首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 141 毫秒
1.
The effects of some synthetic polyribonucleotides on induction of differentiation of mouse myeloid leukemic M1 cells were examined. Poly(I) was found to be a potent inducer; on treatment with 100--200 microgram/ml of poly(I) for 2--4 days, M1 cells differentiated into cells resembling macrophages and granulocytes and developed phagocytosis and locomotive activities, Fc receptors and lysozyme activity. Poly(C) was less effective than poly(I) for induction of phagocytic activity, while the other single-stranded RNAs, poly(U) and poly(A), had no effect. Double-stranded RNAs, such as poly(I) . poly(C) and poly(A) . poly(U), were cytotoxic to M1 cells, and differentiation of the cells could not be detected even at the highest tolerable concentrations of these double-stranded RNAs.  相似文献   

2.
Purified DNA polymerase beta of calf thymus can utilize poly(rA).oligo(dT) as efficiently as poly(dA).oligo(dT) or activated DNA as a template primer. The poly(rA).oligo(dT)-dependent activity of DNA polymerase beta was found to differ markedly from the DNA-dependent activity of the same enzyme (with either activated calf thymus DNA or poly(dA).(dT)10) in the following respects. 1) Poly(rA)-dependent activity was strongly inhibited by natural DNA from various sources or synthetic deoxypolymer duplexes at very low concentrations (less than 0.5 microgram/ml) at which the DNA-dependent activity was affected to a much smaller extent, if at all. 2) Poly(rA)-dependent activity was inhibited by N-ethylmaleimide more strongly than DNA-dependent activity measured at 37 degrees C, while it was resistant to this reagent at 26 degrees C. 3) The curves of the activity versus substrate concentration were sigmoidal in the poly(rA)-dependent reaction but hyperbolic in the activated DNA-dependent reaction. A kinetic study suggested that the association of beta-enzyme protomers may be required to copy the poly(rA) strand.  相似文献   

3.
Poly(ADP-ribose) synthetase has been purified to apparent homogeneity from mouse testicle by a rapid and simple procedure using column chromatography on DNA-agarose and on Cibacron blue F3G-A-Sephadex G-150. The purified enzyme absolutely requires DNA for activity, and half-maximal activation occurs at a DNA concentration of 25 μg/ml. The Km for NAD and V at pH 8.0 and 25 °C are 47 μm and 1400 nmol/min/ mg, respectively. The molecular weight is 116,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid analysis indicates that the mouse testicle enzyme is very similar to calf thymus enzyme, but there is a difference in the contents of several amino acid residues between the two enzymes. This difference appears to reflect species or tissue specificity of poly(ADP-ribose) synthetase.  相似文献   

4.
The effects of various polyanions including synthetic polynucleotides on DNApolymerases-alpha and -beta from blastulae of the sea urchin Hemicentrotus pulcherrimus and HeLa cells were studied. Only DNA polymerase-alpha was inhibited by polyanions, such as polyvinyl sufate, dextran sulfate, heparin, poly(G), poly(I), poly(U) and poly(ADP-Rib). Of the various polynucleotides tested, poly(G) and poly(I) were the strongest inhibitors. Kinetic studies showed that the Ki value for poly(G) was 0.3 microgram/ml and that poly(G) had 20-fold higher affinity than activated DNA for the template-primer site of DNA polymerase-alpha. Poly(U) and poly(ADP-Rib) were also inhibitory, but they were one hundredth as inhibitory as poly(G) or poly(I). Poly(A), poly(C), poly(A).poly(U) AND POLY(I).poly(C) were not inhibitory to DNA polymerase-alpha. In contrast, DNA olymerase-beta was not affected at all by these polyanions under the same conditions.  相似文献   

