首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isotopic composition of tree ring cellulose was obtained over a 2-year period from small-diameter riparian-zone trees at field sites that differed in source water isotopic composition and humidity. The sites were located in Utah (cool and low humidity), Oregon (cool and high humidity), and Arizona (warm and low humidity) with source water isotope ratio values of –125/–15‰ (δD/δ18O), –48/–6‰, and –67/–7‰, respectively. Monthly environmental measurements included temperature and humidity along with measurements of the isotope ratios in atmospheric water vapor, stream, stem, and leaf water. Small riparian trees used only stream water (both δD and δ18O of stem and stream water did not differ), but δ values of both atmospheric water vapor and leaf water varied substantially between months. Differences in ambient temperature and humidity conditions between sites contributed to substantial differences in leaf water evaporative enrichment. These leaf water differences resulted in differences in the δD and δ18O values of tree ring cellulose, indicating that humidity information was recorded in the annual rings of trees. These environmental and isotopic measurements were used to test a mechanistic model of the factors contributing to δD and δ18O values in tree ring cellulose. The model was tested in two parts: (a) a leaf water model using environmental information to predict leaf water evaporative enrichment and (b) a model describing biochemical fractionation events and isotopic exchange with medium water. The models adequately accounted for field observations of both leaf water and tree ring cellulose, indicating that the model parameterization from controlled experiments was robust even under uncontrolled and variable field conditions. Received: 7 April 1999 / Accepted: 8 December 1999  相似文献   

2.
We conducted stable oxygen and carbon isotope analyses for otoliths of Atlantic salmon (Salmo salar), in an attempt to develop a reference database on isotopic variability among private and federal hatcheries in Maine which currently support the salmon aquaculture industry and recovery of endangered populations. During the first phase of our study, we collected 40–50 sagittal otoliths of juvenile Atlantic salmon from each of the five hatcheries and analyzed for stable oxygen and carbon isotope ratios (18O/16O or δ18O, and 13C/12C or δ13C). Combination of δ18O and δ13C signatures in otoliths showed that the five hatcheries can be clearly separated and chemically distinguished. By identifying stable isotopic variations of otoliths from different hatchery settings, we were able to establish some isotopic criteria or standards to assign a likelihood that an individual Atlantic salmon came from a specific hatchery within the reference database. If successful, a diagnostic tool that can provide definitive information on identification of the hatchery origin could serve as a novel marking technique, and the chemical method may provide a more effective alternative to DNA analysis for mixed stocks. Overall our isotopic data from otoliths support the hypothesis that there are detectable differences between the five hatcheries, and multiple statistical analyses indicated that we can correctly distinguish individual Atlantic salmon into a hatchery with high confidence.  相似文献   

3.
Saplings of three riparian tree species (alder, birch and cottonwood) were grown for over 5 months in a hydroponics system that maintained the isotopic composition of source water in six treatments, ranging from –120 to +180‰δD and –15 to +10‰δ18O. The trees were grown in two greenhouses maintained at 25°C and at either 40 or 75% relative humidity, creating differences in transpiration rates and leaf water isotopic evaporative enrichment. The cellulose produced in the annual growth ring was linearly related to source water with differences in both slope and offset associated with greenhouse humidity. The slope of the isotopic composition of source water versus tree-ring cellulose was less than 1 for both δD and δ18O indicating incomplete isotopic exchange of carbohydrate substrate with xylem water during cellulose synthesis. Tests using the outer portion of the tree-ring and new roots were similar and showed that the tree-ring values were representative of the cellulose laid down under the imposed environmental conditions. The fraction of H and O in carbohydrate substrate that isotopically exchange with medium water was calculated to be 0.36 and 0.42 respectively, and biochemical mechanisms for these observed fractions are discussed. A mechanistic model of the biochemical fractionation events for both δD and δ18O leading to cellulose synthesis was robust over the wide range of cellulose stable isotope ratios. The experimental results indicate that both water source and humidity information are indeed recorded in tree-ring cellulose. These results help to resolve some of the disparate observations regarding the interpretation of stable isotope ratios in tree-rings found in the literature. Received: 4 January 1999 / Accepted: 12 August 1999  相似文献   

