首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dexamethasone synergistically enhances the stimulation of DNA synthesis in quiescent Swiss 3T3 cells by cartilage-derived growth factor (CDGF) while having no consistent effect when added with platelet-derived growth factor (PDGF) or serum. We examined the hypothesis that this difference might be attributed to selective synthesis of individual proteins early in the G1 phase of the cell cycle. Swiss 3T3 cells were treated with CDGF, PDGF, and fetal bovine serum for 3 h, with or without dexamethasone, and [35S]methionine-labeled proteins were separated by two-dimensional electrophoresis on giant gels. Over 3300 proteins could be distinguished; 34 of these were consistently induced more than 3-fold by all three factors, while an additional 30 inductions were variably present. Dexamethasone by itself induced 8 other proteins, and at least 9 growth factor inductions were synergistically enhanced by addition of the hormone. To identify proteins intimately associated with growth control, we looked for inductions that reflected the dexamethasone synergy with CDGF on DNA synthesis and lack of such an effect with PDGF. The induction of only one group of proteins, the Band 1 isoforms (44-46 kDa, pI 6.1-5.9) displayed such selective synergy. The majority of the other growth factor inductions were inhibited by dexamethasone, even in the context of maximal DNA synthesis, implying that their increased synthesis is not required for growth. When 3T3 cells were treated with increasing doses of CDGF with and without dexamethasone, autoradiographic densities of induced proteins varied in a dose-responsive fashion. However, only levels of the Band 1 proteins bore a constant linear relationship to DNA synthesis, suggesting that they play an important role in early control of the cell cycle.  相似文献   

2.
Glucocorticoid-inducible gene expression in rice   总被引:14,自引:0,他引:14  
Ouwerkerk PB  de Kam RJ  Hoge JH  Meijer AH 《Planta》2001,213(3):370-378
  相似文献   

3.
The induction capacity of dexamethasone, a synthetic glucocorticoid, for the synthesis of metallothionein was about the same as that of 3-aminobenzamide, which is an inhibitor of ADP-ribosylation of chromosomal proteins, in cultured mouse mammary tumor cells. Both inductions of metallothionein were temporally correlated with a decrease in the amount of endogenous poly (ADP-ribose) on nonhistone high-mobility-group 14 and 17 proteins. In contrast, the extent of cadmium-induced metallothionein synthesis was 2-3-times that of dexamethasone or 3-aminobenzamide. However, cadmium had essentially no effect on de-ADP-ribosylation of these proteins.  相似文献   

4.
5.
6.
Induction of ornithine decarboxylase by various hormones was studied in quiescent primary cultures of adult rat hepatocytes maintained in a chemically defined medium. The following results were obtained: Enzyme activity rose transiently during the first day of cultivation in hormone-untreated cells. During this phase, insulin increased ornithine decarboxylase activity. Inducibility by insulin was maintained for more than 40 h only after pretreatment with 0.1 microM dexamethasone. Enzyme activity could be induced by 1 nM insulin and peaked after 7 h. Inducibility by glucagon and growth hormone required pretreatment with the glucocorticoid hormone. Ornithine decarboxylase activity was maximal 5 h after glucagon addition. Concentrations down to 0.1 nM were effective. Pretreatment with dexamethasone was most effective, when the hormone was present during the first 20 h of cultivation. The effect of the glucocorticoid during the pretreatment phase was diminished by colchicine and to a lesser extent by cytochalasine B. We suggest that part of the permissive effect of dexamethasone could be mediated by changes in the cytoskeleton and the function of hormone receptors. The fact that induction of ornithine decarboxylase was exerted by several hormones despite the absence of cell proliferation and DNA synthesis may indicate that polyamine biosynthesis has an important role in the quiescent hepatocyte.  相似文献   

7.
Four metastatic variant sublines of the B16 murine melanoma were assayed for glucocorticoid receptors and examined for effects of dexamethasone on surface charge-related partition behaviour in aqueous two-polymer systems, expression of membrane external proteins, and adhesion to growth substratum. BL6 and F10 cells possessed cytosolic glucocorticoid receptors and, on exposure to dexamethasone, showed increased partition in the charged aqueous two-polymer system with high phosphate, but not in non-charged PO4/NaCl buffer system. This suggests that the charged two-polymer system may detect membrane changes that may be receptor-mediated effects of dexamethasone. An increase in expression of certain proteins (p250) was detected in glucocorticoid receptor-positive BL6 and F10 cells but not in the receptor-negative lines. However, other proteins, such as p220, showed an increase in all four cell lines, presumably not receptor-mediated. Dexamethasone produced no detectable changes in the ability of the cells to adhere to plastic substratum.  相似文献   