5.
Chemically synthesized 2-azaadenosine 5'-diphosphate (n2ADP) and 2-azainosine 5'-diphosphate (n2IDP) were polymerized to yield poly(2-azaadenylic acid), poly(n2A), and poly(2-azainosinic acid), poly(n2I), using Escherichia coli polynucleotide phosphorylase. In neutral solution, poly(n2A) and poly(n2I) had hypochromicities of 32 and 5.5%, respectively. Poly(n2A) formed an ordered structure, which had a melting temperature (Rm) of 20 degrees C at 0.15 M salt concentration. Upon mixing with poly(U), poly(n2A) formed a 1 : 2 complex with Tm of 41 degrees C at 0.15 M salt concentration. Poly(n2A) and poly(n2I) formed three-stranded complexes with poly(I), and poly(A), respectively. Poly(n2A) . 2poly(I), poly(A) . 2poly(n2I), and poly(n2A) . 2poly(n2I) complexes had Tm values of 23, 48, and 31 degrees C at 0.15 M salt concentration, respectively. Poly(n2I) formed a double-stranded complex with poly(C), but its Tm was very low.  相似文献   

6.
Poly(inosinic) and poly(cytidylic) acids (Poly I:Poly C) have been used to induce the production of endogenous interferon or release preformed interferon in mammals. Interferon increases the resistance of the cells. Sixty guinea pigs were used to investigate whether Poly I:Poly C gave protection from gentamicin nephrotoxicity. The animals were divided into six equal groups. Group 1 were controls; group 2 received gentamicin intramuscularly; group 3 received gentamicin and 12 h later frusemide; group 4 received gentamicin and 12 h later 1-deamino-8-D-argine vasopressin (DDAVP) intramuscularly; group 5 received subcutaneously Poly I:Poly C; group 6 received Poly I:Poly C and 24 h later gentamicin. Frusemide in group 3 potentiated gentamicin nephrotoxicity while DDAVP in group 4 ameliorated gentamicin nephrotoxicity. Poly I:Poly C itself had no toxic effect on renal tissue, while Poly I:Poly C followed 24 h later by gentamicin indicated a protective effect from the gentamicin nephrotoxicity as the functional and histological investigations indicated.  相似文献   

7.
8.
Mahmoud YA  Aly MM 《Mycopathologia》2004,157(2):145-153
Polymeric antimicrobial agents represent a new and important direction that is developing in the field of antimicrobial agents. Antimicrobial activity of two newly synthesized polymers: a modified poly (methylmethacrylate-co-vinylbenzoylchloride) and a modified linear poly (chloroethylvinylether-co-vinylbenzoylchloride) have been investigated and found to be active. Both polymers have showed a broad antimicrobial activity against C. albicans and C. tropicalis. Minimal inhibitory concentrations (MIC's) for poly (methylmethacrylate-co-vinylbenzoyl chloride) were 100, 75 and 100 microg/ml in case of C. albicans (ATCC 2091), C. albicans (SC5314) and C. tropicalis, respectively. However, polycholoroethylvinylether-covinylbenzoylchloride inhibited C. albicans (ATCC 2091), C. albicans (SC5314) and C. tropicalis with minimum inhibitory concentration values (MIC's) of 150 microg/ml against the three tested Candida strains. Mode of action studies of both polymers on the medically important yeasts, C. albicans and C. tropicalis revealed that poly (methylmethacrylate-co-vinylbenzoylchloride) induced cytotoxicity, DNA damage, and altered cell permeability and morphology, which was manifested as aggregated and swollen yeast cells (C. albicans ATCC 2091) by fluorescent microscopy examination. Poly (chloroethylvinylether-co-vinylbenzoylchloride) increased cell permeability, and respiration for C. albicans and C. tropicalis. The tested polymers at 50 microg/ml had pronounced effects on C. albicans and C. tropicalis cell wall phosphopeptidomannane, proteins, sugars and phosphorus. Generally, the two polymers proved effective against the tested microorganisms, but growth inhibitory effect varied according to the composition of the polymer active group. Many investigators consider polymeric antimicrobial agents as a potential new approach for enhancing the efficiency of some existing antimicrobial agents, including prolonged activity, reduce their toxicity, as well as reduce the environmental issues associated with product use.  相似文献   

