首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Abstract The addition of 1 mM glycine betaine to the growth medium of Chromatium sp. NCIMB 8379 relieved growth inhibition caused by exposure to supra-optimal Nad concentrations. Intracellular glycine betaine concentrations were dependent upon the NaCl concentration of the growth medium up to 3 M exogenous Nad. Kinetic data for the accumulation of [methyl-14C]-glycine betaine demonstrated that Chromatium sp. NCIMB 8379 possesses a constitutively expressed active transport system for glycine betaine. The transport system was saturable with respect to glycine betaine concentration and exhibited typical Michaelis-Menten type kinetics: K m= 24 μ M, V max= 306 nmol min−1 mg protein−1 at an external NaCl concentration of 1 M. The rate of glycine betaine transport decreased progressively with increasing growth medium NaCl concentration. This transport system may represent an adaptive response to growth in high osmolarity environments in this halotolerant isolate, allowing accumulation of glycine betaine from the external cell environment or recycling synthesised glycine betaine which has passively diffused from the cell.  相似文献   

3.
Glycine betaine transport in Escherichia coli: osmotic modulation.   总被引:58,自引:36,他引:22  
Exogenous glycine betaine highly stimulates the growth rate of various members of the Enterobacteriaceae, including Escherichia coli, in media with high salt concentrations (D. Le Rudulier and L. Bouillard, Appl. Environ. Microbiol. 46:152-159, 1983). In a nitrogen- and carbon-free medium, glycine betaine did not support the growth of E. coli either on low-salt or high-salt media. This molecule was taken up by the cells but was not catabolized. High levels of glycine betaine transport occurred when the cells were grown in media of elevated osmotic strength, whereas relatively low activity was found when the cells were grown in minimal medium. A variety of electrolytes, such as NaCl, KCl, NaH2PO4, K2HPO4, K2SO4, and nonelectrolytes like sucrose, raffinose, and inositol triggered the uptake of glycine betaine. Furthermore, in cells subjected to a sudden osmotic upshock, glycine betaine uptake showed a sixfold stimulation 30 min after the addition of NaCl. Part of this stimulation might be a consequence of protein synthesis. The transport of glycine betaine was energy dependent and occurred against a concentration gradient. 2,4-Dinitrophenol almost totally abolished the glycine betaine uptake. Azide and arsenate exerted only a small inhibition. In addition, N,N'-dicyclohexylcarbodiimide had a very low inhibitory effect at 1 mM. These results indicated that glycine betaine transport is driven by the electrochemical proton gradient. The kinetics of glycine betaine entry followed the Michaelis-Menten relationship, yielding a Km of 35 microM and a Vmax of 42 nmol min-1 mg of protein-1. Glycine betaine transport showed considerable structural specificity. The only potent competitor was proline betaine when added to the assay mixtures at 20-fold the glycine betaine concentration. From these results, it is proposed that E. coli possesses an active and specific glycine betaine transport system which is regulated by the osmotic strength of the growth medium.  相似文献   

