首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of a functional corpus luteum, positive estrogen feedback on the surge modes of gonadotropin secretion is blocked in rhesus monkeys. We investigated the effects of luteectomy (Lx) on the time required for recovery of pituitary responsiveness (LH/FSH surges) to positive estrogen feedback. Estradiol-17 beta-3- benzoate (EB, 50 microgram/kg sc) was given: 1) 24th prior to, 2) the day of, or 3) 24 h after luteal ablation. Daily measurements of serum follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol-17 beta (e2) and progesterone (P) were made on each monkey for 5 days. Serum P fell to undetectable levels within 24 h after Lx, whereas E2 levels in circulation peaked within 24h after injection of EB. Among early follicular phase monkeys, this EB treatment results in typical midcycle type LH/FSH surges within 48h. Lx alone was not soon followed by significant changes in pituitary gonadotropin secretion. When circulating P levels were undetectable the pituitary responded fully to EB; that is, typical midcycle type FSH/LH surges occurred. When serum P was in the midst of declining after Lx, gonadotropin surges were present, but attenuated. However, when P levels remained elevated for more than 24 h after EB injection, the surge modes of FSH/LH secretion remained fully blocked. These results demonstrate that the suppressive influence of luteal secretions (principally progesterone) on positive estrogen feedback regulation of the surge modes of pituitary gonadotropin secretion is quite transient in these primates.  相似文献   

2.
To examine the effects of gonadal steroids on the pretranslational regulation of the gonadotropin subunits in the female, adult female rats, beginning 7 or 28 days after ovariectomy, received daily injections of testosterone propionate (T), dihydrotestosterone propionate (D), or estradiol benzoate (E) for 7 days. Intact cycling females and ovariectomized rats that received vehicle served as controls. Serum was obtained for LH and FSH levels to assess changes in gonadotropin secretion. Total RNA from individual rats was recovered and analyzed by blot hybridization with specific radiolabeled cDNA probes for the alpha, LH beta, and FSH beta subunits. Autoradiographic bands were quantitated and standardized to mRNA levels in the intact animals. Ovariectomy resulted in a rise in serum gonadotropin levels and all three gonadotropin subunit mRNA levels. Estrogen replacement resulted in suppression of alpha, LH beta, and FSH beta mRNAs whether given at 7 or 28 days after ovariectomy. In contrast, whereas androgen replacement decreased alpha and LH beta mRNAs, D or T did not consistently suppress FSH beta mRNAs. We conclude that chronic estrogen administration to the castrated female rat uniformly suppresses all three gonadotropin subunit mRNA levels. In female rats, as in male rats, chronic androgen administration fails to negatively regulate FSH beta mRNAs.  相似文献   

3.
4.
The inhibitory effects of the potent GnRH antagonist, [Ac-D-pCl-Phe1,2,D-Trp3,D-Arg6,DAla10]GnRH (GnRHant) upon pituitary-gonadal function were investigated in normal and castrated male rats. The antagonist was given a single subcutaneous (s.c.) injections of 1-500 micrograms to 40-60 day old rats which were killed from 1 to 7 days later for assay of pituitary GnRH receptors, gonadal receptors for LH, FSH, and PRL, and plasma gonadotropins, PRL, and testosterone (T). In intact rats treated with low doses of the antagonist (1, 5 or 10 micrograms), available pituitary GnRH receptors were reduced to 40, 30 and 15% of the control values, respectively, with no change in serum gonadotropin, PRL, and T levels. Higher antagonist doses (50, 100 or 500 micrograms) caused more marked decreases in free GnRH receptors, to 8, 4 and 1% of the control values, which were accompanied by dose-related reductions in serum LH and T concentrations. After the highest dose of GnRHant (500 micrograms), serum LH and T levels were completely suppressed at 24 h, and serum levels of the GnRH antagonist were detectable for up to 3 days by radioimmunoassay. The 500 micrograms dose of GnRHant also reduced testicular LH and PRL receptors by 30 and 50% respectively, at 24 h; by 72 h, PRL receptors and LH receptors were still slightly below control values. In castrate rats, treatment with GnRHant reduced pituitary GnRH receptors by 90% and suppressed serum LH and FSH to hypophysectomized levels. Such responses in castrate animals were observed following injection of relatively low doses of GnRHant (100 micrograms), after which the antagonist was detectable in serum for up to 24 h. These data suggest that extensive or complete occupancy of the pituitary receptor population by a GnRH antagonist is necessary to reduce plasma gonadotropin and testosterone levels in intact rats. In castrate animals, partial occupancy of the available GnRH receptor sites appears to be sufficient to inhibit the elevated rate of gonadotropin secretion.  相似文献   

