首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA electrotransfer in vivo for gene therapy is a promising method. For further clinical developments, the efficiency of the method should be increased. It has been shown previously that high efficiency of gene electrotransfer in vivo can be achieved using high-voltage (HV) and low-voltage (LV) pulses. In this study we evaluated whether HV and LV pulses could be optimized in vitro for efficient DNA electrotransfer. Experiments were performed using Chinese hamster ovary (CHO) cells. To evaluate the efficiency of DNA electrotransfer, two different plasmids coding for GFP and luciferase were used. For DNA electrotransfer experiments 50 μl of CHO cell suspension containing 100, 10 or 1 μg/ml of the plasmid were placed between plate electrodes and subjected to various combinations of HV and LV pulses. The results showed that at 100 μg/ml plasmid concentration LV pulse delivered after HV pulse increased neither the percentage of transfected cells nor the total transfection efficiency (luciferase activity). The contribution of the LV pulse was evident only at reduced concentration (10 and 1 μg/ml) of the plasmid. In comparison to HV (1,200 V/cm, 100 μs) pulse, addition of LV (100 V/cm, 100 ms) pulse increased transfection efficiency severalfold at 10 μg/ml and fivefold at 1 μg/ml. At 10 μg/ml concentration of plasmid, application of four LV pulses after HV pulse increased transfection efficiency by almost 10-fold. Thus, these results show that contribution of electrophoretic forces to DNA electrotransfer can be investigated in vitro using HV and LV pulses.  相似文献   

2.
Cell membrane permeabilization by electric pulses (electropermeabilization), results in free exchange of ions across the cell membrane. The role of electrotransfer-mediated Ca(2+)-influx on muscle signaling pathways involved in degeneration (β-actin and MurF), inflammation (IL-6 and TNF-α), and regeneration (MyoD1, myogenin, and Myf5) was investigated, using pulse parameters of both electrochemotherapy (8 HV) and DNA delivery (HVLV). Three pulsing conditions were used: 8 high-voltage pulses (8 HV), resulting in large permeabilization and ion flux, and a combination of one high-voltage pulse and one low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca(2+) was assessed using (45)Ca as a tracer. Using gene expression analyses and histology, we showed a clear association between Ca(2+) influx and muscular response. Moderate Ca(2+) influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA reducing Ca(2+) influx. Larger Ca(2+) influx as induced by 8-HV pulses leads to muscle damage and muscle fiber regeneration through recruitment of satellite cells. The extent of Ca(2+) influx determines the muscular response to electrotransfer and, thus, the success of a given application. In the case of electrochemotherapy, in which the objective is cell death, a large influx of Ca(2+) may be beneficial, whereas for DNA electrotransfer, muscle recovery should occur without myofiber loss to ensure preservation of plasmid DNA.  相似文献   

3.
Electropermeabilization/electroporation (EP) is a physical method that by application of electric pulses to cells increases cell membrane permeability and enables the introduction of molecules into the cells. One of the uses of EP in vivo is plasmid DNA electrotransfer to the skin for DNA vaccination. EP of tissues induces reduction of blood flow and, in combination with plasmid DNA, induction of an immune response. One of the EP protocols for plasmid DNA electrotransfer to the skin is a combination of high-voltage (HV) and low-voltage (LV) pulses. However, the effects of this pulse combination on skin-vessel blood flow are not known. Therefore, using intravital microscopy in a dorsal window chamber in mice and fluorescently labeled dextrans, the effects of one HV and eight LV pulses on skin vasculature were investigated. In addition, a detailed histological analysis was performed. Image analysis of fluorescence intensity changes demonstrated that EP induces a transient constriction and increased permeability of blood vessels as well as a “vascular lock.” Histological analysis revealed rounding up of endothelial cells and stacking up of erythrocytes at 1?h after EP. In addition, extravasation of erythrocytes and leukocyte infiltration accompanied by edema were determined up to 24?h after EP. In conclusion, our results show that blood flow modifying effects of EP in skin contribute to the infiltration of immune cells in the exposed area. When combined with plasmid DNA for vaccination, this could enable the initial and prolonged contact of immune cells with encoded therapeutic proteins.  相似文献   

4.

