two stretching modes of each water molecule are highly separate (300-470 cm(-)(1) for O-D stretches and 500-770 cm(-)(1) for O-H stretches), which is consistent with the previous QM/MM calculation. The small amplitudes of vibrational coupling are presumably due to strong association of the waters to negative charges of Asp85 and Asp212. Among various mutant proteins, only D85N and D212N lack strongly hydrogen-bonded water molecules (<2400 cm(-)(1)) and proton pumpimg activity. We thus infer that the presence of a strong hydrogen bond of water is a prerequisite for proton pumping in BR. Internal water molecules in such a specific environment are discussed in terms of functional importance for rhodopsins.  相似文献   

10.
In a light-driven proton-pump protein, bacteriorhodopsin (BR), three water molecules participate in a pentagonal cluster that stabilizes an electric quadrupole buried inside the protein. In low-temperature Fourier transform infrared (FTIR) K minus BR spectra, the frequencies of water bands suggest extremely strong hydrogen bonding conditions in BR. The three observed water O-D stretches, at 2323, 2292, and 2171 cm(-1), are probably associated with water that interacts with the negative charges in the Schiff base region. Retinal isomerization weakens these hydrogen bonds in the K intermediate, but not in the later intermediates such as L, M, and N. In these states, spectral changes of water bands appeared only in the >2500 cm(-1) region, which correspond to weak hydrogen bonds. This observation suggests that after the K state the water molecules in the Schiff base region find a hydrogen bonding acceptor. We propose here a model for the mechanism of proton transfer from the Schiff base to Asp85. In the "hydration switch model", hydration of a water molecule is switched in the M intermediate from Asp85 to Asp212. This will have increased the pK(a) of the proton acceptor, and the proton transfer is from the Schiff base to Asp85. The present results also suggest that the deprotonated Asp96 in the N intermediate is stabilized in a manner different from that of Asp85 in BR.  相似文献   

11.
Shibata M  Ihara K  Kandori H 《Biochemistry》2006,45(35):10633-10640
Bacteriorhodopsin (BR) and halorhodopsin (HR) are light-driven proton and chloride ion pumps, respectively, in Halobacterium salinarum. The amino acid identity of these proteins is about 25%, suggesting that each has been optimized for their own functions during evolution. However, it is known that the BR mutants, D85T and D85S, can pump chloride ions. This fact implies that the Schiff base region is important in determining ionic selectivity. The X-ray crystallographic structure of D85S(Br(-)) showed the presence of a bromide ion in the Schiff base region (Facciotti, M. T., Cheung, V. S., Nguyen, D., Rouhani, S., and Glaeser, R. M. (2003) Biophys. J. 85, 451-458). In this article, we report on the study of hydrogen bonds of the Schiff base and water molecules in D85S in the absence and presence of various halides, assigning their N-D and O-D stretching vibrations in D(2)O, respectively, in low-temperature Fourier-transform infrared (FTIR) spectroscopy. We found that the hydrogen bond of the Schiff base in D85S(Cl(-)) is much stronger than that in HR, being as strong as that in wild-type BR. Similar halide dependence in D85S and in solution implies that the Schiff base forms a direct hydrogen bond with a halide, consistent with the X-ray structure. Photoisomerization causes a weakened hydrogen bond of the Schiff base, and halide dependence on the stretching frequency is lost. These spectral features are similar to those in the photocycle of proton-pumping BR, though the weakened hydrogen bond is more significant for BR. However, the spectral features of water bands in D85S are closer to chloride-pumping HR because O-D stretching vibrations of water are observed only at >2500 cm(-)(1). Unlike in BR, we did not observe strongly hydrogen-bonded water molecules for halide-pumping D85S mutants. This observation agrees with our recent hypothesis that strongly hydrogen-bonded water molecules are required for the proton-pumping activity of archaeal rhodopsins. Hydrogen-bonding conditions in the Schiff base region of D85S are discussed on the basis of the spectral comparison with those of wild-type BR and HR.  相似文献   