5.
To determine the acute and chronic effects of estradiol on synthesis and secretion of LH and FSH, ovariectomized ewes were administered estradiol via silastic capsules for 0 h, 12 h, 1 day, 2 days, 4 days, 8 days, 16 days, or 32 days (n = 5/group). Concentrations of GnRH in the median eminence began to decrease within 12 h and were lower (p less than 0.05) than in control ewes from 1 to 4 days after estradiol administration was begun. Serum concentrations of LH were decreased relative to pretreatment control levels from 1 to 10 h, elevated during a preovulatory-like surge from 11 to 22 h, and then decreased and remained below 1 ng/ml for the duration of the experiment. Serum concentrations of FSH followed a pattern similar to those for LH except that the magnitude of change was smaller. Treatment with estradiol initially (12 h) reduced (p less than 0.05) quantities of mRNA for alpha-, LH beta-, and FSH beta-subunits, after which the quantities of mRNA for the subunits returned to near or above control levels by Day 2. After 8 days of treatment the amounts of mRNAs for gonadotropin subunits were again less (p less than 0.05) than those of controls, and they remained suppressed through Day 32. Pituitary concentrations of LH and FSH decreased (p less than 0.05) during the first day of treatment and remained suppressed for the duration of the experiment. Thus, estradiol had a triphasic effect on secretion of gonadotropins and steady-state levels of mRNA for the gonadotropin subunits, but not on pituitary content of gonadotropins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To examine the short-term effects of hemicastration on pituitary-gonadal responses, 12 ram lambs were anesthetized and hemicastrated at 4 mo of age and killed (n = 4) at 2 (HC2), 7 (HC7), or 14 (HC14) days following surgery. Four intact (INT) rams were killed 14 days following anesthesia. Testis and pituitary weights were similar between HC and INT rams. Serum follicle-stimulating hormone (FSH) in HC rams increased within 6 h, peaked at 12 h, and remained elevated above INT levels throughout the study. Overall mean serum testosterone levels in HC rams were lower than in INT rams for the first 48 h, but were similar by 3 days post-surgery. Pulsatile luteinizing hormone (LH) and testosterone secretion was suppressed for the first 9.5 h following anesthesia and/or surgery in both HC and INT animals. A single LH pulse and succeeding testosterone pulse occurred in 10/12 HC and 4/4 INT rams between 10 and 14 h post-surgery, both of which were lower in amplitude in HC than INT animals. However, on Day 7, pulsatile secretory patterns of LH and testosterone were similar, suggesting compensatory androgen secretion had occurred in HC rams. Pituitary LH content was unaffected by hemicastration. In contrast, pituitary FSH content was greater in HC7 and HC14 compared to HC2 and INT animals. Pituitary gonadotropin hormone-releasing hormone (GnRH) receptor concentrations were similar in INT, HC7, and HC14 rams, but were slightly reduced in HC2 rams. Neither testicular LH nor FSH receptor concentrations were altered by hemicastration at any time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
beta-endorphin (beta-EP) and beta-lipotropin (beta-LPH) concentrations were measured in the basal state and after acute exercise for 15 min or until exhaustion in 6 physically conditioned male volunteers. Serum concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone and prolactin were also measured in the basal state. In addition, the concentrations of the gonadotropins (LH and FSH) were determined after exercise and the gonadotropin response to gonadotropin releasing hormone was assessed before and after exercise. The data show that acute exercise stimulates the release of both beta-EP and beta-LPH which return to base-line levels within 60 min after exercise. This is in contrast to our previously described results in physically unconditioned male volunteers in whom only beta-LPH release was noted after exercise. Serum LH concentrations declined after exercise reaching nadir values between 60 to 150 min after exercise. As we previously reported in physically unconditioned male volunteers, serum FSH concentrations did not change with exercise and the gonadotropin response to LRH stimulation was uninfluenced by exercise. Serum testosterone and prolactin concentration were within the normal range for healthy adult males. We speculate that the difference in beta-EP release with exercise in physically conditioned and unconditioned males represents a difference in processing of the opioid precursor molecule (pro-opiomelanocortin, POMC) in the two groups.  相似文献   