Background  

Gene electrotransfer is a non-viral method used to transfer genes into living cells by means of high-voltage electric pulses. An exposure of a cell to an adequate amplitude and duration of electric pulses leads to a temporary increase of cell membrane permeability. This phenomenon, termed electroporation or electropermeabilization, allows various otherwise non-permeant molecules, including DNA, to cross the membrane and enter the cell. The aim of our research was to develop and test a new system and protocol that would improve gene electrotransfer by automatic change of electric field direction between electrical pulses.  相似文献   

5.
6.
About 25 years after the publication of the first report on gene transfer in vitro in cultured cells by the means of electric pulses delivery, reversible cell electroporation for gene transfer and gene therapy (DNA electrotransfer) is at a cross in its development. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed. This knowledge has allowed developing new nucleic acids electrotransfer conditions using combinations of permeabilizing pulses of high voltage and short duration, and of electrophoretic pulses of low voltage and long duration, which are very efficient and safer. Feasibility of electric pulses delivery for gene transfer in humans is discussed taking into account that electric pulses delivery is already regularly used for localized drug delivery in the treatment of cutaneous and subcutaneous solid tumors by electrochemotherapy. Because recent technological developments made DNA electrotransfer more and more efficient and safer, this non-viral gene therapy approach is now ready to reach the clinical stage. A good understanding of DNA electrotransfer principles and the respect of safe procedures will be key elements for a successful future transfer DNA electrotransfer into the clinics.  相似文献   

7.
Gene electrotransfer is a promising nonviral method that enables transfer of plasmid DNA into cells with electric pulses. Although many in vitro and in vivo studies have been performed, the question of the implied gene electrotransfer mechanisms is largely open. The main obstacle toward efficient gene electrotransfer in vivo is relatively poor mobility of DNA in tissues. Since cells are mechanically coupled to their extracellular environment and act differently compared to standard in vitro conditions, we developed a three-dimensional (3-D) in vitro model of CHO cells embedded in collagen gel as an ex vivo model of tissue to study electropermeabilization and different parameters of gene electrotransfer. For this purpose, we first used propidium iodide to detect electropermeabilization of CHO cells embedded in collagen gel. Then, we analyzed the influence of different concentrations of plasmid DNA and pulse duration on gene electrotransfer efficiency. Our results revealed that even if cells in collagen gel can be efficiently electropermeabilized, gene expression is significantly lower. Gene electrotransfer efficiency in our 3-D in vitro model had similar dependence on concentration of plasmid DNA and pulse duration comparable to in vivo studies, where longer (millisecond) pulses were shown to be more optimal compared to shorter (microsecond) pulses. The presented results demonstrate that our 3-D in vitro model resembles the in vivo situation more closely than conventional 2-D cell cultures and, thus, provides an environment closer to in vivo conditions to study mechanisms of gene electrotransfer.  相似文献   

8.
BACKGROUND: Understanding the mechanisms underlying gene electrotransfer muscle damage can help to design more effective gene electrotransfer strategies for physiological and therapeutical applications. The present study investigates the factors involved in gene electrotransfer associated muscle damage. METHODS: Histochemical analyses were used to determine the extent of transfection efficiency and muscle damage in the Tibialis anterior muscles of Sprague-Dawley male rats after gene electrotransfer. RESULTS: Five days after gene electrotransfer, features of muscle degeneration and regeneration were consistently observed, thus limiting the extent of transfection efficiency. Signs of muscle degeneration/regeneration were no longer evident 21 days after gene electrotransfer except for the presence of central myonuclei. Neither the application of electrical pulses per se nor the extracellular presence of plasmid DNA per se contributed significantly to muscle damage (2.9 +/- 1.0 and 2.1 +/- 0.7% of the whole muscle cross-sectional area, respectively). Gene electrotransfer of a plasmid DNA, which does not support gene expression, increased significantly muscle damage (8.7 +/- 1.2%). When plasmid DNA expression was permitted (gene electrotransfer of pCMV-beta-galactosidase), muscle damage was further increased to 19.7 +/- 4.5%. Optimization of cumulated pulse duration and current intensity dramatically reduced gene electrotransfer associated muscle damage. Finally, mathematical modeling of gene electrotransfer associated muscle damage as a function of the number of electrons delivered to the tissue indicated that pulse length critically determined the extent of muscle damage. CONCLUSION: Our data suggest that neither the extracellular presence of plasmid DNA per se nor the application of electric pulses per se contributes significantly to muscle damage. Gene electrotransfer associated muscle damage mainly arises from the intracellular presence and expression of plasmid DNA.  相似文献   