4.
Diurnal variations of needle water isotopic ratios in two pine species   总被引:1,自引:0,他引:1  
Diurnal fluctuations of leaf water isotope ratios (δ18O and δD) were measured for Jeffrey (Pinus jeffreyi Balf.) and lodgepole (Pinus contorta Douglas ex Louden) pine. Two trees per species were sampled every few hours on 15–16 October 2005 and 19–20 June 2006. Diurnal gas exchange was measured during the summer sampling. In fall 2005, leaf water δ18O ranged from 0.7 to 9.0‰, and leaf water δD ranged from −70 to −50‰. In summer 2006, leaf water δ18O ranged from 7.7 to 20.7‰, and leaf water δD ranged from −61 to −24‰. Diurnal variation of leaf water isotope values typically reached a maximum in early afternoon, began decreasing around midnight, and reached a minimum in mid-morning. Both periods showed a high degree of enrichment relative to source water, with leaf water–source water enrichments ranging up to 37.8‰ for δ18O, and up to 95‰ for δD. Leaf water enrichment varied by season with summer enrichment being greater than fall enrichment. A steady-state model (i.e., modified Craig–Gordon modeling) for leaf water isotope compositions did not provide a good fit to measured values of leaf water. In summer, a non-steady state model provided a better fit to the measured data than the steady-state model. Our findings demonstrate substantial leaf water enrichment above source water and diurnal variations in the isotopic composition of leaf water, which has application to understanding short-term variability of atmospheric gases (water vapor, CO2, O2), climate studies based on the isotopic composition of tree rings, and ecosystem water fluxes.  相似文献   

5.
Stable isotope composition (δ13C and δ18O) was analysed in mineral incrustation of Chara rudis and surrounding waters. This macroalga forms dense and extensive charophyte meadows and may significantly contribute to the calcium carbonate precipitation and deposition of marl lake sediments. The study aimed to find out if charophyte calcium carbonate was precipitated in an isotopic equilibrium with lake water and if the precipitation was related to the environmental conditions. Two apical internodes of 10 individuals of C. rudis were collected monthly between June and late October 2008 at three permanent study sites (1.0 m, 1.5 m and 2.0 m deep) in a small (15.1 ha) and shallow (mean depth: 4.3 m) mid-forest lake with extensively developed charophyte meadows (Lake Jasne, mid-Western Poland). Basic physical–chemical analyses were performed at each study site, and water samples for further laboratory determinations, including stable isotope analyses, were collected from the above searched C. rudis stands and, simultaneously, at three comparative sites in the macrophyte-free pelagial. The difference in δ13C between incrustation and water from above C. rudis exceeded 2‰ V-PDB at each site. In the case of δ18O, it exceeded 2‰ between July and September. Accordingly, it is postulated that calcium carbonate was not precipitated in an isotopic equilibrium with lake water. Incrustation was enriched in heavier carbon isotope, 13C, and water was enriched in 18O. δ13C of incrustation and DIC were positively correlated, whereas negative relation was found between δ18O of incrustation and water. Several dependencies were found with water chemistry above the plants. The content of mineral incrustation in Chara dry weight had negative influence on the δ18O but not on the δ13C. Community depth, structure and PVI had no effect. No significant differences appeared between isotope composition in the pelagic zone and Chara stands.  相似文献   