12.
Low-temperature Fourier transform infrared (FTIR) spectroscopy is used to study squid rhodopsin at 77 K in investigating structural changes in the Schiff base region upon photoisomerization. The analysis of O-D stretching vibrations in D(2)O revealed that there are more internal water molecules near the retinal chromophore in squid rhodopsin than in bovine rhodopsin. Among nine O-D stretching vibrations of water in squid rhodopsin, eight peaks are identical between rhodopsin and 9-cis-rhodopsin (Iso). On the other hand, the isomer-specific O-D stretch of water was observed for rhodopsin (2451 cm(-)(1)) and Iso (2382 cm(-)(1)). Low frequencies of these bands suggest that the water forms a strong hydrogen bond with a negatively charged counterion. In addition, it was suggested that the hydrogen bond of the Schiff base is weaker in squid rhodopsin than in bacteriorhodopsin and bovine rhodopsin, and squid rhodopsin possessed similar hydrogen bonding strength for the Schiff base among rhodopsin, Iso, and bathorhodopsin. Most vibrational bands in the X-D stretch region originate from water O-D or the Schiff base N-D stretches, suggesting that the hydrogen bonding network in the Schiff base region of squid rhodopsin is composed of only water molecules. On the basis of these results, we propose that squid rhodopsin possesses a "bridge" water between the Schiff base and its counterion as well as squid retinochrome [Furutani, Y., Terakita, A., Shichida, Y., and Kandori, H. (2005) Biochemistry 44, 7988-7997], which is absent in vertebrate rhodopsin [Furutani, Y., Shichida, Y., and Kandori, H. (2003) Biochemistry 42, 9619-9625].  相似文献   

13.
Furutani Y  Shichida Y  Kandori H 《Biochemistry》2003,42(32):9619-9625
Internal water molecules of rhodopsins play an important role in stabilizing the crucial ion pair comprised by the protonated retinal Schiff base and its counterion. Previous low-temperature FTIR spectroscopy of archaeal rhodopsins observed water O-D stretching vibrations at 2400-2100 cm(-1) in D(2)O, corresponding to strong hydrogen bonds. Since a water molecule bridges the protonated Schiff base and an aspartate in archaeal rhodopsins, the observed water molecules presumably hydrate the negative charges in the Schiff base region. In contrast, the FTIR spectroscopy data of bovine rhodopsin presented here revealed that there are no spectral changes of water molecules under strongly hydrogen-bonding conditions (in the range <2400 cm(-1) for O-D stretch) during the photoactivation processes. The only observed water bands were located in the >2500 cm(-1) region that corresponds to weak hydrogen bonding. These results imply that the ion pair state in vertebrate visual rhodopsins is stabilized in a manner different from that in archaeal rhodopsins. In addition, the internal water molecules that hydrate the negative charges do not play important role in the photoactivation processes of rhodopsin that involve proton transfer from the Schiff base to Glu113 upon formation of Meta II. Structural changes of the H-D exchangeable peptide amide of a beta-sheet are observed upon formation of metarhodopsin II, suggesting that motion of a beta-sheet is coupled to the proton transfer reaction from the Schiff base to its counterion.  相似文献   

14.
Ikeda D  Furutani Y  Kandori H 《Biochemistry》2007,46(18):5365-5373
Proteorhodopsin (PR), an archaeal-type rhodopsin found in marine bacteria, is a light-driven proton pump similar to bacteriorhodopsin (BR). It is known that Asp97, a counterion of the protonated Schiff base, possesses a higher pKa ( approximately 7) compared to that of homologous Asp85 in BR (<3). This suggests that PR has a hydrogen-bonding network different from that of BR. We previously reported that a strongly hydrogen-bonded water molecule is observed only in the alkaline form of PR, where Asp97 is deprotonated (Furutani, Y., Ikeda, D., Shibata, M., and Kandori, H. (2006) Chem. Phys. 324, 705-708). This is probably correlated with the pH-dependent proton pumping activity of PR. In this work, we studied the water-containing hydrogen-bonding network in the Schiff base region of PR by means of Fourier-transform infrared (FTIR) spectroscopy at 77 K. [zeta-15N]Lys-labeling and 18O water were used for assigning the Schiff base N-D and water O-D stretching vibrations in D2O, respectively. The frequency upshift of the N-D stretch in the primary K intermediate is much smaller for PR than for BR, indicating that the Schiff base forms a hydrogen bond after retinal photoisomerization. We then measured FTIR spectra of the mutants of Asp97 (D97N and D97E) and Asp227 (D227N and D227E) to identify the amino acid interacting with the Schiff base in the K state. The PRK minus PR spectra of D97N and D97E were similar to those of the acidic and alkaline forms, respectively, of the wild type implying that the structural changes upon retinal photoisomerization are not influenced by the mutation at Asp97. In contrast, clear spectral differences were observed in D227N and D227E, including vibrational bands of the Schiff base and water molecules. It is concluded that Asp227 plays a crucial role during the photoisomerization process, though Asp97 acts as the primary counterion in the unphotolyzed state of PR.  相似文献   