9.

Background  

Electroporation-based gene therapy and DNA vaccination are promising medical applications that depend on transfer of pDNA into target tissues with use of electric pulses. Gene electrotransfer efficiency depends on electrode configuration and electric pulse parameters, which determine the electric field distribution. Numerical modeling represents a fast and convenient method for optimization of gene electrotransfer parameters. We used numerical modeling, parameterization and numerical optimization to determine the optimum parameters for gene electrotransfer in muscle tissue.  相似文献   

10.
Gene electrotransfer is a physical method used to deliver genes into the cells by application of short and intense electric pulses, which cause destabilization of cell membrane, making it permeable to small molecules and allows transfer of large molecules such as DNA. It represents an alternative to viral vectors, due to its safety, efficacy and ease of application. For gene electrotransfer different electric pulse protocols are used in order to achieve maximum gene transfection, one of them is changing the electric field direction and orientation during the pulse delivery. Changing electric field direction and orientation increase the membrane area competent for DNA entry into the cell. In this video, we demonstrate the difference in gene electrotransfer efficacy when all pulses are delivered in the same direction and when pulses are delivered by changing alternatively the electric field direction and orientation. For this purpose tip with integrated electrodes and high-voltage prototype generator, which allows changing of electric field in different directions during electric pulse application, were used. Gene electrotransfer efficacy is determined 24h after pulse application as the number of cells expressing green fluorescent protein divided with the number of all cells. The results show that gene transfection is increased when the electric field orientation during electric pulse delivery is changed.Download video file.(27M, mov)  相似文献   

11.
Bacterial infections represent serious diseases in aquaculture, rapidly leading to fish death by septicemia. We investigated whether the electrotransfer of green fluorescent protein gene fusion epinecidin-1 (CMV-gfp-epi) DNA into zebrafish muscle could regulate the fish immune response and inhibit bacterial growth. Electroporation parameters such as the number of pulses, voltage, and amount of plasmid DNA were analyzed, and results demonstrated the greatest mRNA expression level of gfp-epi relative to β-actin was obtained with a pulse number of 4, a voltage strength of 100 V/cm, a concentration of DNA of 90 μg/fish, and electroporation for 96 h. In addition, the cytomegalovirus (CMV) promoter exhibited higher activity compared to the mylz promoter in muscle for electrotransfer in zebrafish. GFP fluorescence and gfp-epi mRNA expression in tissues after electroporation were also studied by a polymerase chain reaction, immunohistochemistry, and fluorescence microscopy. gfp-epi expression was significantly correlated with decreased bacterial numbers and immune-related gene expression. These data demonstrate that electroporation of epinecidin-1 might have provoked an inflammatory response that accounts for the improvement in bacterial clearance.  相似文献   

12.

Background  

Electrochemotherapy and gene electrotransfer are novel promising treatments employing locally applied high electric pulses to introduce chemotherapeutic drugs into tumor cells or genes into target cells based on the cell membrane electroporation. The main focus of this paper was to calculate analytically and numerically local electric field distribution inside the treated tissue in two dimensional (2D) models for different plate and needle electrode configurations and to compare the local electric field distribution to parameter U/d, which is widely used in electrochemotherapy and gene electrotransfer studies. We demonstrate the importance of evaluating the local electric field distribution in electrochemotherapy and gene electrotransfer.  相似文献   