6.
Stable oxygen and hydrogen isotope analyses of fossil aquatic organisms, such as the chitinous head capsules of chironomid larvae (Chironomidae: Diptera), are promising proxies for inferring paleoecological conditions. In order for analyses of stable oxygen (δ18O) and hydrogen isotope ratios (δ2H) of fossil chironomid head capsules to be used effectively in paleoecological research, it is necessary to understand the factors controlling their stable oxygen and hydrogen composition. We cultured chironomid larvae in two isotopically distinct waters under controlled, replicated laboratory conditions. Chironomid larvae were fed on identical diets, to examine the degree to which water and diet influence the δ18O and δ2H of these organisms. We used a two-end member mixing model to determine the proportional contributions of oxygen and hydrogen from water to the oxygen and hydrogen of chironomid larvae. Our experiment demonstrated that 69.0 ± 0.4% of oxygen and 30.8 ± 2.6% of hydrogen in chironomid larvae are derived from habitat water. Our results show that oxygen isotopes from chironomid remains can better constrain past habitat water isotopic changes compared to hydrogen, due to 69% of the chironomid oxygen being influenced by habitat water. Our data add to a small but growing suite of comparative data on the sources of oxygen and hydrogen in animal tissues, and provide the first such analyses from aquatic insects.  相似文献   

7.
 A core from a coral colony of Porites lutea was analysed for stable oxygen isotopic composition*. A 200-year proxy record of sea surface temperatures from the Houtman Abrolhos Islands off west Australia was obtained from coral δ18O. At 29′S, the Houtman Abrolhos are the southernmost major reef complex of the Indian Ocean. They are located on the path of the Leeuwin Current, a southward flow of warm, tropical water, which is coupled to Indonesian throughflow. Coral δ18O primarily reflects local oceanographic and climatic variability, which is largely determined by spatial variability of the Leeuwin Current. However, coherence between coral δ18O and the current strength itself is relatively weak. Evolutionary spectral and singular spectrum analyses of coral δ18O demonstrate a high variability in spectral composition through time. Oscillations in the 5–7-y, 14–15-y, and quasi-biennial bands reflect teleconnections of local sea surface temperature (SST) to tropical Pacific climate variability. Deviations between local (coral-based) and regional (instrument) SST contain a cyclic component with a period of 15 y. Coral δ18O suggests a rise in SST by 0.6 ′C since AD 1944, consistent with available instrumental SST records. A long-term warming by 1.4 ′C since AD 1795 is inferred from the coral record. Accepted: 3 July 1998  相似文献   

8.
Stable isotopic ratios integrate ecosystem variability while reflecting change in both environmental and biological processes. At sites, where climate does not strongly limit tree growth, co-occurring trees may display large discrepancies in stable oxygen isotopic ratios (δ18O) due to the interplay between biological processes (competition for light and nutrients, individual tree physiology, etc.) and climate. For a better quantification of the isotope variability within and among trees, the climatic and/or individual tree effects on seasonal δ18O variations in precipitation, soil water, leaf water and leaf organic material (whole leaf, cellulose and starch) and annual δ18O variations in tree-ring cellulose for Fagus sylvatica (Fs), Quercus robur (Qr), Carpinus betulus (Cb) and Pinus sylvestris (Ps) were studied in a mature temperate forest in Switzerland, using a mixed linear regression model technique. Furthermore, the influence of environmental factors on δ18O was assessed by means of three common isotope fractionation models. Our statistical analysis showed that except for Ps, a greater portion of δ18O variance in leaf compounds can be explained by individual tree effects, compared to temperature. Concerning tree-ring cellulose, only Fs and Ps show a significant temperature signal (maximum 12% of the variance explained), while the individual tree effect significantly explains δ18O for all species for a period of 38 years. Large species differences resulted in a limited ability of the isotope fractionation models to predict measured values. Overall, we conclude that in a diverse mixed forest stand, individual tree responses reduce the potential extraction of a temperature signal from δ18O.  相似文献   