4.
R M Kappes  B Kempf    E Bremer 《Journal of bacteriology》1996,178(17):5071-5079
The accumulation of the osmoprotectant glycine betaine from exogenous sources provides a high degree of osmotic tolerance to Bacillus subtilis. We have identified, through functional complementation of an Escherichia coli mutant defective in glycine betaine uptake, a new glycine betaine transport system from B. subtilis. The DNA sequence of a 2,310-bp segment of the cloned region revealed a single gene (opuD) whose product (OpuD) was essential for glycine betaine uptake and osmoprotection in E. coli. The opuD gene encodes a hydrophobic 56.13-kDa protein (512 amino acid residues). OpuD shows a significant degree of sequence identity to the choline transporter BetT and the carnitine transporter CaiT from E. coli and a BetT-like protein from Haemophilus influenzae. These membrane proteins form a family of transporters involved in the uptake of trimethylammonium compounds. The OpuD-mediated glycine betaine transport activity in B. subtilis is controlled by the environmental osmolarity. High osmolarity stimulates de novo synthesis of OpuD and activates preexisting OpuD proteins to achieve maximal glycine betaine uptake activity. An opuD mutant was constructed by marker replacement, and the OpuD-mediated glycine betaine uptake activity was compared with that of the previously identified multicomponent OpuA and OpuC (ProU) glycine betaine uptake systems. In addition, a set of mutants was constructed, each of which synthesized only one of the three glycine betaine uptake systems. These mutants were used to determine the kinetic parameters for glycine betaine transport through OpuA, OpuC, and OpuD. Each of these uptake systems shows high substrate affinity, with Km values in the low micromolar range, which should allow B. subtilis to efficiently acquire the osmoprotectant from the environment. The systems differed in their contribution to the overall glycine betaine accumulation and osmoprotection. A triple opuA, opuC, and opuD mutant strain was isolated, and it showed no glycine betaine uptake activity, demonstrating that three transport systems for this osmoprotectant operate in B. subtilis.  相似文献   

5.
Uptake of [14C]choline upon hyperosmotic stress of exponential-phase Staphylococcus aureus cultures in a complex medium occurred after a delay of 2.5 to 3.5 h. This uptake could be prevented by chloramphenicol, suggesting that it occurred via an inducible transport system. Radioactivity from [14C]choline was accumulated as [14C]glycine betaine. However, neither choline nor glycine betaine could act as the major carbon and energy source for the organism, suggesting that choline was not metabolized beyond glycine betaine. Assay of choline transport activity in cells grown under different conditions in defined media revealed that osmotic stress was mainly responsible for the induction, but choline gave a further increase in induction. The system was not induced in anaerobically grown cells. Choline transport activity was repressed by glycine betaine and proline betaine, suggesting that these compounds are corepressors. Choline transport activity was not induced in cells osmotically stressed by 1 M potassium phosphate or 0.5 M sodium phosphate, but was induced in cells grown in low-phosphate medium in the absence of osmotic stress. This suggests that there is a connection between the phosphate and osmotic stress regulons. Choline transport was energy and Na+ dependent and had a Km of 46 microM and a maximum rate of transport (Vmax) of 54 nmol/min/mg (dry weight). The results of competition studies suggested that N-methyl and an alcohol group or aldehyde groups at the ends of the molecule were important in its recognition by the system. Glycine betaine was not a highly effective competitor, suggesting that its transport system and the choline transport system were distinct from each other. Choline transport was highly susceptible to a variety of inhibitors, which may be related to the greater dependence on respiratory metabolism of cells grown in the presence of high NaC1 concentrations.  相似文献   

6.
The proU locus of Escherichia coli encodes a high-affinity, binding-protein-dependent transport system (ProU) for the osmoprotectant glycine betaine. We cloned this locus into both low-copy-number lambda vectors and multicopy plasmids and demonstrated that these clones restore osmotically controlled synthesis of the periplasmic glycine betaine binding protein (GBBP) and the transport of glycine betaine in a delta (proU) strain. These clones allowed us to investigate the influence of osmolarity on ProU transport activity independent of the osmotically controlled expression of proU. ProU activity was strongly stimulated by a moderate increase in osmolarity and was partially inhibited by high osmolarity. This activity profile differs from the profile of the osmotically regulated proU expression. The proU locus is organized in an operon and the position of the structural gene (proV) for GBBP is defined using a minicell system. We determined that at least three proteins (in addition to GBBP) are encoded by the proU locus. We also investigated the permeation of glycine betaine across the outer membrane. At low substrate concentration (0.7 microM), permeation of glycine betaine was entirely dependent on the OmpF and OmpC porins.  相似文献   