15.
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.  相似文献   

16.
Furutani Y  Iwamoto M  Shimono K  Wada A  Ito M  Kamo N  Kandori H 《Biochemistry》2004,43(18):5204-5212
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the retinal chromophore is thermally isomerized from the 13-cis to all-trans form. We employed FTIR spectroscopy of ppR at 260 K and pH 5 to reveal that this isomerization occurs upon formation of the O intermediate (ppR(O)) by using ppR samples reconstituted with 12,14-D(2)-labeled retinal. In ppR(O), C=O stretching vibrations of protonated carboxylates newly appear at 1757 (+)/1722 (-) cm(-1) in H(2)O and at 1747 (+)/1718 (-) cm(-1) in D(2)O in addition to the 1765 (+) cm(-1) band of Asp75. Amide I vibrations are basically similar between ppR(M) and ppR(O), whereas unique bands of ppR(O) are also observed such as the negative 1656 cm(-1) band in D(2)O and intense bands at 1686 (-)/1674 (+) cm(-1). In addition, O-D stretching vibrations of water molecules in the entire mid-infrared region are assigned for ppR(M) and ppR(O), the latter being unique for ppR, since it can be detected at low temperature (260 K). The ppR(M) minus ppR difference spectra lack the lowest frequency water band (2215 cm(-1)) observed in the ppR(K) minus ppR spectra, which is probably associated with water that interacts with the negative charges in the Schiff base region. It is likely that the proton transfer from the Schiff base to Asp75 in ppR(M) can be explained by a hydration switch of a water from Asp75 to Asp201, as was proposed for the light-driven proton-pump bacteriorhodopsin (hydration switch model) [Tanimoto, T., Furutani, Y., and Kandori, H. (2003) Biochemistry 42, 2300-2306]. In the transition from ppR(M) to ppR(O), a hydrogen-bonding alteration takes place for another water molecule that forms a strong hydrogen bond.  相似文献   

17.
Neurospora rhodopsin (NR, also known as NOP-1) is the first rhodopsin of the haloarchaeal type found in eucaryotes. NR demonstrates a very high degree of conservation of the amino acids that constitute the proton-conducting pathway in bacteriorhodopsin (BR), a light-driven proton pump of archaea. Nevertheless, NR does not appear to pump protons, suggesting the absence of the reprotonation switch that is necessary for the active transport. The photocycle of NR is much slower than that of BR, similar to the case of pharaonis phoborhodopsin (ppR), an archaeal photosensory protein. The functional and photochemical differences between NR and BR should be explained in the structural context. In this paper, we studied the structural changes of NR following retinal photoisomerization by means of low-temperature Fourier transform infrared (FTIR) spectroscopy and compared the obtained spectra with those for BR. For the spectroscopic analysis, we established the light-adaptation procedure for NR reconstituted into 1,2-dimyristoyl-sn-glycero- 3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phosphate (DMPC/DMPA) liposomes, which takes approximately 2 orders of magnitudes longer than in BR. The structure of the retinal chromophore and the hydrogen-bonding strength of the Schiff base in NR are similar to those in BR. Unique spectral features are observed for the S-H stretching vibrations of cysteine and amide-I vibrations for NR before and after retinal isomerization. In NR, there are no spectral changes assignable to the amide bands of alpha helices. The most prominent difference between NR and BR was seen for the water O-D stretching vibrations (measured in D(2)O). Unlike for haloarchaeal rhodopsins such as BR and ppR, no O-D stretches of water under strong hydrogen-bonded conditions (<2400 cm(-1)) were observed in the NR(K) minus NR difference spectra. This suggests a unique hydrogen-bonded network of the Schiff base region, which may be responsible for the lack of the reprotonation switch in NR.  相似文献   

18.
Furutani Y  Kawanabe A  Jung KH  Kandori H 《Biochemistry》2005,44(37):12287-12296
Anabaena sensory rhodopsin (ASR) is an archaeal-type rhodopsin found in eubacteria, and is believed to function as a photosensor interacting with a 14 kDa soluble protein. Most of the residues in the retinal binding pocket are similar in ASR except proline 206, where the corresponding amino acid in other archaeal-type rhodopsins is highly conserved aspartate that constitutes the counterion complex of the positively charged protonated Schiff base. The recently determined X-ray crystallographic structure of ASR revealed a water molecule between the Schiff base and Asp75 [Vogeley, L., Sineshchekov, O. A., Trivedi, V. D., Sasaki, J., Spudich, J. L., and Luecke, H. (2004) Science 306, 1390-1393], as well as the case for bacteriorhodopsin (BR), a typical transport rhodopsin working as a proton pump. In this study, we applied low-temperature Fourier transform infrared (FTIR) spectroscopy to the all-trans form of ASR at 77 K, and compared the local structure around the chromophore and their structural changes upon retinal photoisomerization with those of BR. The K intermediate minus ASR difference spectra were essentially similar to those for BR, indicating that photoisomerization yields formation of the distorted 13-cis form. In contrast, little amide I bands were observed for ASR. The presence of the proline-specific vibrational bands suggests that peptide backbone alterations are limited to the Pro206 moiety in the K state of ASR. The N-D stretching of the Schiff base is presumably located at 2163 (-) and 2125 (-) cm(-)(1) in ASR, suggesting that the hydrogen bonding strength of the Schiff base in ASR is similar to that in BR. A remarkable difference between ASR and BR was revealed from water bands. Although ASR possesses a bridged water molecule like BR, the O-D stretching of water molecules was observed only in the >2500 cm(-)(1) region for ASR. We interpreted that the weak hydrogen bond of the bridged water between the Schiff base and Asp75 originates from their geometry. Since ASR does not pump protons, our result supports the working hypothesis that the existence of strongly hydrogen bonded water molecules is essential for proton pumping activity in archaeal rhodopsins.  相似文献   