8.
To analyze direct effects of steroids on the rates of synthesis (and/or degradation) of newly synthesized proteins of the rat heart, we have used high resolution two-dimensional gel electrophoresis and autoradiography. A collective steroid domain of nineteen proteins, comprising fifteen with an increased rate of synthesis and four with a decreased rate of synthesis, was consistently seen in cultures of cardiac muscle and non-muscle cells from neonatal rats following 24 h incubation with 10(-7) dexamethasone. Similarly, incubation with 10(-7) M sex steroids, mineralocorticoids, and other glucocorticoids including the highly selective compound RU26988, established the glucocorticoid-specificity of the response. Different subsets of this glucocorticoid domain were seen for collagenase- or trypsin-dispersed primary cultures of cardiac muscle and non-muscle cells or for passaged cultures of cardiac non-muscle cells. Six polypeptides were consistently induced in all cardiac cultures, regardless of cell morphology. Two polypeptides were consistently induced only in those cultures containing cardiac non-muscle cells, whereas protein l, of identical Mr(approximately 52K) and pI (approximately 5.3) to desmin, was induced only in cultures of spontaneously contractile cardiac muscle cells. The glucocorticoid domain proteins described herein represent direct steroid effects on cardiac cells and are therefore candidate mediators of physiological glucocorticoid effects on, for example, differentiation and contractility.  相似文献   

9.
R A Steinberg  P Coffino 《Cell》1979,18(3):719-733
In this study, we used two-dimensional gel electrophoresis to analyze the responses of cultured S49 mouse lymphoma cells to incubation with analogs or inducers of cyclic AMP (cAMP). Putative phosphorylations were detected by charge alterations in proteins labeled with 35S--methionine and, in some cases, confirmed by labeling with 32P--phosphate. We assessed the relative stabilities of proteins affected by cAMP, the periods of susceptibility of proteins to cAMP-dependent modification and any cAMP-mediated changes in protein synthesis or stability. Five proteins (of about 650 resolved) behave as expected for "orthodox" substrates of a cAMP-activated protein kinase: both newly synthesized and prelabeled forms of these proteins are subject to modification; this modification involves an acidic charge shift of about one unit; and cAMP-mediated conversion of these proteins to their modified forms is virtually complete. The acidic forms of at least three of these proteins also exhibit cAMP-mediated increases in 32P--phosphate incorporation. Each protein comprised less than approximately 0.005% of cellular protein. Under basal conditions they appear to be phosphorylated to an extent about 20--30% of that found in fully stimulated cells. Nine proteins show cAMP-dependent changes in rates of synthesis with six inductions and three repressions. Most of these changes are of a magnitude of about 3 to 5 fold, and reach their maximal extents after about 4--5 hr of exposure to dibutyryl cAMP. In addition to the phosphorylations, inductions and repressions mentioned above, approximately 12 other reproducible cAMP-dependent changes in protein patterns are observed. Mutant cell lines deficient in catalytic activity of cAMP-dependent protein kinase show none of the changes in protein pattern attributable to cAMP.  相似文献   

10.
11.
12.
In adrenalectomized rats, diacylglycerol, a potent activator of protein kinase C, specifically enhanced the induction of tyrosine aminotransferase and ornithine decarboxylase by even maximally effective doses of dexamethasone phosphate, but itself had no effect on these enzyme inductions in the absence of glucocorticoid. The amplifications of enzyme induction by diacylglycerol was dose-dependent and the time courses of the amplified inductions were similar to those of the inductions by dexamethasone phosphate alone. Since diacylglycerol did not affect the induction of these enzymes by glucagon and insulin, its amplifying effect seemed to be specific for induction by glucocorticoids.  相似文献   

13.
Following treatment of the human T-cell leukaemia line, CEM-C7, with the glucocorticoid, dexamethasone, a rapid decrease in viability occurred after 40 h which coincided with fragmentation of DNA in these cells. A similar pattern of DNA fragmentation was observed when these cells were gamma-irradiated or treated with cycloheximide. Distinct morphological changes occurred after treatment, indicating a form of cell death, regulated from within, termed apoptosis. A set of nuclear proteins ranging in size from 10-18 kDa appeared by 40 h following treatment with dexamethasone. Treatment of cells with gamma-irradiation or cycloheximide also produced the same protein pattern. This set of proteins, and a doublet approximately 55 kDa in size, had apparent nuclease activity which was not observed in untreated cells. However, protein microsequencing of these bands in the 10-18 kDa region revealed that they were histone proteins. These results cast doubt on a recent report which provided evidence that these proteins were induced nucleases.  相似文献   

