首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gene therapy for cystic fibrosis (CF) could potentially be accomplished with one of several recombinant virus vectors, including a murine retrovirus (MMuLV), adenovirus, or adeno-associated virus (AAV). All these vectors take advantage of their respective viruses' mechanisms for delivery of viral DNA to cells, evasion of lyosomal degradation, and optimization of the levels and duration of expression of viral (or vector) DNA. Each has its own unique life cycle, however. The differences among these viruses result in certain advantages and disadvantages, such as the requirement of retroviruses for active cell division, and the potential pathogenic effects from expression of certain adenovirus genes present in adenovectors. While no single vector may be optimal for CF gene therapy in humans, new techniques, such as receptor-mediated gene transfer, seek to take advantage of the desirable properties of one or more of the virus-based systems while avoiding certain potential hazards.  相似文献   

2.
In the genetic disease cystic fibrosis, recombinant adeno-associated virus type 2 (AAV2) is being investigated as a vector to transfer CFTR cDNA to airway epithelia. However, earlier work has shown that the apical surface of human airway epithelia is resistant to infection by AAV2, presumably as a result of a lack of heparan sulfate proteoglycans on the apical surface. This inefficiency can be overcome by increasing the amount of vector or by increasing the incubation time. However, these interventions are not very practical for translation into a therapeutic airway-directed vector. Therefore, we examined the efficiency of other AAV serotypes at infecting human airway epithelia. When applied at low multiplicity of infection to the apical surface of differentiated airway epithelia we found that a recombinant AAV5 bound and mediated gene transfer 50-fold more efficiently than AAV2. Furthermore, in contrast to AAV2, AAV5-mediated gene transfer was not inhibited by soluble heparin. Recombinant AAV5 was also more efficient than AAV2 in transferring beta-galactosidase cDNA to murine airway and alveolar epithelia in vivo. These data suggest that AAV5-derived vectors bind and mediate gene transfer to human and murine airway epithelia, and the tropism of AAV5 may be useful to target cells that are not permissive for AAV2.  相似文献   

3.
The small packaging capacity of adeno-associated virus (AAV) vectors limits the utility of this promising vector system for transfer of large genes. We explored the possibility that larger genes could be reconstituted following homologous recombination between AAV vectors carrying overlapping gene fragments. An alkaline phosphatase (AP) gene was split between two such AAV vectors (rec vectors) and packaged using AAV2 or AAV6 capsid proteins. Rec vectors having either capsid protein recombined to express AP in cultured cells at about 1-2% of the rate observed for an intact vector. Surprisingly, the AAV6 rec vectors transduced lung cells in mice almost as efficiently as did an intact vector, with 10% of airway epithelial cells, the target for treatment of cystic fibrosis (CF), being positive. Thus AAV rec vectors may be useful for diseases such as CF that require transfer of large genes.  相似文献   

4.
Adeno-associated viral (AAV) vectors are used for in vivo gene transfer in a number of preclinical models of genetic diseases (including large-animal models) and are currently being tested in clinical trials for treatment of hemophilia B and cystic fibrosis. Protocols for production of AAV vectors in a helper virus-free system are available and are based on transient transfection of HEK-293 cells with multiple plasmids. Scale-up of vector production has been labor intensive and inefficient because of a lack of larger culture vessels suitable for growth of adherent cells, large-scale transfection, and vector production. Here we report efficient production of AAV vector in roller bottles, which represents a 10-fold scale-up from the conventional flask or plate method. Optimized production yielded greater than 10(13) vector genomes per bottle and was as cost effective as published protocols using plates. Successful vector production by this method was dependent on optimization of transfection by calcium phosphate precipitation, of monitoring of cell growth (by measurement of glucose consumption), of cell culture conditions, and CO2/air exchange with the culture vessel.  相似文献   