9.
Several in vitro properties of partially purified form II RNA polymerase from Drosophila melanogaster embryo nuclei are described. The enzyme preparation is free from contaminating RNase, protein kinase, and polyphosphate kinase activities and can be used to study the incorporation of -32P-labeled nucleoside triphosphates. The enzyme exhibits a biphasic heat inactivation pattern which is probably related to differential lability of its two subforms. However, a considerable protection against heat inactivation is provided by the nucleoside triphosphates present in the in vitro reaction system such that the enzyme catalyzes RNA synthesis in a nearly linear mode for over 2 hr at 30 C. Two initiation inhibitors, rifamycin AF/013 and polyriboinosinic acid (poly[I]), were tested against this enzyme. Rifamycin AF/013 was found unsuitable for critical studies because of the high concentrations necessary for total inhibition (200 µg/ml) and particularly because of the obligate use of solvents which secondarily have a destabilizing effect on native DNA. Poly[I] was found to effectively block initiation at very low concentrations (1 µg/ml). The enzyme rapidly forms poly[I]-resistant preinitiation complexes on both double- and single-stranded DNA. These complexes decay with a half-life of 2.5–3 min. RNA synthesis from poly[I]-resistant complexes amounts to 10% of the total potential synthesis on both double- and single-stranded DNA. Enzyme-DNA saturation experiments indicate that the form II enzyme discriminates two types of sites on Drosophila DNA, tight binding and weak binding, from which RNA synthesis proceeds slowly and rapidly, respectively. The tight-binding sites appear to be analogous to those sites with which the enzyme is able to form poly[I]-resistant complexes.This investigation was supported by funds from The National Research Council of Canada (NRC A9722).  相似文献   

10.
It is demonstrated that, poly(A + U) and poly(I + C) are both formed under low ionic strength conditions. Continuous variation studies indicate the formation of copper(II) complexes of poly A, poly C, and poly I, but not of poly U. Copper(II) in a 1:1 ratio to polynucleotide prevents the formation of poly(A + U) and brings about the dissociation of the poly (A + U) complex produced in the absence of the metal. Poly (I + C) is similarly dissociated by copper(II) ions. The addition of sufficient electrolyte reverses the copper(II) induced dissociation of poly(I + C). The effect of copper(II) on ordered synthetic polynucleotides is thus very similar to its effect on DNA.  相似文献   

11.
Poly (2'-azido-2'-deoxyinosinic acid), [poly (Iz)], was synthesized from 2'-azido-2'-deoxyinosine diphosphate by the action of polynucleotide phosphorylase. Poly (Iz) has UV absorption properties similar to poly (I) and hypochromicity of 11% at 0.15M Na+ and neutrality. In solutions of high Na+ ion concentration, poly (Iz) forms a multi-stranded complex and its Tm at 1.0M Na+ ion concentration was 43 degrees. Upon mixing with poly (C), poly (Iz) forms a 1:1 complex having a Tm lower than that of poly (I)-poly (C) complex in the same conditions. The effect of substitution at the 2'-position of the poly (I) strand was discussed in relation to the interferon-inducing activity.  相似文献   

12.
S Uesugi  T Tezuka  M Ikehara 《Biochemistry》1975,14(13):2903-2906
The ability of complex formation of poly-(formycin phosphate), poly(F), and poly(laurusin phosphate), poly(L), with the polymers of natural polynucleotides was examined mainly by mixing experiments in 0.1 M NaCl-0.05 M sodium cascodylate buffer (pH 7.0) at 2 degrees. Poly(F) formed complexes with poly(U) and poly(I) in the ratio of 1:1 and 1:2, respectively. Poly(L) formed complexes with poly(A) in 2:1 ration and poly(C) in 1:2 and 2:1 ratios in addition to a self-complex. Poly(F) and poly(L) also formed a 1:2 complex between them. Some of these complexes were assumed to contain novel types of base pairings using the 7-NH group. Thus it was concluded that poly(L) could form complexes with both, the oligomer of cycloadenylic acid (?cn-120 degrees) and polymers of natural nucleotides (?cn0degrees), showing flexibility of the torsion angle of the laurusin residue.  相似文献   