14.
1. Protein degradation in rat hepatocytes in stationary monolayer culture was measured as release of radioactive trichloroacetic acid-soluble material from intracellular proteins labelled with [3H]leucine. 2. Glucocorticoids, but not other steroids, stimulated protein breakdown in the hepatocyte monolayers. The effects observed were greater when the cells were preincubated with the hormones, indicating that the stimulation was not immediate. In addition, the stimulation by glucocorticoids persisted for up to 4 h after hormone removal. 3. Cycloheximide and the lysosomotropic agents leupeptin and ammonia effectively blocked glucocorticoid stimulation of protein degradation. 4. Insulin blocked dexamethasone stimulation when added at the same time as the steroid, but not when added 3 h later. 5. Stimulation of protein breakdown by dexamethasone was additive with that by glucagon or dibutyryl cyclic AMP, suggesting that its mechanism of action is different from that of the latter two agents. 6. Total activities of several lysosomal enzymes were unaffected under conditions where protein breakdown was stimulated by either glucagon or dexamethasone. 7. It is suggested that, whereas glucagon, dibutyryl cyclic AMP and insulin modulate protein breakdown in these cells via changes in autophagocytosis, the stimulation by glucocorticoids is exerted independently, perhaps by stimulating the synthesis of membrane proteins essential to the autophagic process.  相似文献   

15.
Glucocorticoids and prolactin (PRL) have a direct effect on the formation and maintenance of tight junctions (TJs) in cultured endothelial and mammary gland epithelial cells. In this work, we investigated the effect of a synthetic glucocorticoid dexamethasone (DEX) and PRL on the paracellular barrier function in MDCK renal epithelial cells. DEX (4 microM)+PRL (2 microg/ml) and DEX alone increased significantly the transepithelial electrical resistance after chronic treatment (4 days) of confluent MDCK monolayers or after 24 h treatment of subconfluent monolayers. Immunoblotting and immunocytochemistry revealed no changes in the expression and distribution of TJ-associated proteins occludin, ZO-1 and claudin-1 in confluent monolayers after hormone addition. However, a marked increase in junctional content for occludin and ZO-1 with no changes in their total expression was observed in subconfluent MDCK monolayers 24 h exposed to DEX or DEX+PRL. No change in cell proliferation/growth was detected at subconfluent conditions following hormone treatment. An increase in the total number of viable cells was observed only in confluent MDCK monolayers after exposure to DEX+PRL suggesting that the main effect of these hormones on already established barrier may be associated with the inhibition of cell death. In conclusion, our data suggest that these hormones (specially dexamethasone) have an effect on TJ structure and function only during the formation of MDCK epithelial barrier by probably modulating the localization, stability or assembly of TJ proteins to membrane sites of intercellular contact.  相似文献   

16.
The regulation of synthesis of the gluconeogenic cytosolic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and of tyrosine aminotransferase (TAT) by glucagon and glucocorticoid hormones was studied in hepatocytes maintained in suspension culture for 7 h. Specific antibodies were used to measure relative rates of enzyme synthesis after pulse-labelling of the cells with [3H]leucine or [35S]methionine. Concomitantly, amounts of mRNA were quantified after translation in vitro in a reticulocyte lysate and specific immunoprecipitation of the proteins. Glucagon stimulated the rate of synthesis of PEPCK by 4-6-fold and that of TAT by 6-8-fold in 2h. In contrast, dexamethasone had little effect on PEPCK synthesis, whereas it increased TAT synthesis by 5-9-fold. When used in combination, the two hormones displayed additive effects on TAT synthesis, whereas the glucocorticoid hormone strongly potentiated stimulation of PEPCK synthesis by glucagon. In every instance, changes in rates of synthesis of the two enzymes were totally accounted for by increases in amounts of the corresponding functional mRNA, suggesting a pretranslational site of action for both glucagon and dexamethasone.  相似文献   