9.
Nitrate produced by bacterially mediated nitrification in soils is isotopically distinct from atmospheric nitrate in precipitation. 15N/14N and 18O/16O isotopic ratios of nitrate can therefore be used to distinguish between these two sources of nitrate in surface waters and groundwaters. Two forested catchments in the Turkey Lakes Watershed (TLW) near Sault Ste. Marie, Ontario, Canada were studied to determine the relative contributions of atmospheric and microbial nitrate to nitrate export. The TLW is reasonably undisturbed and receives a moderate amount of inorganic nitrogen bulk deposition (8.7 kg N · ha−1· yr−1) yet it exhibits unusually low inorganic nitrogen retention (average = 65% of deposition). The measured isotopic ratios for nitrate in precipitation ranged from +35 to +59‰ (VSMOW) for δ18O and −4 to +0.8‰ (AIR) for δ15N. Nitrate produced from nitrification at the TLW is expected to have an average isotope value of approximately −1.0‰ for δ18O and a value of about 0 to +6‰ for δ15N, thus, the isotopic separation between atmospheric and soil sources of nitrate is substantial. Nitrate produced by nitrification of ammonium appears to be the dominant source of the nitrate exported in both catchments, even during the snowmelt period. These whole catchment results are consistent with the results of small but intensive plot scale studies that have shown that the majority of the nitrate leached from these catchments is microbial in origin. The isotopic composition of stream nitrate provides information about N-cycling in the forested upland and riparian zones on a whole catchment basis. Received 5 October 1999; accepted 18 August 2000  相似文献   

10.
The stable oxygen isotope (δ 18O) composition of Austrocedrus chilensis (D. Don) Endl. (Cupressaceae) tree rings potentially provide retrospective views of changes in environment and climate in the semi-arid lands of Patagonia. We report the development of the first annually resolved δ 18O tree-ring chronology obtained from natural forests of the foothills of the northwestern Patagonian Andes. The isotope record spans between 1890 and 1994 AD. We explore the probable links between this record and the climate of the region. Air temperatures during summer conditions are significantly, but not strongly, inversely correlated with annual δ 18O values from Austrocedrus tree rings. The strongest correlations are between the southern oscillation index (SOI) and the tree rings. The existence of millennial-age Austrocedrus trees in northern Patagonia provides interesting possibilities for examining these climate-related isotopic signals over most of the last 1,000 years.  相似文献   

11.
Isotopic ratios of fish otoliths have been used in numerous studies as natural tags or markers to aid in the study of connectivity among fish populations. We investigated the use of spatial and temporal changes in the stable carbon and oxygen isotope ratios of otoliths to differentiate juvenile habitats of winter flounder (Pseudopleuronectes americanus). Young-of-the-year (YOY) juvenile winter flounder were collected annually over a three-year period from 18 stations along the coast of Rhode Island, USA. Sagittal otoliths were removed from fish and analyzed for stable carbon (13C/12C or δ13C) and oxygen (18O/16O or δ18O) isotope ratios using continuous flow isotope ratio mass spectrometry. Differences in isotope ratios were observed among stations and along salinity gradients in the Narragansett Bay estuary and an estuarine river system (Narrow River). Overall, the isotope ratio patterns observed among stations were consistent over the three sampling years; however, differences were noted in isotope ratios and the magnitude of the isotope ratio gradients among years. Significant positive correlations were noted between salinity and δ13C for two of the three years. For each of the three years sampled there was a highly significant positive correlation (2002, r = 0.93, P < 0.01; 2003, r = 0.85, P < 0.01; 2004, r = 0.97, P < 0.01) between δ18O and the salinity of the collection site. Also, there was a significant negative correlation between the number of months of above average river flow and δ18O for the three sampling years (r = 0.99, P < 0.05). These findings suggest that yearly changes in the volume of freshwater inputs to these estuarine habitats may be related to the differences observed in otolith δ18O isotope ratios. Because of these year-to-year differences, sampling of each cohort may be necessary in order to use this isotopic technique for winter flounder connectivity studies.  相似文献   

12.
Taxonomical and geochemical investigations on freshwater ostracods from 15 waters in Central and Northeast (NE) Yakutia have been undertaken in order to estimate their potential usefulness in palaeoenvironmental reconstructions based on regional fossil records. Higher variability in environmental factors such as pH, electrical conductivity, and ionic content was observed in thermokarst-affected lakes in Central Yakutia than in NE Yakutia lakes. Species diversity of freshwater ostracods reached up to eight taxa per lake, mostly dominated by Candona weltneri Hartwig 1899, in Central Yakutia, whereas in NE Yakutian waters the diversity was lower and Candona muelleri jakutica Pietrzeniuk 1977 or Fabaeformiscandona inaequivalvis (Sars 1898) had highest frequencies. Coupled analyses of stable isotopes (δ18O, δ13C) and element ratios (Sr/Ca, Mg/Ca) were performed on both host waters and ostracod calcite, aiming to estimate the modern relationships. Correlations between host waters and ostracod calcite of single species were found for δ18O, δ13C and Sr/Ca and Mg/Ca ratios. The relationships between δ18O, Mg/Ca and Sr/Ca ratios and electrical conductivity (salinity) as an expression of solute concentrations in the waters mainly controlled by evaporation are more complicated but evident, and may be useful in future interpretation of geochemical data from fossil Siberian ostracods. Handling editor: K. Martens  相似文献   