13.
Poly(ADP ribosyl)ation, a post-translational modification of nuclear proteins catalyzed by poly (ADP ribose) polymerase, is an immediate response of most eukaryotic cells to DNA strand breaks and has been implicated in DNA repair and other cellular phenomena associated with DNA strand breakage. Poly(ADP ribose) polymerase activity levels have been frequently assayed by incubating permeabilized cells with radioactively labeled NAD+ as substrate. In such assays enzyme activation has routinely been achieved indirectly by prior exposure of living cells to carcinogens or by adding DNase I to permeabilized cells, thereby introducing strand breaks in chromosomal DNA. Here we show that, as an alternative method, the direct activation of purified poly(ADP ribose) polymerase by double-stranded oligonucleotides (N. A. Berger and S. I. Petzold, 1985, Biochemistry 24, 4352-4355) can be adopted for permeabilized cell systems. The inclusion of a palindromic decameric deoxynucleotide in the reaction buffer stimulated the enzyme activity in permeabilized Molt-3 human lymphoma cells up to 30-fold (at 50 micrograms/ml [corrected] oligonucleotide concentration) in a concentration-dependent manner. The activating effect of oligonucleotides was also evident when ethanol-fixed HeLa cells were postincubated with NAD+ to allow poly(ADP ribose) synthesis to occur in situ, which was detected as specific anti-poly (ADP ribose) immunofluorescence. We conclude that double-stranded oligonucleotides can be conveniently used as chemically and stoichiometrically well-defined poly (ADP ribose) polymerase activators in permeabilized or ethanol-fixed mammalian cells.  相似文献   

14.
Both respiratory syncytial virus (RSV) and influenza A virus induce nucleotide/P2Y purinergic receptor-mediated impairment of alveolar fluid clearance (AFC), which contributes to formation of lung edema. Although genetically dissimilar, both viruses generate double-stranded RNA replication intermediates, which act as Toll-like receptor (TLR)-3 ligands. We hypothesized that double-stranded RNA/TLR-3 signaling underlies nucleotide-mediated inhibition of amiloride-sensitive AFC in both infections. We found that addition of the synthetic double-stranded RNA analog poly-inosinic-cytidylic acid [poly(I:C)] (500 ng/ml) to the AFC instillate resulted in nucleotide/P2Y purinergic receptor-mediated inhibition of amiloride-sensitive AFC in BALB/c mice but had no effect on cystic fibrosis transmembrane regulator (CFTR)-mediated Cl(-) transport. Poly(I:C) also induced acute keratinocyte cytokine-mediated AFC insensitivity to stimulation by the β-adrenergic agonist terbutaline. Inhibitory effects of poly(I:C) on AFC were absent in TLR-3(-/-) mice and were not replicated by addition to the AFC instillate of ligands for other TLRs except TLR-2. Intranasal poly(I:C) administration (250 μg/mouse) similarly induced nucleotide-dependent AFC inhibition 2-3 days later, together with increased lung water content and neutrophilic inflammation. Intranasal treatment of BALB/c mice with poly(I:C) did not induce airway hyperresponsiveness at day 2 but did result in insensitivity to airway bronchodilation by β-adrenergic agonists. These findings suggest that viral double-stranded RNA replication intermediates induce nucleotide-mediated impairment of amiloride-sensitive AFC in both infections, together with β-adrenergic agonist insensitivity. Both of these effects also occur in RSV infection. However, double-stranded RNA replication intermediates do not appear to be sufficient to induce either adenosine-mediated, CFTR-dependent Cl(-) secretion in the lung or severe, lethal hypoxemia, both of which are features of influenza infection.  相似文献   