5.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

6.
Some of the most successful gene therapy results have been obtained using recombinant viral vectors to treat animal models of inherited and acquired ocular diseases. Clinical trials using adenovirus vector systems have been initiated for two ocular diseases. Adeno-associated viruses (AAVs) represent an attractive alternative to adenoviral vector systems as they enable stable and long-term expression and can target a variety of different ocular cell types depending on the capsid serotype; recently clinical trails for congenital blindness was initiated with a vector-based AAV serotype 2. High levels of retinal gene transfer have been achieved using vectors based on AAV serotypes 1, 2, 4 and 5. This report compares the gene transfer efficacy and stability of expression of vector systems based on three novel AAV serotypes: AAV7, 8, 9, with the established vectors AAV1, 2, 5. We show here that AAV7 and 8 enable superior long-term transduction of retinal and also anterior chamber structures.  相似文献   

7.
While recombinant adeno-associated virus (rAAV) vectors promote long-term transgene expression in the lungs and other organs, the goal of correcting chronic inherited lung diseases such as cystic fibrosis with this type of viral gene transfer vector is limited by the requirement of achieving stable potent transgene expression, potentially requiring vector readministration. Here we evaluated the abilities of rAAV type 5/5 (rAAV5/5) vectors based on the genome and capsid of AAV5 to efficiently transduce the lungs and nasal epithelium of mice after repeated administration. Transduction efficiency as judged by reporter gene expression was markedly reduced on a second rAAV5/5 administration and effectively abolished on a third. Varying the period between administrations from 8 to 36 weeks did not allow efficient repeated administration. A rapid rise in anti-AAV5 antibodies was noted after rAAV5/5 vector administration that was sustained for the entire period of investigation (in some cases exceeding 9 months). Furthermore, this antibody response and subsequent failure to repeatedly administer the vector were not rescued by the in vivo expression of CTLA4Ig from an rAAV5/5 vector. These results suggest that without the development of an effective and clinically acceptable immunosuppression strategy, treatments for chronic diseases that require repeated administration of rAAV5/5 vectors will be unsuccessful.  相似文献   

8.
Hot topics in adeno-associated virus as a gene transfer vector   总被引:4,自引:0,他引:4  
Adeno-associated virus (AAV) is a promising viral vector in treating many kinds of hereditary diseases. The broad host range, low level of immune response, and longevity of gene expression observed with this vector have enabled the initiation of a number of clinical trials using this gene delivery system. Another potential benefit of AAV vectors is their ability to integrate site-specifically in the presence of Rep proteins. However, this virus is not well characterized. To obtain high level, persistent expression of the foreign gene, some problems should be solved. In this article, we will describe the advances in some fields of recombinant AAV technology that overcome certain limitations of the vector as a gene delivery system, such as the transduction efficiency, the production, the package capacity, and elimination of immune responses, as well as the applications involving these recombinant vectors for the treatment of some diseases.  相似文献   

9.
Regulated adeno-associated virus (AAV) vectors have broad utility in both experimental and applied gene therapy, and to date, several regulation systems have exhibited a capability to control gene expression from viral vectors over two orders of magnitude. The tetracycline responsive system has been the most used in AAV, although other regulation systems such as RU486- and rapamycin-responsive systems are reasonable options. AAV vectors influence how regulation systems function by several mechanisms, leading to increased background gene expression and restricted induction. Methods to reduce background expression continue to be explored and systems not yet tried in AAV may prove quite functional. Although regulated promoters are often assumed to exhibit ubiquitous expression, the tropism of different neuronal subtypes can be altered dramatically by changing promoters in recombinant AAV vectors. Differences in promoter-directed tropism have significant consequences for proper expression of gene products as well as the utility of dual vector regulation. Thus regulated vector systems must be carefully optimized for each application.  相似文献   