8.
FSH levels begin to rise 3-5 days after male Siberian hamsters are transferred from inhibitory short photoperiods to stimulatory long photoperiods. In contrast, LH levels do not increase for several weeks. This differential pattern of FSH and LH secretion represents one of the most profound in vivo examples of differential regulation of the gonadotropins. The present study was undertaken to characterize the molecular mechanisms controlling differential FSH and LH synthesis and secretion in photostimulated Siberian hamsters. First, we cloned species-specific cDNAs for the three gonadotropin subunits: the common alpha subunit and the unique FSHbeta and LHbeta subunits. All three subunits share high nucleotide and predicted amino acid sequence identity with the orthologous cDNAs from rats. We then used these new molecular probes to examine the gonadotropin subunit mRNA levels from pituitaries of short-day male hamsters transferred to long days for 2, 5, 7, 10, 15, or 20 days. Short-day (SD) and long-day (LD) controls remained in short and long days, respectively, from the time of weaning. We measured serum FSH and LH levels by RIA. FSHbeta, LHbeta, and alpha subunit mRNA levels were measured from individual pituitaries using a microlysate ribonuclease protection assay. Serum FSH and pituitary FSHbeta mRNA levels changed similarly following long-day transfer. Both were significantly elevated after five long days (2.3- and 3.6-fold, respectively; P < 0.02) and declined thereafter, but they remained above SD control values through 20 long days. Alpha subunit mRNA levels also increased significantly relative to SD control values (maximum 2-fold increase after seven long days; P < 0.03), although to a lesser extent than FSHbeta. Neither serum LH nor pituitary LHbeta mRNA levels changed significantly following long-day transfer. The results indicate that long-day-associated increases in serum FSH levels in Siberian hamsters reflect an underlying increase in pituitary FSHbeta and alpha subunit mRNA accumulation.  相似文献   

9.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

10.
The comparison of normal and androgen receptor (AR) deficient Tfm-mice allows distinction between AR mediated and estrogen receptor (ER) mediated effects of testosterone (T)--the latter after aromatization of T to estrogens--on serum and pituitary FSH. Normal male and female as well as Tfm mice were gonadectomized after 8 days and treated for 11 days with either T, estradiol (E2) or vehicle. Serum and pituitary FSH was determined by RIA for rat FSH. In Tfm mice T caused a suppression of serum FSH, indicating an ER mediated effect. Lower serum FSH levels after T in normal mice than Tfm mice indicate an additional AR mediated suppression. Lower serum FSH values in E2 treated Tfm than in T treated Tfm mice--where T acts only through ER--suggest two classes of estrophilic cells: one which aromatizes, thus being susceptible for both T and E2, and the other which does not aromatize. Only AR but not ER mediated T effects on pituitary FSH could be demonstrated.  相似文献   

11.
Our previous work has suggested that glucocorticoid pretreatment suppresses the enhanced responsiveness to GnRH seen in serum LH 12 h after castration. By contrast, serum FSH continues to show the castration-induced hypersensitivity to GnRH. Our attempts to replicate this LH suppression in static pituitary culture in vitro were not successful. This suggested to us the possibility that corticoids in vivo might be preventing castration-induced increases in pituitary GnRH receptor levels. We tested this at 24 h post-castration and, in fact, corticoids did not suppress the increase in GnRH receptors. In addition to the aforementioned effects of corticoids, we have seen that cortisol reverses the castration-induced drop in pituitary FSH content. It does this for 7 days post-castration, even though it no longer has an effect in suppressing serum LH. Thus, our accumulated data reveal that glucocorticoids have a differential effect on LH and FSH synthesis and secretion. Further studies are needed to clarify the site(s) of action of glucocorticoids in gonadotropin secretion and synthesis. Glucocorticoids may well prove to be a key in unlocking the mystery of the mechanism of differential control of regulation of LH and FSH.  相似文献   