15.
Poly (2'-chloro-2'-deoxyinosinic acid) [poly(Icl)] was synthesized from Icl 5'-DP by polymerization with polynucleotide phosphorylase. UV absorption properties of poly(Icl) are very similar to those of poly(I). Poly(Icl) adopted a multi-stranded ordered form in the presence of 0.95M Na ion. The Tm value of this form was 36 degrees, which resembles that of poly(I) quadruple-stranded form at high salt. CD spectra also suggested presence of these two forms. Upon mixing with poly(C), poly-(Icl) forms a double-stranded 1 : 1 complex, which had very similar Tm-log[Na+] relationship to that of poly(I) . poly(C). Thus it was concluded that the chlorine substitution at 2'-position of the polynucleotide had the similar effect to OH on physical properties of polynucleotides.  相似文献   

16.
Poly(ADPribose) synthetase has been purified to apparent homogeneity from sheep testis by a simple procedure using three chromatographic steps (DNA-agarose, blue Sephadex G-150 and phosphocellulose P11). A concentrated enzyme preparation, 3.5 mg, with a specific activity of 1265 nmol/min per mg was obtained from 250 g of tissue. DNA was absolutely required for enzyme activity. The half-maximal activation occurred at the concentrations of 11 micrograms/ml for highly polymerized calf thymus DNA and 2 micrograms/ml for sonicated calf thymus DNA. The Km for NAD was 57 microM. The molecular weight was 120 000, determined by gel electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated that the main amino acid species of sheep testis enzyme were very similar to those of enzymes from other sources.  相似文献   

17.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

18.
Influence of poly A-poly U on early events in the immune response in vitro   总被引:1,自引:0,他引:1  
Adjuvant action of artificial homopolyribonucleotides and nucleic acid digests was studied in mouse spleen-cell cultures, stimulated with sheep red cells by the technique of Mishell and Dutton. Assays of antibody-forming cells were performed according to the Jerne and Nordin technique. Doublestranded poly A-poly U, and RNA digests had adjuvant activity over a wide dose range (0.01–100 μg/ml). DNA digests, single stranded polynucleotides (poly A, poly U, poly C) and mixtures of ribonucleosides and ribonucleotides had little or no enhancing effect at comparable doses. From our study of the kinetics of increase of plaque-forming cells in cultures treated with poly A-poly U, in conjunction with in vivo studies of others, we concluded that adjuvant action, during induction, indirectly increased the number of bone marrow-derived cells that responded to antigenic stimulation by increasing the effectiveness of the thymus-derived cells in the culture.  相似文献   

19.
20.
The ability of specific synthetic polyelectrolytes to act as mitogens for quiescent normal human fibroblasts in cultures is described. Of several acidic polymers tested, polyinosinic acid .polycytidylic acid (poly I.poly C) and dextran sulfate were the most effective in stimulating 3H]thymidine incorporation (2-to 10-fold). The concentration for a half-maximal effect (ED50) was 0.4 microgram/ml (0.8 nM) for poly I.poly C, and 1.7 microgram/ml (3.4 nM) for dextran sulfate. Single-stranded polyinosinic acid or polycytidylic acid had no effect. The time course of stimulation of DNA synthesis by these acidic polymers was similar to that for naturally occurring mitogens such as epidermal growth factor, beginning at about 18 hours and reaching a maximum rate 26 to 30 hours after the addition of polymer. Glucocorticoids that have an 11-beta hydroxyl group (e.g., dexamethasone) had no effect on DNA synthesis alone, but enhanced several-fold the mitogenic activity of poly I.poly C or dextran sulfate; the ED50 for dexamethasone was 0.75 ng/ml (1.9 nM). Glucocorticoids with an 11-keto group were inactive in this respect. The labeling index following treatment of cultures with poly I.poly C and dexamethasone was 14%, compared with a labeling index of 25% following stimulation by fetal calf serum. The extent of stimulation of DNA synthesis by poly I.poly C and dexamethasone was comparable to that induced by epidermal growth factor. It appears that both the poly I.poly C and dexamethasone are required for only a short period of time (approximately 3 hours) in order to produce maximal stimulation of DNA synthesis 30 hours later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号