10.
Although vectors derived from adeno-associated virus type 2 (AAV2) promote gene transfer and expression in many somatic tissues, studies with animal models and cultured cells show that the apical surface of airway epithelia is resistant to transduction by AAV2 vectors. Approaches to increase transduction rates include increasing the amount of vector and perturbing the integrity of the epithelia. In this study, we explored the use of vectors based on AAV6 to increase transduction rates in airways. AAV vectors were made using combinations of rep, cap, and packaged genomes from AAV2 or AAV6. The packaged genomes encoded human placental alkaline phosphatase and contained terminal repeat sequences from AAV2 or AAV6. We found that transduction efficiency was primarily dependent on the source of Cap protein, defined here as the vector pseudotype. The AAV6 and AAV2 pseudotype vectors exhibited different tropisms in tissue-cultured cells, and cell transduction by AAV6 vectors was not inhibited by heparin, nor did they compete for entry in a transduction assay, indicating that AAV6 and AAV2 capsid bind different receptors. In vivo analysis of vectors showed that AAV2 pseudotype vectors gave high transduction rates in alveolar cells but much lower rates in the airway epithelium. In contrast, the AAV6 pseudotype vectors exhibited much more efficient transduction of epithelial cells in large and small airways, showing up to 80% transduction in some airways. These results, combined with our previous results showing lower immunogenicity of AAV6 than of AAV2 vectors, indicate that AAV6 vectors may provide significant advantages over AAV2 for gene therapy of lung diseases like cystic fibrosis.  相似文献   

11.
Recent developments in adeno-associated virus vector technology   总被引:1,自引:0,他引:1  
Adeno-associated virus (AAV), a single-stranded DNA parvovirus, is emerging as one of the leading gene therapy vectors owing to its nonpathogenicity and low immunogenicity, stability and the potential to integrate site-specifically without known side-effects. A portfolio of recombinant AAV vector types has been developed with the aim of optimizing efficiency, specificity and thereby also the safety of in vitro and in vivo gene transfer. More and more information is now becoming available about the mechanism of AAV/host cell interaction improving the efficacy of recombinant AAV vector (rAAV) mediated gene delivery. This review summarizes the current knowledge of the infectious biology of AAV, provides an overview of the latest developments in the field of AAV vector technology and discusses remaining challenges.  相似文献   

12.
目的构建携带大鼠瘦素(leptin)基因的重组腺相关病毒(adeno-associated virus,AAV),并鉴定其在原代鼠神经元细胞中介导的瘦素过表达,为肥胖症基因治疗研究奠定实验基础。方法提取大鼠脂肪组织总RNA,利用RT-PCR技术,获取目的基因瘦素cDNA,通过重组DNA技术,得到瘦素cDNA与pGEM-T载体的重组质粒,阳性重组子用PCR及测序分析鉴定。用Spe I和EcoR V双酶切将pGEM-Leptin中的瘦素基因片段切出,再克隆到AAV2表达质粒pTR-UF22中,构建瘦素重组AAV2载体pAAV2-CBA-leptin。以pDG作为辅助质粒用HEK293细胞包装AAV2-CBA-Leptin,并用一步重力流柱法纯化病毒,由荧光定量PCR测定病毒基因组DNA的拷贝数即为病毒滴度。然后将AAV2-CBA-Leptin及对照病毒AAV2-CBA-EGFP感染大鼠原代神经元细胞,分别用免疫染色和Western blotting鉴定外源基因在神经元的表达。结果测序证实瘦素基因与GenBank提供的原始序列完全一致。重组载体经酶切鉴定与预期结果完全一致,HEK293细胞包装病毒效果良好,得到滴度为1.5×1012vg/mL纯化的重组瘦素病毒AAV2-CBA-Leptin。Western blotting检测显示AAV2-CBA-Leptin能介导瘦素在大鼠神经元细胞中过表达,并随着病毒量的增加而增强。AAV2-CBA-EGFP感染鼠神经元细胞5d后95%左右的细胞有明显的绿色荧光,免疫染色和DAPI核酸染色显示荧光细胞均为神经元而神经胶质细胞无荧光。结论成功构建并包装了瘦素重组AAV2病毒并可介导瘦素在神经元细胞中高效、特异表达,从而为研究瘦素在中枢神经系统控制体重和糖尿病等方面的功能及基因治疗研究打下基础。  相似文献   