13.
Gene transfer using electrical pulses is a rapidly expanding field. Many studies have been performed in vitro to elucidate the mechanism of DNA electrotransfer. In vivo, the use of efficient procedures for DNA electrotransfer in tissues is recent, and the question of the implied mechanisms is largely open. We have evaluated the effects of various combinations of square wave electric pulses of variable field strength and duration, on cell permeabilization and on DNA transfection in the skeletal muscle in vivo. One high voltage pulse of 800 V/cm, 0.1 ms duration (short high pulse) or a series of four low voltage pulses of 80 V/cm, 83 ms duration (long low pulses) slightly amplified transfection efficacy, while no significant permeabilization was detected using the (51)Cr-EDTA uptake test. By contrast, the combination of one short high pulse followed by four long low pulses led to optimal gene transfer efficiency, while inducing muscle fibers permeabilization. These results are consistent with additive effects of electropermeabilization and DNA electrophoresis on electrotransfer efficiency. Finally, the described new combination, as compared to the previously reported use of repeated identical pulses of intermediate voltage, leads to similar gene transfer efficiency, while causing less permeabilization and thus being likely less deleterious. Thus, combination of pulses of various strengths and durations is a new procedure for skeletal muscle gene transfer that may represents a clear improvement in view of further clinical development.  相似文献   

14.
Molecular biological improvement of industrial solventogenic clostridia could be enhanced by a higher efficiency of electrotransformation. In this research, we used a new approach to determine the frequency spontaneously generated by Clostridium acetobutylicum ATCC 824 cells during the application of a square high-voltage pulse. Once the frequency of 100 kHz was determined we transformed clostridial cells with pSOS84 plasmid DNA using radio-frequency modulated high-voltage square pulses (electric field strength 12 kVcm-1; pulse duration 22.5 ms; frequency of pulse modulation 100 kHz) to reach an efficiency exceeding 106 transformants microg-1 of plasmid DNA. We propose a possible role for cellular membrane structures in affecting the transformation yield.  相似文献   

15.
Gene electrotransfection using micro- or millisecond electric pulses is a well-established method for safe gene transfer. For efficient transfection, plasmid DNA has to reach the nucleus. Shorter, high-intensity nanosecond electric pulses (nsEPs) affect internal cell membranes and may contribute to an increased uptake of plasmid by the nucleus. In our study, nsEPs were applied to Chinese hamster ovary (CHO) cells after classical gene electrotransfer, using micro- or millisecond pulses with a plasmid coding the green fluorescent protein (GFP). Time gaps between classical gene electrotransfer and nsEPs were varied (0.5, 2, 6 and 24 h) and three different nsEP parameters were used: 18 ns-10 kV/cm, 10 ns-40 kV/cm and 15 ns-60 kV/cm. Results analyzed by either fluorescence microscopy or flow cytometry showed that neither the percentage of electrotransfected cells nor the amount of GFP expressed was increased by nsEP. All nsEP parameters also had no effects on GFP fluorescence intensity of human colorectal tumor cells (HCT-116) with constitutive expression of GFP. We thus conclude that nsEPs have no major contribution to gene electrotransfer in CHO cells and no effect on constitutive GFP expression in HCT-116 cells.  相似文献   

16.
Electropulsation is one of the nonviral methods successfully used to deliver genes into living cells in vitro and in vivo. This approach shows promise in the field of gene and cellular therapies. The present review focuses on the processes supporting gene electrotransfer in vitro. In the first part, we will report the events occurring before, during, and after pulse application in the specific field of plasmid DNA electrotransfer at the cell level. A critical discussion of the present theoretical considerations about membrane electropermeabilization and the transient structures involved in the plasmid uptake follows in a second part.  相似文献   