7.
M Farwick  R M Siewe    R Krmer 《Journal of bacteriology》1995,177(16):4690-4695
Osmoregulatory uptake of glycine betaine in whole cells of Corynebacterium glutamicum ATCC 13032 (wild type) was studied. The cells actively take up glycine betaine when they are osmotically shocked. The total accumulation and uptake rate were dependent on the osmotic strength of the medium. Kinetic analysis revealed a high-affinity transport system (Km, 8.6 +/- 0.4 microM) with high maximum velocity (110 nmol.min-1.mg [dry weight]-1). Glycine betaine functioned as a compatible solute when added to the medium and allowed growth at an otherwise inhibitory osmotic strength of 1.5 M NaCl. Proline and ectoine could also be used as osmoprotectants. Glycine betaine is neither synthesized nor metabolized by C. glutamicum. The glycine betaine transport system is constitutively expressed at a basal level of activity. It can be induced up to eightfold by osmotic stress and is strongly regulated at the level of activity. The transport system is highly specific and has its pH optimum in the slightly alkaline range at about pH 8. The uptake of the zwitterionic glycine betaine is mediated by a secondary symport system coupled to cotransport of at least two Na+ ions. It is thus driven both by the membrane potential and the Na+ gradient. An extremely high accumulation (internal/external) ratio of up to 4 x 10(6) was measured, which represents the highest accumulation ratio observed for any transport system.  相似文献   

8.
Detection of the osmoregulator betaine in methanogens.   总被引:11,自引:3,他引:8       下载免费PDF全文
Trimethyl glycine (glycine betaine) was detected by 13C nuclear magnetic resonance spectroscopy at high intracellular concentrations in several methanogens (Methanogenium cariaci, "Methanogenium anulus" AN9, Methanohalophilus zhilinae, Methanohalophilus mahii, and Methanococcus voltae) grown on marine media containing yeast extract. 13C labeling studies with Methanogenium cariaci suggested that the betaine which accumulated inside the cells was not synthesized de novo but was transported in from the medium. Proof of such a transport system was provided by growing Methanogenium cariaci on yeast-free medium supplemented with betaine. Under these conditions, betaine was the dominant osmoregulator.  相似文献   

9.
Detection of the osmoregulator betaine in methanogens   总被引:3,自引:0,他引:3  
Trimethyl glycine (glycine betaine) was detected by 13C nuclear magnetic resonance spectroscopy at high intracellular concentrations in several methanogens (Methanogenium cariaci, "Methanogenium anulus" AN9, Methanohalophilus zhilinae, Methanohalophilus mahii, and Methanococcus voltae) grown on marine media containing yeast extract. 13C labeling studies with Methanogenium cariaci suggested that the betaine which accumulated inside the cells was not synthesized de novo but was transported in from the medium. Proof of such a transport system was provided by growing Methanogenium cariaci on yeast-free medium supplemented with betaine. Under these conditions, betaine was the dominant osmoregulator.  相似文献   

10.
Production of the compatible solute glycine betaine from its precursors choline or glycine betaine aldehyde confers a considerable level of tolerance against high osmolarity stress to the soil bacterium Bacillus subtilis. The glycine betaine aldehyde dehydrogenase GbsA is an integral part of the osmoregulatory glycine betaine synthesis pathway. We strongly overproduced this enzyme in an Escherichia coli strain that expressed a plasmid-encoded gbsA gene under T7φ10 control. The recombinant GbsA protein was purified 23-fold to apparent homogeneity by fractionated ammonium sulfate precipitation, ion-exchange chromatography on Q-Sepharose, and subsequent hydrophobic interaction chromatography on phenyl-Sepharose. Molecular sieving through Superose 12 and sedimentation centrifugation through a glycerol gradient suggested that the native enzyme is a homodimer with 53.7-kDa subunits. The enzyme was specific for glycine betaine aldehyde and could use both NAD+ and NADP+ as cofactors, but NAD+ was strongly preferred. A kinetic analysis of the GbsA-mediated oxidation of glycine betaine aldehyde to glycine betaine revealed K m values of 125 μM and 143 μM for its substrates glycine betaine aldehyde and NAD+, respectively. Low concentrations of salts stimulated the GbsA activity, and the enzyme was highly tolerant of high ionic conditions. Even in the presence of 2.4 M KCl, 88% of the initial enzymatic activity was maintained. B. subtilis synthesizes high levels of proline when grown at high osmolarity, and the presence of this amino acid strongly stimulated the GbsA activity in vitro. The enzyme was stimulated by moderate concentrations of glycine betaine, and its activity was highly tolerant against molar concentrations of this osmolyte. The high salt tolerance and its resistance to its own reaction product are essential features of the GbsA enzyme and ensure that B. subtilis can produce high levels of the compatible solute glycine betaine under conditions of high osmolarity stress. Received: 2 May 1997 / Accepted: 2 July 1997  相似文献   