13.
Adeno-associated viral (AAV) vectors have demonstrated great utility for long-term gene expression in muscle tissue. However, the mechanisms by which recombinant AAV (rAAV) genomes persist in muscle tissue remain unclear. Using a recombinant shuttle vector, we have demonstrated that circularized rAAV intermediates impart episomal persistence to rAAV genomes in muscle tissue. The majority of circular intermediates had a consistent head-to-tail configuration consisting of monomer genomes which slowly converted to large multimers of >12 kbp by 80 days postinfection. Importantly, long-term transgene expression was associated with prolonged (80-day) episomal persistence of these circular intermediates. Structural features of these circular intermediates responsible for increased persistence included a DNA element encompassing two viral inverted terminal repeats (ITRs) in a head-to-tail orientation, which confers a 10-fold increase in the stability of DNA following incorporation into plasmid-based vectors and transfection into HeLa cells. These studies suggest that certain structural characteristics of AAV circular intermediates may explain long-term episomal persistence with this vector. Such information may also aid in the development of nonviral gene delivery systems with increased efficiency.  相似文献   

14.
Traditional gene therapy vectors have demonstrated limited utility for treatment of chronic lung diseases such as cystic fibrosis (CF). Herein we describe a vector based on a Filovirus envelope protein-pseudotyped HIV vector, which we chose after systematically evaluating multiple strategies. The vector efficiently transduces intact airway epithelium from the apical surface, as demonstrated in both in vitro and in vivo model systems. This shows the potential of pseudotyping in expanding the utility of lentiviral vectors. Pseudotyped lentiviral vectors may hold promise for the treatment of CF.  相似文献   

15.
Adeno-associated virus (AAV) vectors appear promising for use in gene therapy in cystic fibrosis (CF) patients, yet many features of AAV-mediated gene transfer to airway epithelial cells are not well understood. We compared the transduction efficiencies of AAV vectors and adenovirus (Ad) vectors in immortalized cell lines from CF patients and in nasal epithelial primary cultures from normal humans and CF patients. Similar dose-dependent relationships between the vector multiplicities of infection and the efficiencies of lacZ gene transfer were observed. However, levels of transduction for both Ad and recombinant AAV (rAAV) were significantly lower in the airway epithelial cell than in the control cell lines HeLa and HEK 293. Transduction efficiencies differed among cultured epithelial cell types, with poorly differentiated cells transducing more efficiently than well-differentiated cells. A time-dependent increase in gene expression was observed after infection for both vectors. For Ad, but not for AAV, this increase was dependent on prolonged incubation of cells with the vector. Furthermore, for rAAV (but not for rAd), the delay in maximal transduction could be abrogated by wild-type Ad helper infection. Thus, although helper virus is not required for maximal transduction, it increases the kinetics by which this is achieved. Expression of Ad E4 open reading frame 6 or addition of either hydroxyurea or camptothecin resulted in increased AAV transduction, as previously demonstrated for nonairway cells (albeit to lower final levels), suggesting that second-strand synthesis may not be the sole cause of inefficient transduction. Finally, the efficiency of AAV-mediated ex vivo gene transfer to lung cells was similar to that previously described for Ad vectors in that transduction was limited to regions of epithelial injury and preferentially targeted basal-like cells. These studies address the primary factors influencing rAAV infection of human airway cells and should impact successful gene delivery in CF patients.  相似文献   

16.
The airway is an important target for gene transfer to treat cystic fibrosis and other diseases that affect the lung. We previously found that marker gene expression did not persist in the bronchial epithelium following adeno-associated virus (AAV) vector administration to the rabbit lung. In an attempt to promote continued expression, we tested repeat vector administration, but no additional transduction was observed, and the block to transduction correlated with the appearance of neutralizing antibodies to the viral capsid. Here we show that mice exhibit a similar response but that treatment with anti-CD40 ligand antibody (MR1) and a soluble CTLA4-immunoglobulin fusion protein (CTLA4Ig) at the time of primary AAV vector exposure allowed successful repeat transduction and prevented production of neutralizing antibodies. We also tested the possibility that an immune response caused the loss of marker-positive cells in the epithelial population in rabbits by evaluating AAV vector expression in immunocompetent and immunodeficient mice. In contrast to results in rabbits, marker protein expression persisted in the lung in both groups of mice. AAV vector transduction occurred in alveolar cells, airway epithelial cells, and smooth muscle cells, and vector expression persisted for at least 8 months. Although data on persistence of AAV vector expression in the human lung are not available, it is likely that repeat transduction will be necessary either due to loss of expression or to the need for repeat administration to deliver effective amounts of AAV vectors. Results presented here indicate that transient immunosuppression will allow such repeat vector treatment of the lung.  相似文献   