12.
Lv X  Guo Y  Shi D 《Theriogenology》2012,77(6):1223-1231
Quinestrol, a synthetic estrogen with marked estrogenic effects and prolonged activity, has potential as a contraceptive for Mongolian gerbils. The objective of this study was to describe the effects of quinestrol on reproductive hormone expression, secretion, and receptor levels in female Mongolian gerbils. Serum and pituitary concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) were decreased, whereas serum concentrations of estradiol (E2) and progesterone (P4) were increased after quinestrol treatment; the effects were both time- and dose-dependent. Furthermore, quinestrol downregulated expression of FSHβ and LHβ mRNA in the pituitary gland, as well as FSH receptor (FSHR) and estrogen receptor (ER) β in the ovary. However, it up-regulated mRNA expression levels of ERα and progesterone receptor (PR) in the pituitary gland and uterus, as well as mRNA for LH receptor (LHR) and PR in the ovary (these effects were time- and dose-dependent). In contrast, quinestrol had no significant effects on the mRNA expression levels of ERα in the ovary, or the gonadotropin α (GtHα) subunit in the pituitary gland. We inferred that quinestrol impaired synthesis and secretion of FSH and LH and that the predominant ER subtype in the pituitary gland of Mongolian gerbils may be ERα. Overall, quinestrol disrupted reproductive hormone receptor expression at the mRNA level in the pituitary-gonadal axis of the Mongolian gerbil.  相似文献   

13.
Previously we described sex differences in circulating gonadotropin concentrations (greater in females) in fetal rhesus macaques, and demonstrated that these sex differences relate, at least in part, to the negative feedback actions of testicular secretions. A fully functional gonadal-hypothalamic-pituitary feedback relationship is present as early as Day 100 of gestation in fetal males because castration at this time results in a dramatic increase (greater than 10-fold) in fetal luteinizing hormone (LH) concentrations. Although short-term (6-h) treatment of fetuses with testosterone (T) 3 wk after gonadectomy (GX) does not lower LH levels in males, it is completely effective in females. These data suggest that either T is not the primary testicular factor responsible for feedback suppression of LH in fetal males, or the hypothalamic-pituitary axis becomes insensitive to T after GX. To determine if immediate treatment with T after GX is effective in maintaining LH levels, we gonadectomized five fetal rhesus males on Days 98-104 of gestation and immediately implanted crystalline-T-containing intraabdominal Silastic capsules. An additional five fetuses were treated with the nonaromatizable androgen dihydrotestosterone (DHT). Umbilical arterial samples for hormone analysis were obtained prior to GX and again approximately 3 wk later. Serum from control males (n = 11) castrated in utero on Day 100 of gestation contained significantly greater concentrations of LH and follicle-stimulating hormone (FSH) 3 wk after the operation than before GX. Five sham-operated male fetuses did not have elevated levels of either LH or FSH in their serum on Day 120 of gestation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To assess the changing responsiveness of pituitary gonadotropes to gonadotropin releasing hormone (GnRH) during development, 5 male and 5 female rhesus monkeys were studied. Three monkeys of each sex were tested periodically with a subcutaneous injection of 500 micrograms of GnRH dissolved in 50% polyvinylpyrrolidone (PVP) beginning at 2 to 4 weeks of age and continuing into young adulthood. The remaining 4 monkeys received injections of the vehicle (PVP) alone and served as controls. Serum concentrations of bioactive luteinizing hormone (LH) were determined by an interstitial cell testosterone bioassay, and follicle-stimulating hormone (FSH) levels were measured by radioimmunoassay. Baseline FSH levels in the 5 female neonatal monkeys were higher than those of the 5 male neonatal monkeys during the first 2 months of life. In both sexes, FSH concentrations decreased with age, and FSH was barely detectable by 6 months. Baseline LH values in the 5 female monkeys declined during the first 6 months of the study and were undetectable (less than 0.5 micrograms/ml) at 6 months of age. Baseline LH levels in 4 of the 5 neonatal males also declined to undetectable concentrations by 6 months of age. During the first 3 months of life, there was a striking increase in the serum concentrations of both LH and FSH following GnRH. Although the LH responses to GnRH (delta LH) were similar in males and females of comparable ages, the FSH responses (delta FSH) were considerably greater in the female monkeys. In the males, the delta LH exceeded the delta FSH, whereas in the females, the delta FSH were greater than the delta FSH. In both sexes, the delta LH and delta FSH generally were greatest in the youngest monkeys and decreased gradually with increasing age. By 6 months, the gonadotropin responses to GnRH either were undetectable (males) or very small (females). After 6 months there was no longer an increase in serum gonadotropins after GnRH in either sex until 1.5-4 years (females) or 3 years (males) of age. The delta LH in response to GnRH in the male monkeys 3-5 years of age were comparable to the responses during the first month after birth. Serum concentrations of FSH in the adult males, however, did not increase after GnRH. In the female monkeys, serum levels of LH and FSH increased after GnRH at 1.5 years (1 monkey) and 4 years (2 monkeys) of age. The delta LH were similar to those of the 1- to 2-month-old female monkeys. The delta FSH, however, were variable and were approximately 20% of the neonatal response. In these young adult female monkeys the delta LH exceeded the delta FSH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Anterior pituitary glands were removed from 27 intact cycling rhesus monkeys sacrificed in the early (Day 2), mid (Days 6--9) and late (Days 11--12) follicular phase, and in the early and late luteal phase (3--5 and 10--15 days after the midcycle luteinizing hormone (LH) surge). Assignment of cycle stage was confirmed by the pattern of circulating steroid and gonadotropin levels seen in the blood samples taken daily throughout the cycle. The anterior pituitary glands were weighed, stored at -30 degrees C and assayed for LH and follicle-stimulating hormone (FSH) content by specific radioimmunoassays. Serum estradiol levels and pituitary LH and FSH contents rose simultaneously during the follicular phase. After the preovulatory gonadotropin surge, pituitary LH content was low and invariant. Pituitary FSH content reached a nadir in the early luteal phase and tended to rise in the late luteal phase. Multiple correlation analyses revealed that there is a positive correlation between rising levels of estradiol in the circulation and pituitary LH (p = 0.003) and FSH (p = 0.017) content, and that there is a significant negative correlation between circulating progesterone levels and pituitary FSH content (p = 0.002). Pituitary LH content is less strongly related to circulating progesterone levels. There was no significant difference in the wet weights of the anterior pituitary glands during the five phases of the menstrual cycle studied.  相似文献   