17.
Efficiency and reproducibility of gene electrotransfer depend on the electrical specifications provided by the pulse generator, such as pulse duration, pulse number, pulse frequency, pulse combination, and current intensity. Here, we describe the performances of GET42, a pulse generator specifically designed for gene electrotransfer into skeletal muscle. Expression of beta-galactosidase in the Tibialis anterior muscle of Sprague-Dawley male rats was increased 250-fold by GET42 compared to DNA injection alone. Combination of high and low current intensity pulses further increased transfection efficiency (400-fold compared to DNA injection without electrotransfer). Varying degrees of muscle necrosis were observed after gene electrotransfer. Nevertheless, muscle necrosis was dramatically reduced after optimization of cumulated pulse duration without significant reduction in transfection efficiency. Physiological applicability was illustrated by the analysis of cytochrome c promoter transactivation. In conclusion, GET42 has proven to be a reliable and efficient pulse generator for gene electrotransfer experiments, and provides a powerful mean to study in vivo the regulation of gene expression.  相似文献   

18.
Cell membranes can be transiently permeabilized under application of electric pulses. This treatment allows hydrophilic therapeutic molecules, such as anticancer drugs and DNA, to enter into cells and tissues. This process, called electropermeabilization or electroporation, has been rapidly developed over the last decade to deliver genes to tissues and organs, but there is a general agreement that very little is known about what is really occurring during membrane electropermeabilization. It is well accepted that the entry of small molecules, such as anticancer drugs, occurs mostly through simple diffusion after the pulse while the entry of macromolecules, such as DNA, occurs through a multistep mechanism involving the electrophoretically driven interaction of the DNA molecule with the destabilized membrane during the pulse and then its passage across the membrane. Therefore, successful DNA electrotransfer into cells depends not only on cell permeabilization but also on the way plasmid DNA interacts with the plasma membrane and, once into the cytoplasm, migrates towards the nucleus. The focus of this review is to describe the different aspects of what is known of the mechanism of membrane permeabilization and associated gene transfer and, by doing so, what are the actual limits of the DNA delivery into cells. Jean-Michel Escoffre and Thomas Portet have contributed equally to this work.  相似文献   

19.
Electropermeabilization is a nonviral method successfully used to transfer genes into cells in vitro as in vivo. Although it shows promise in field of gene therapy, very little is known on the basic processes supporting the DNA transfer. The aim of the present investigation is to visualize gene electrotransfer and expression both in vitro and in vivo. In vitro studies have been performed by using digitized fluorescence microscopy. Membrane permeabilization occurs at the sides of the cell membrane facing the two electrodes. A free diffusion of propidium iodide across the membrane to the cytoplasm is observed in the seconds following electric pulses. Fluorescently labeled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable over a few minutes. Changing the polarity and the orientation of the pulses lead to an increase in gene expression. In vivo experiments have been performed in Tibialis Cranialis mice muscle. Electric field application lead to the in vivo expression of plasmid DNA. We directly visualize gene expression of the Green Fluorescent Protein (GFP) on live animals. GFP expression is shown to be increased by applying electric field pulses with different polarities and orientations.  相似文献   

20.
In vivo electrotransfer is a physical method of gene delivery in various tissues and organs, relying on the injection of a plasmid DNA followed by electric pulse delivery. The importance of the association between cell permeabilization and DNA electrophoresis for electrotransfer efficiency has been highlighted. In vivo electrotransfer is of special interest since it is the most efficient non-viral strategy of gene delivery and also because of its low cost, easiness of realization and safety. The potentiality of this technique can be further improved by optimizing plasmid biodistribution in the targeted organ, plasmid structure, and the design of the encoded protein. In particular, we found that plasmids of smaller size were electrotransferred more efficiently than large plasmids. It is also of importance to study and understand kinetic expression of the transgene, which can be very variable, depending on many factors including cellular localization of the protein, physiological activity and regulation. The most widely targeted tissue is skeletal muscle, because this strategy is not only promising for the treatment of muscle disorders, but also for the systemic secretion of therapeutic proteins. Vaccination and oncology gene therapy are also major fields of application of electrotransfer, whereas application to other organs such as liver, brain and cornea are expanding. Many published studies have shown that plasmid electrotransfer can lead to long-lasting therapeutic effects in various pathologies such as cancer, blood disorders, rheumatoid arthritis or muscle ischemia. DNA electrotransfer is also a powerful laboratory tool to study gene function in a given tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号