13.
Stable carbon- (δ13C), nitrogen- (δ15N) and hydrogen (δD) isotope profiles in feathers of migratory Great Reed Warblers Acrocephalus arundinaceus recaptured for 2 or more years in 6 successive years were examined to test whether the isotope profiles of individual warblers appeared to be consistent between years. Similar isotopic signatures in successive years suggested that individual birds tended to return and grow their feathers in Afro-tropical wintering habitats that generate similar δ13C, δ15N and δD signatures. Previous studies have shown that Great Reed Warblers exhibit strong natal and breeding philopatry, with most of the surviving birds returning to the breeding site. The present study of feather δ13C, δ15N and δD isotopic values demonstrate the year-to-year fidelity might also include the African moulting sites in this migratory species.  相似文献   

14.
Concentration and isotopic composition (δ13C and δ18O) of ambient CO2 and water vapour were determined within a Quercus petraea canopy, Northumberland, UK. From continuous measurements made across a 36-h period from three heights within the forest canopy, we generated mixing lines (Keeling plots) for δa 13CO2, δa C18O16O and δa H2 18O, to derive the isotopic composition of the signal being released from forest to atmosphere. These were compared directly with measurements of different respective pools within the forest system, i.e. δ13C of organic matter input for δa 13CO2, δ18O of exchangeable water for δa C18O16O and transpired water vapour for δa H2 18O. [CO2] and δa 13CO2 showed strong coupling, where the released CO2 was, on average, 4 per mil enriched compared to the organic matter of plant material in the system, suggesting either fractionation of organic material before eventual release as soil-respired CO2, or temporal differences in ecosystem discrimination. δa C18O16O was less well coupled to [CO2], probably due to the heterogeneity and transient nature of water pools (soil, leaf and moss) within the forest. Similarly, δa H2 18O was less coupled to [H2O], again reflecting the transient nature of water transpired to the forest, seen as uncoupling during times of large changes in vapour pressure deficit. The δ18O of transpired water vapour, inferred from both mixing lines at the canopy scale and direct measurement at the leaf level, approximated that of source water, confirming that an isotopic steady state held for the forest integrated over the daily cycle. This demonstrates that isotopic coupling of CO2 and water vapour within a forest canopy will depend on absolute differences in the isotopic composition of the respective pools involved in exchange and on the stability of each of these pools with time. Received: 21 March 1998 / Accepted: 10 December 1998  相似文献   

15.
The Late Eocene ‘Whiskey Creek’ deposit (Pysht Formation, Olympic Penisula, Washington State) formed at a methane-seep. Early diagenetic micrites and aragonite cement have δ13C values as low as −36‰ indicating that the seepage fluids contained methane. With respect to micrite samples, low δ13C values correlate with relatively high δ13O values andvice versa. Ongoing micrite formation after the cessation of the seepage during increased burial might have altered the isotopic composition of the microcrystalline carbonates toward lower δ13O values and higher δ13C values. Alternatively, the trend in isotope values may reflect a change in the composition of seepage fluids. The principal difference between these scenarios is the duration of seepage with respect to micrite formation. Two petrographically similar varieties of blocky calcite spar are related to different carbonate sources. The δ13C values range from −32 to −29‰ for one type of blocky spar and are either the result of methane oxidation or indicate thermal decarboxylation of organic matter. Low δ18O values are in favour of the latter. For the other type of spar, δ13C values as high as +6‰ indicate carbonate formation within the zone of methanogensis. The ‘Whiskey Creek’ limestone exhibits a chaotic fabric produced by a variety of processes, including bioturbation, concretionary carbonate formation, earlyin situ brecciation, carbonate corrosion, and late fracturing of the rock. Two varieties of micrite aggregates are responsible for the nodular fabric of the limestone. Smoothly-shaped pyritiferous micrite nodules are of diagenetic origin and formed in a manner similar to that which produces carbonate concretions. Apart from being induced by anaerobic oxidation of methane, their formation is proposed to be linked to iron reduction and sulphide formation. The second, dominant variety is represented by irregularly-shaped, nodular to angular micrite aggregates surrounded by massive rims of pyrite, resulting from carbonate corrosion. A pure, fluorescent seam-micrite, constructive in origin, lines cavities or surrounds micritic aggregates.  相似文献   