16.
Morphological and functional changes of pituitary LH/FSH cells in the female rat were investigated using the parameters on the radioimmunoassay, immunohistochemistry and ultrastructure. Changes in immunostainability, populations of intensely immunostained LH and FSH cells and total volume of secretory granules were correlated with the changes in pituitary LH and FSH contents during the estrous cycle. The immunohistochemical feature of gonadotropin release is the transformation of intensely immunostained gonadotrophs into the weakly stained ones. Secretory granules of small diameter (less than 150 nm) were numerous just before LH and FSH surges then sharply declined along with LH and FSH surges. The number of secretory granules of large diameter (larger than 150 nm) also decreased when LH and FSH surges took place. Then the number increased progressively until 17.00 h on the day of diestrus, corresponding to the increase in pituitary LH and FSH contents. It is suggested that small secretory granules are a release pool while large ones are a reserve pool.  相似文献   

17.
The objectives were to determine the effects of (i) time during the first FSH increase of the estrous cycle (time-course study) and (ii) exogenous steroid treatment (steroid feedback study) on the relationship between circulating serum gonadotropins, and the proportions of pituitary cells immunoreactive for gonadotropins and steroid receptors during the estrous cycle in heifers. Pituitaries were collected from heifers (n=40) slaughtered at 13h (n=8), 30h (n=24) and 66h (n=8) after estrous onset, corresponding to before, during and after the first FSH increase of the estrous cycle. Heifers slaughtered during the FSH increase (at 30h) either received no treatment (n=8), or were treated (n=16) with estradiol benzoate and/or progesterone before slaughter. During the time-course study, the proportion of pituitary cells immunoreactive for FSH increased (P<0.05) during the first transient FSH increase reflecting serum concentrations. The proportion of pituitary cells immunoreactive for LH was unaltered, a reflection of serum LH concentrations. The proportion of estrogen receptors (ER)-alpha, but not ER-beta, was decreased (P<0.05) at 30h compared with at either 13 or 66h. During the steroid feedback study, exogenous progesterone with or without estradiol suppressed (P<0.05) the proportions of pituitary cells immunoreactive for gonadotropins, serum FSH concentrations and LH pulse frequency. Steroid treatment did not alter the proportion of pituitary cells positive for estrogen receptors (alpha and beta). While progesterone receptors (PR) were not detected in the anterior pituitary by immunohistochemistry during the early estrous cycle or in response to steroid treatment, quantitative real-time PCR revealed that mRNA for progesterone receptors was expressed at very low levels. The expression of pituitary PR mRNA was decreased (P<0.05) at 30 and 66h compared with 13h, and was suppressed (P<0.05) following steroid treatments. Alterations in pituitary steroid receptors are implicated in the differential regulation of gonadotropin secretion during the first transient FSH rise, but not in response to exogenous steroids. The time-course study and steroid feedback responses support the hypothesis that LH pulse frequency is tightly linked to regulation of GnRH pulse frequency. Serum FSH is regulated by its own synthesis, as reflected by pituitary FSH content and perhaps by alterations in pituitary sensitivity to circulating steroids by changes in steroid receptor content.  相似文献   