19.
Archaeal rhodopsins possess a retinal molecule as their chromophores, and their light energy and light signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of the protein then leads to functional processes, proton pump in bacteriorhodopsin and transducer activation in sensory rhodopsins. In the present paper, low-temperature Fourier transform infrared spectroscopy is applied to phoborhodopsin from Natronobacterium pharaonis (ppR), a photoreceptor for the negative phototaxis of the bacteria, and infrared spectral changes before and after photoisomerization are compared with those of bacteriorhodopsin (BR) at 77 K. Spectral comparison of the C--C stretching vibrations of the retinal chromophore shows that chromophore conformation of the polyene chain is similar between ppR and BR. This fact implies that the unique chromophore-protein interaction in ppR, such as the blue-shifted absorption spectrum with vibrational fine structure, originates from both ends, the beta-ionone ring and the Schiff base regions. In fact, less planer ring structure and stronger hydrogen bond of the Schiff base were suggested for ppR. Similar frequency changes upon photoisomerization are observed for the C==N stretch of the retinal Schiff base and the stretch of the neighboring threonine side chain (Thr79 in ppR and Thr89 in BR), suggesting that photoisomerization in ppR is driven by the motion of the Schiff base like BR. Nevertheless, the structure of the K state after photoisomerization is different between ppR and BR. In BR, chromophore distortion is localized in the Schiff base region, as shown in its hydrogen out-of-plane vibrations. In contrast, more extended structural changes take place in ppR in view of chromophore distortion and protein structural changes. Such structure of the K intermediate of ppR is probably correlated with its high thermal stability. In fact, almost identical infrared spectra are obtained between 77 and 170 K in ppR. Unique chromophore-protein interaction and photoisomerization processes in ppR are discussed on the basis of the present infrared spectral comparison with BR.  相似文献   

20.
Retinochrome is a photoisomerase of the invertebrate visual system, which converts all-trans-retinal to the 11-cis configuration and supplies it to visual rhodopsin. In this paper, we studied light-induced structural changes in squid retinochrome by means of low-temperature UV-visible and Fourier transform infrared (FTIR) spectroscopy. In PC liposomes, lumi-retinochrome was stable in the wide temperature range between 77 and 230 K. High thermal stability of the primary intermediate in retinochrome is in contrast to the case in rhodopsins. FTIR spectroscopy suggested that the chromophore of lumi-retinochrome is in a relaxed planar 11-cis form, being consistent with its high thermal stability. The chromophore binding pocket of retinochrome appears to accommodate both all-trans and 11-cis forms without a large distortion, and limited protein structural changes between all-trans and 11-cis chromophores may be suitable for the function of retinochrome as a photoisomerase. The analysis of N-D and O-D stretching vibrations in D(2)O revealed that the hydrogen bond of the Schiff base is weaker in retinochrome than in bovine rhodopsin and bacteriorhodopsin, while retinochrome has a water molecule under strongly hydrogen-bonded conditions (O-D stretch at 2334 cm(-)(1)). The hydrogen bond of the water is further strengthened in lumi-retinochrome. The formation of meta-retinochrome accompanies deprotonation of the Schiff base, together with the peptide backbone alterations of alpha-helices, and possible formation of beta-sheets. It was found that the Schiff base proton is not transferred to its counterion, Glu181, but directly released to the aqueous phase in PC liposomes (pH 7.5). This suggests that the Schiff base environment is exposed to solvent in meta-retinochrome, which may be advantageous for the hydrolysis reaction of the Schiff base in the transport of 11-cis-retinal to its shuttle protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号