11.
H Peter  A Burkovski    R Krmer 《Journal of bacteriology》1996,178(17):5229-5234
Corynebacterium glutamicum accumulates glycine betaine under conditions of high osmolarity. Previous work revealed the existence of a high-affinity glycine betaine permease which is osmotically regulated. In the present study, the corresponding gene was cloned. The betP gene, encoding the glycine betaine uptake carrier, was isolated by heterologous complementation of mutant strain Escherichia coli MKH13. From sequence analysis it is predicted to encode a protein of 595 amino acids. This protein shares 36% identity with the choline transport system BetT and 28% identity with the carnitine transport system CaiT of E. coli, as well as 38% identity with a protein with an unknown function from Haemophilus influenzae. Analysis of hydropathy indicated a common structure for all four transport proteins. After heterologous expression of betP in E. coli MKH13, the measured Km values for glycine betaine and the cotransported Na+ were similar to those found in C. glutamicum, whereas the modulation of activity by osmotic gradients was shifted to lower osmotic values.  相似文献   

12.
Methanogenic Archaea are found in a wide range of environments and use several strategies to adjust to changes in extracellular solute concentrations. One methanogenic archaeon, Methanosarcina thermophila TM-1, can adapt to various osmotic conditions by synthesis of alpha-glutamate and a newly discovered compatible solute, Ne-acetyl-beta-lysine, or by accumulation of glycine betaine (betaine) and potassium ions from the environment. Since betaine transport has not been characterized for any of the methanogenic Archaea, we examined the uptake of this solute by M. thermophila TM-1. When cells were grown in mineral salts media containing from 0.1 to 0.8 M NaC1, M. thermophila accumulated betaine in concentrations up to 140 times those of a concentration gradient within 10 min of exposure to the solute. The betaine uptake system consisted of a single, high-affinity transporter with an apparent K3 of 10 microM and an apparent maximum transport velocity of 1.15 nmol/min/mg of protein. The transporter appeared to be specific for betaine, since potential substrates, including glycine, sarcosine, dimethyl glycine, choline, and proline, did not significantly inhibit betaine uptake. M. thermophila TM-1 cells can also regulate the capacity for betaine accumulation, since the rate of betaine transport was reduced in cells pregrown in a high-osmolarity medium when 500 microM betaine was present. Betaine transport appears to be H+ and/or Na+ driven, since betaine transport was inhibited by several types of protonophores and sodium ionophores.  相似文献   

13.
Bacteroids isolated from alfalfa nodules induced by Rhizobium meliloti 102F34 transported glycine betaine at a constant rate for up to 30 min. Addition of sodium salts greatly increased the uptake activity, whereas other salts or non-electrolytes had less effect. The apparent Km for glycine betaine uptake was 8.3 microM and V was about 0.84 nmol min-1 (mg protein)-1 in the presence of 200 mM-NaCl which gave maximum stimulation of the transport. Supplementing bacteroid suspensions with various energy-yielding substrates, or ATP, did not increase glycine betaine uptake rates. The uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), and the respiratory inhibitor potassium cyanide strongly inhibited glycine betaine uptake, but arsenate was totally inactive. Glycine betaine transport showed considerable structural specificity: choline, proline betaine, gamma-butyrobetaine and trigonelline did not competitively inhibit the system, although choline and proline betaine were transported by bacteroids. Both a high-affinity activity and a low-affinity activity were found for choline uptake. These osmoprotective compounds might have a significant role in the maintenance of nitrogenase activity in bacteroids subjected to salt stress.  相似文献   