17.
Regulation of rat hepatic cytosolic glucocorticoid receptors was studied using our newly developed exchange assay. Injecting 1 mg of dexamethasone or corticosterone into 150-250 g adrenalectomized rats caused a rapid decline in glucocorticoid receptor binding. Glucocorticoid receptor levels were depressed 80-90% in less than 15 min after hormone treatment, and remained low for about 24-48 h after glucocorticoid administration. 80-90% of glucocorticoid receptor binding was regenerated by 48 h, and complete binding was recovered by 72 h. Regenerated glucocorticoid receptor binding (48-72 h after first hormone injection) could be re-depressed by a second injection of the hormone. Similar results were obtained using normal (intact) rats. Optimum induction of tyrosine aminotransferase activity was obtained within 2 h following the first hormonal injection. Induction of tyrosine aminotransferase activity (measured 2 h after a second injection of the glucocorticoid) correlated with glucocorticoid receptor levels. Thus, 1 mg of dexamethasone or corticosterone greatly enhanced the liver tyrosine aminotransferase activity in the adrenalectomized rats (not previously hormone treated) and in adrenalectomized rats previously injected (48-72 h) with 1 mg of the glucocorticoid hormone. Enhancement of tyrosine aminotransferase activity was lowest 16-24 h after the first hormone injection (when receptor levels were extremely low). These results indicate that the induction of liver tyrosine aminotransferase activity by glucocorticoid hormones is correlated with cytosolic glucocorticoid receptor levels.  相似文献   

18.
The steroid-binding domain of the human glucocorticoid receptor was expressed in Escherichia coli either as a fusion protein with protein A or under control of the T7 RNA polymerase promoter. The recombinant proteins were found to bind steroids with the normal specificity for a glucocorticoid receptor but with reduced affinity (Kd for triamcinolone acetonide approximately 70 nM). Glycerol gradient analysis of the E. coli lystate containing the recombinant protein indicated no interaction between the glucocorticoid receptor fragment and heat shock proteins. However, synthesis of the corresponding fragments of glucocorticoid receptor in vitro using rabbit reticulocyte lystate resulted in the formation of proteins that bound triamcinolone acetonide with high affinity (Kd 2nM). Glycerol gradient analysis of these proteins, with and without molybdate, indicated that the in vitro synthesised receptor fragments formed complexes with hsp90 as previously shown for the full-length rat glucocorticoid receptor. Radiosequence analysis of the recombinant steroid-binding domain expressed in E. coli and affinity labelled with dexamethasone mesylate identified binding of the steroid to Cys-638 predominantly. However, all cysteine residues within the steroid-binding domain were affinity labelled to a certain degree indicating that the recombinant protein has a structure similar to the native receptor but more open and accessible.  相似文献   

19.
Using two-dimensional electrophoresis we have investigated the heat-shock response in a pathogenic fungus, Fonsecaea pedrosoi. Fungal cultures were transferred from 37 to 45 degrees C for either 30 or 90 min and then returned back to the initial temperature. Analysis of the total proteins resolved on two-dimensional gels indicated important changes in the accumulation of several peptides according to the duration of treatment and the temperature. The 30-min incubation at 45 degrees C resulted in the induction of several new proteins, whereas other proteins were either increased or decreased. These inductions and repressions of proteins (called heat-shock and heat-stroke proteins, respectively) were either specific to this time period or still present after a 90-min incubation. In addition, the 90-min incubation period led to the enhancement of several proteins, which were therefore called late heat-shock proteins to distinguish them from the early ones detected after 30 min. Finally, when cultures were shifted back to 37 degrees C most of the heat-shock proteins decreased or disappeared; in parallel, most of the heat-stroke proteins were reinduced at this time. These results are in good agreement with previous studies on the heat-shock response and provide additional evidence that this phenomenon is highly conserved among species.  相似文献   

20.
Effects of dexamethasone, EGF and insulin on the synthesis of rRNA and phosphorylation of nucleolin in primary cultures of adult rat hepatocytes were studied. Hepatocytes were incubated for 8 h with EGF (20 ng/ml) plus insulin (0.1 microM) and/or for 20 h with dexamethasone (1 microM) before the end of incubation. The incorporation of [3H]uridine into acid-insoluble materials and the nuclear activity of RNA polymerase I were stimulated approx. 2-fold with EGF plus insulin and these were further enhanced 2-3-times by dexamethasone, although dexamethasone alone exerted no stimulation. When hepatocytes were incubated with [32P]orthophosphate, similar enhancement by these hormones was also observed in the phosphorylation of a nucleolar protein, nucleolin, which was detected by immunoprecipitation with anti-nucleolin antibodies. The amount of nucleolin was slightly increased by EGF plus insulin in the presence of dexamethasone, but scarcely changed by treatment with EGF plus insulin or dexamethasone alone. Cycloheximide inhibited RNA synthesis to a greater or lesser degree in the case of all hepatocytes which were cultured with or without these hormonal treatments. These results indicate that the in vivo effect of glucocorticoid on rRNA synthesis and nucleolin phosphorylation in liver is primarily a direct action on parenchymal cells and requires other growth factors such as EGF and insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号