16.
The stable carbon and oxygen isotope ratios in cellulose of C3 and C4 plants growing on the surface of a montane peat bog in the Nilgiri hills, southern India, were measured. The mean monthly δ13C values in cellulose of both C3 and C4 plants are found to be significantly related to rainfall, while the δ18O values are sensitive to changes in maximum temperature and relative humidity of the region. Further, higher δ18O values were observed in C4 plants compared to C3 plants, suggesting that C4 plants are probably less sensitive to relative humidity as compared to C3 plants and are able to photosynthesize even during drier conditions. The plant isotope-climate correlations thus established can be used for reconstructing the past temperature and rainfall conditions of the tropics from the isotopic ratios of peat deposits, derived from a mixture of C3 and C4 plants in the region.  相似文献   

17.
Oxygen (O) and sulfur (S) isotope systematics in bog water sulfates were determined for six Sphagnum dominated wetlands located in the British Isles and the Czech Republic, Central Europe. Comparison of a polluted and unpolluted site showed that 4 times higher atmospheric S inputs led to 3 times higher bog water sulfate concentrations and substrate S concentrations, 3 times increased ranges of substrate S concentrations, and 3 times increased ranges of δ34S values. Sites with elevated atmospheric S inputs exhibited greater geochemical variability in wetland S species. Sulfate O–S isotope composition of bog pore water at a depth of 40 cm below surface differed from that of surface bog water, indicating that dissimilatory bacterial sulfate reduction, a process known to discriminate against the heavier isotopes 18O and 34S, occurred in surface peat layers. While bacterial sulfate reduction remained to be one of the main isotope-selective processes for sulfate in peat, it could not fully explain the O–S isotope systematics of peat waters. The ‘residual’ sulfate was not simultaneously enriched in the heavier isotopes 18O and 34S. Mixing of residual sulfate following bacterial sulfate reduction with the product of S2− reoxidation, cleavage of esters, and isotope exchange reactions may have contributed to the decoupling of the δ34Sso4 and δ18Sso4 values. Large within-site differences in δ18Sso4 and δ34Sso4 (up to 13 and 15‰, respectively) indicated little communication between the 0 and 40 cm peat depth at some sites. Extremely high δ18Sso4 and δ34Sso4 values found in several peat bog water samples from Connemara (Ireland), Thorne Moors (England) and Ocean (Czech Republic) were not seen in streams draining the wetlands. Direct runoff of atmogenic sulfate constituted a significant portion of the bog outflow. At the wetland scale, zones of dissimilatory bacterial sulfate reduction form pockets whose lateral hydrological fluxes are small.  相似文献   