14.
The regulation of glycine betaine accumulation has been investigated in Salmonella typhimurium. The size of the glycine betaine pool in the cells is determined by the external osmotic pressure and is largely independent of the external glycine betaine concentration. Analysis of the activity of the ProP and ProU transport systems suggests that other systems must be active in the regulation of the glycine betaine pool. Addition of p-chloromercuribenzoate (PCMB) or p-chloromercuribenzene sulphonate (PCMBS) to cells that have accumulated glycine betaine provokes rapid loss of glycine betaine. The route of glycine betaine efflux under the influence of PCMB is independent of either the ProP or ProU transport systems. Rapid loss of the accumulated pool of glycine betaine in the presence of PCMB is specific to glycine betaine and proline; accumulated pools of serine and lysine are not significantly affected by the -SH reagent. A specific glycine betaine/proline efflux system is postulated on the basis of these data and its role in the regulation of glycine betaine and proline accumulation is discussed.  相似文献   

15.
Lactococcus lactis subsp. lactis ML3 contains high pools of proline or betaine when grown under conditions of high osmotic strength. These pools are created by specific transport systems. A high-affinity uptake system for glycine betaine (betaine) with a Km of 1.5 microM is expressed constitutively. The activity of this system is not stimulated by high osmolarities of the growth or assay medium but varies strongly with the medium pH. A low-affinity proline uptake system (Km, > 5 mM) is expressed at high levels only in chemically defined medium (CDM) with high osmolarity. This transport system is also stimulated by high osmolarity. The expression of this proline uptake system is repressed in rich broth with low or high osmolarity and in CDM with low osmolarity. The accumulated proline can be exchanged for betaine. Proline uptake is also effectively inhibited by betaine (Ki of between 50 and 100 microM). The proline transport system therefore probably also transports betaine. The inhibition of proline transport by betaine results in low proline pools in cells grown in high-osmotic-strength, betaine-containing CDM. The energy and pH dependency and the influence of ionophores on the activity of both transport systems suggest that these systems are not proton motive force driven. At low osmolarities, proline uptake is low but significant. This low proline uptake is also inhibited by betaine, although to a lesser extent than in cells grown in high-osmotic-strength CDM. These data indicate that proline uptake in L. lactis is enzyme mediated and is not dependent on passive diffusion, as was previously believed.  相似文献   

16.
The effect of salt stress on glycine betaine-binding activity has been investigated in periplasmic fractions released from Rhizobium meliloti 102F34 by cold osmotic shock. Binding activity was monitored by three techniques: equilibrium dialysis, filter procedure, and detection of 14C ligand-protein binding by direct non-denaturing polyacrylamide gel electrophoresis (PAGE) followed by autoradiography. The three methods demonstrated the existence of a strong glycine betaine-binding activity, but only in periplasmic fractions from cells grown at high osmolarity. The non-denaturing PAGE of such periplasmic shock fluids mixed with [methyl-14C]glycine betaine showed only one radioactive band, indicating the involvement of one glycine betaine-binding protein. To determine the possible implication of this binding protein in glycine betaine uptake, transport activity was measured with cells submitted to cold osmotic shock. No significant decrease of transport activity was noticed. This lack of effect could be explained by the small quantity of periplasmic proteins released as judged by the low activity of phosphodiesterase, a periplasmic marker enzyme, observed in the shock fluid. The specificity of binding was analysed with different potential competitors: other betaines such as gamma-butyrobetaine, proline betaine, pipecolate betaine, trigonelline and homarine, or amino acids like glycine and proline, did not bind to the glycine betaine-binding protein, whereas glycine betaine aldehyde and choline were weak competitors. Optimum pH for binding was around 7.0, but approx. 90% of the glycine betaine-binding activity remained at pH 6.0 or 8.0. The calculated binding affinity (KD) was 2.5 microM. Both glycine betaine-binding activity and affinity were not significantly modified whether or not the binding assays were done at high osmolarity. A 32 kDa osmotically inducible periplasmic protein, identified by SDS-PAGE, apparently corresponds to the glycine betaine-binding protein.  相似文献   