18.
Serum inhibin and FSH and FSH beta subunit mRNA levels were measured at 3h intervals throughout the 4 day estrous cycle in female rats and hourly between 1000 and 2400 h of proestrus. On proestrus, serum inhibin concentrations fell during the late morning-early afternoon, then increased transiently during the late afternoon gonadotropin surges. Inhibin levels decreased during the late evening of proestrus, coincident with the FSH surge-related rise in FSH beta mRNA levels. Serum inhibin remained relatively stable during estrus and early metestrus, but rose during the late evening of metestrus and remained elevated until early diestrus. FSH beta mRNA levels were elevated on late estrus and early metestrus and declined during the evening of metestrus as serum inhibin levels increased. These data show that concentrations of serum inhibin change during the estrous cycle and that a general inverse relationship exists between serum inhibin and FSH levels and FSH beta mRNA concentrations in the pituitary. This suggests that inhibin may inhibit FSH beta gene expression and FSH secretion during the 4 day cycle in female rats.  相似文献   

19.
Recent reports indicate that luteinizing hormone-releasing hormone (LHRH) releases prolactin (PRL) under some circumstances. We examined the chronic effects of LHRH, growth hormone-releasing hormone (GHRH), and corticotrophin-releasing hormone (CRH) on the release of PRL, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) by pituitary allografts in hypophysectomized, orchidectomized hamsters. Entire pituitary glands removed from 7-week-old-male Golden Syrian hamsters were placed under the renal capsule of hypophysectomized, orchidectomized 12-week-old hamsters. Beginning 6 days postgrafting, hamsters were injected subcutaneously twice daily with 1 microgram LHRH, 4 micrograms GHRH, or 4 micrograms CRH in 100 microliter of vehicle for 16 days. Six hosts from each of the four groups were decapitated on Day 17, 16 hr after the last injection. Prolactin, LH, and FSH were measured in serum collected from the trunk blood. Treatment with LHRH significantly elevated serum PRL levels above those measured in the other three groups, which were all similar to one another. Serum LH levels in hosts treated with vehicle were elevated above those measured in the other three groups. Serum FSH levels in hosts treated with LHRH were greater than FSH levels in any of the other three groups. These results indicate that chronic treatment with LHRH can stimulate PRL and FSH release by ectopic pituitary cells in the hamster.  相似文献   

20.
We have reported that iv administration of conjugated estrogens results in no significant change in the plasma LH-RH level during the negative feedback phase of LH, suggesting that estrogen does not suppress LH by decreasing hypothalamic LH-RH. To determine the site of estrogen action during the negative feedback phase, we studied the pituitary response to a small amount of LH-RH after estrogen administration in normal cyclic women in the mid-follicular phase. The pituitary responses to an iv bolus of 2.5 micrograms of synthetic LH-RH were evaluated by measuring serum LH and FSH 2 h before and 8 h after administration of 20 mg of conjugated estrogens (Premarin). The mean levels of serum LH and FSH were significantly (p less than 0.05) decreased 8 h after the injection. The peak responses of LH and FSH to LH-RH were also significantly (p less than 0.05) reduced after Premarin administration. These findings suggest that the negative feedback effect of estrogen on gonadotropin secretion is caused by its direct suppression on the pituitary response to LH-RH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号