18.
Cathodoluminescence (CL) microscopy of the foliated calcite shell hinge sections of live-collected oyster Crassostrea gigas collected at seven locations along a latitudinal gradient from the Netherlands in the North Sea to the Atlantic coast of France, revealed variations in luminescence that were attributable to seasonal variations in calcification of the hinge. Photomicrographs of hinge sections and luminescence profiles were analyzed to define a micro-sampling strategy that was adopted to drill the hinge samples to determine their isotopic composition. Reconstructed seasonal seawater temperatures determined from the stable oxygen isotope (δ18O) composition along growth profiles from 32 oyster shell hinges showed distinct seasonal isotopic cycles that were compared with in situ measured seawater temperatures and salinities at each location. Comparison of the amplitude of the (δ18O) signal and the annual maximum and minimum seawater temperatures demonstrated that C. gigas shells from several locations provided a reliable record of seasonal seawater temperature variation. The exception to this was oysters from the Netherlands and northern France where winter growth rates at low temperatures were slow so that insufficient shell was deposited to allow adequate spatial resolution of sampling and this resulted in time-averaging of the reconstructed seawater temperatures and an overestimation of winter seawater temperature. A potential variability in δ18Ow–salinity relationship at low salinities could also explain the high difference between measured and predicted seawater temperatures in Dutch areas. The finding that latitudinal differences in oyster hinge growth rates and/or changes in the δ18Ow–salinity relationship can result in bias of the seawater temperature deduced from the stable isotopic composition of the hinge should be taken into account when reconstructing latitudinal gradients in seawater temperature.  相似文献   

19.
 To determine whether stable isotopes can be used for identifying the geographic origins of migratory bird populations, we examined the isotopic composition of hydrogen (deuterium, δD), carbon (δ13C), and strontium (δ87Sr) in tissues of a migratory passerine, the black-throated blue warbler (Dendroica caerulescens), throughout its breeding range in eastern North America. δD and δ13C values in feathers, which are grown in the breeding area, varied systematically along a latitudinal gradient, being highest in samples from the southern end of the species’ breeding range in Georgia and lowest in southern Canada. In addition, δD decreased from east to west across the northern part of the breeding range, from New Brunswick to Michigan. δ87Sr ratios were highest in the Appalachian Mountains, and decreased towards the west. These patterns are consistent with geographical variation in the isotopic composition of the natural environment, i.e., with that of precipitation, plants, and soils for δD, δ13C, and δ87Sr, respectively. Preliminary analyses of the δD and δ13C composition of feathers collected from warblers in their Caribbean winter grounds indicate that these individuals were mostly from northern breeding populations. Furthermore, variances in isotope ratios in samples from local areas in winter tended to be larger than those in summer, suggesting that individuals from different breeding localities may mix in winter habitats. These isotope markers, therefore, have the potential for locating the breeding origins of migratory species on their winter areas, for quantifying the degree of mixing of breeding populations on migratory and wintering sites, and for documenting other aspects of the population structure migratory animals – information needed for studies of year-round ecology of these species as well as for their conservation. Combining information from several stable isotopes will help to increase the resolution for determining the geographic origins of individuals in such highly vagile populations. Received: 24 April 1995 / Accepted: 2 June 1996  相似文献   

20.
Wing membranes of laboratory and field-reared monarch butterflies (Danaus plexippus) were analyzed for their stable-hydrogen (δD) and carbon (δ13C) isotope ratios to determine whether this technique could be used to identify their natal origins. We hypothesized that the hydrogen isotopic composition of monarch butterfly wing keratin would reflect the hydrogen isotope patterns of rainfall in areas of natal origin where wings were formed. Monarchs were reared in the laboratory on milkweed plants (Asclepias sp.) grown with water of known deuterium content, and, with the assistance of volunteers, on native milkweeds throughout eastern North America. The results show that the stable hydrogen isotopic composition of monarch butterflies is highly correlated with the isotopic composition of the milkweed host plants, which in turn corresponds closely with the long-term geographic patterns of deuterium in rainfall. Stable-carbon isotope values in milkweed host plants were similarly correlated with those values in monarch butterflies and showed a general pattern of enrichment along a southwest to northeast gradient bisecting the Great Lakes. These findings indicate that natal origins of migratory and wintering monarchs in Mexico can be inferred from the combined δD and δ13C isotopic signatures in their wings. This relationship establishes that analysis of hydrogen and carbon isotopes can be used to answer questions concerning the biology of migratory monarch butterflies and provides a new approach to tracking similar migratory movements of other organisms. Received: 1 July 1998 / Accepted: 11 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号