17.
Abstract Ectothiorhodospira halochloris reacts upon enhancement of the water activity in the environment by excreting its major compatible solute, glycine betaine, thus decreasing the osmotic pressure inside the cell. A suddenly induced dilution stress leads to an overshoot of this reaction, so that more glycine betaine than necessary to compensate the external osmotic change is released. Subsequently the cells take up glycine betaine until they reach osmotic balance with the medium. E. halochloris possesses an active transport system that allows an uptake of glycine betaine against a concentration gradient. Glycine betaine is not metabolized in E. halochloris . Ectoine, a minor compatible solute of E. halochloris , is excreted in a similar manner to that of glycine betaine during dilution stress, whereas no excretion of the third compatible solute, trehalose, was detected.  相似文献   

18.
R Ko  L T Smith    G M Smith 《Journal of bacteriology》1994,176(2):426-431
Listeria monocytogenes is a gram-positive food-borne pathogen that is notably resistant to osmotic stress and can grow at refrigerator temperatures. These two characteristics make it an insidious threat to public health. Like several other organisms, L. monocytogenes accumulates glycine betaine, a ubiquitous and effective osmolyte, intracellularly when grown under osmotic stress. However, it also accumulates glycine betaine when grown under chill stress at refrigerator temperatures. Exogenously added glycine betaine enhances the growth rate of stressed but not unstressed cells, i.e., it confers both osmotolerance and cryotolerance. Both salt-stimulated and cold-stimulated accumulation of glycine betaine occur by transport from the medium rather than by biosynthesis. Direct measurement of glycine betaine uptake shows that cells transport betaine 200-fold faster at high salt concentration (4% NaCl) than without added salt and 15-fold faster at 7 than at 30 degrees C. The kinetics of glycine betaine transport suggest that the two transport systems are indistinguishable in terms of affinity for betaine and may be the same. Hyperosmotic shock and cold shock experiments suggest the transport system(s) to be constitutive; activation was not blocked by chloramphenicol. A cold-activated transport system is a novel observation and has intriguing implications concerning the physical state of the cell membrane at low temperature.  相似文献   

19.
The ProP and ProU transport systems of Escherichia coli mediate the uptake of several osmoprotectants including glycine betaine. Here we report that both ProP and ProU are involved in the transport of the potent osmoprotectant proline betaine. A set of isogenic E. coli strains carrying deletions in either the proP or proU loci was constructed. The growth properties of these mutants in high osmolarity minimal media containing 1 mM proline betaine demonstrated that the osmoprotective effect of this compound was dependent on either an intact ProP or ProU uptake system. Proline betaine competes with glycine betaine for binding to the proU-encoded periplasmic substrate binding protein (ProX) and we estimate a KD of 5.2 μM for proline betaine binding. This value is similar to the binding constant of the ProX protein determined previously for the binding of glycine betaine (KD of 1.4 μM). Our results thus demonstrate that the binding-protein-dependent ProU transport system of E. coli mediates the efficient uptake of the osmoprotectants glycine betaine and proline betaine.  相似文献   

20.
The transport of glycine betaine by Staphylococcus aureus was investigated. Two transport systems were found that could be differentiated on the basis of their affinity for glycine betaine and their activation by osmotic pressure. The high-affinity system was relatively independent of osmotic pressure and exhibited a Km of approximately 3 microM. This system was not inhibited by proline, for which a separate high-affinity transport system has been recently discovered. The low-affinity system was activated approximately 35-fold by an increase in osmotic pressure and exhibited a Km of approximately 130 microM for glycine betaine. This system is partially inhibited by excess proline and may be identical to the low-affinity system recently described for proline. Both glycine betaine transport systems are Na(+)-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号