17.
Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids. The generation of these high-capacity AAV/Ad hybrid vectors takes place in Ad early region 1 (E1)-expressing cells and requires an Ad vector with E1 deleted to complement in trans both AAV helper functions and Ad structural proteins. The dependence on a replicating helper Ad vector leads to the contamination of AAV/Ad hybrid vector preparations with a large excess of helper Ad particles. This renders the further propagation and ultimate use of these gene delivery vehicles very difficult. Here, we show that Cre/loxP-mediated genetic selection against the packaging of helper Ad DNA can reduce helper Ad vector contamination by 99.98% without compromising hybrid vector rescue. This allowed amplification of high-capacity AAV/Ad hybrid vectors to high titers in a single round of propagation.  相似文献   

18.
利用内含肽(intein)的蛋白质反式剪接技术,研究双载体真核细胞转囊性纤维化跨膜电导调节体(CFTR)基因,通过翻译后连接成为完整的功能性CFTR蛋白.应用基因重组技术,将人CFTRcDNA于剪接反应所需保守残基Ser660前断裂为N端和C端两部分,分别与split Ssp DnaB intein编码序列融合,构建到真核表达载体pEGFP-N1和pEYFP-N1.用脂质体将这对载体共转染至幼年仓鼠肾细胞(BHK),48h后Western印迹观察CFTR蛋白质的连接,并用全细胞和单通道膜片钳技术记录Cl-通道电流.基因共转染细胞可观察到明显的由蛋白质反式剪接形成的完整CFTR蛋白,膜片钳记录到较高的全细胞Cl-电流和与转野生型CFTR基因细胞相似的单Cl-通道开放活性,提示CFTR功能的恢复.内含肽可作为一种技术策略用于双载体转CFTR基因,为应用双腺相关病毒载体(AAV)转基因的囊性纤维化疾病(CF)基因治疗提供了依据.  相似文献   

19.
The human parvovirus adeno-associated virus type 2 (AAV2) has many features that make it attractive as a vector for gene therapy. However, the broad host range of AAV2 might represent a limitation for some applications in vivo, because recombinant AAV vector (rAAV)-mediated gene transfer would not be specific for the tissue of interest. This host range is determined by the binding of the AAV2 capsid to specific cellular receptors and/or co-receptors. The tropism of AAV2 might be changed by genetically introducing a ligand peptide into the viral capsid, thereby redirecting the binding of AAV2 to other cellular receptors. We generated six AAV2 capsid mutants by inserting a 14-amino-acid targeting peptide, L14, into six different putative loops of the AAV2 capsid protein identified by comparison with the known three-dimensional structure of canine parvovirus. All mutants were efficiently packaged. Three mutants expressed L14 on the capsid surface, and one efficiently infected wild-type AAV2-resistant cell lines that expressed the integrin receptor recognized by L14. The results demonstrate that the AAV2 capsid tolerates the insertion of a nonviral ligand sequence. This might open new perspectives for the design of targeted AAV2 vectors for human somatic gene therapy.  相似文献   

20.
Collaco RF  Cao X  Trempe JP 《Gene》1999,238(2):397-405
Adeno-associated virus (AAV) is a human parvovirus that is currently receiving widespread attention for its potential use as a gene therapy vector. Construction of the recombinant AAV vector (rAAV) involves replacing most of the viral genome with a transgene of interest and then packaging this recombinant genome into an infectious virion. Most current protocols for generating rAAV entail the co-transfection of a vector plasmid and a packaging plasmid that expresses the viral replication and structural genes onto adenovirus (Ad) infected cells growing in culture. Limitations of this procedure include (1) contamination of rAAV with the Ad helper virus, (2) low yields of rAAV and (3) production of replication-competent AAV. In this report we describe new helper plasmids (pSH3 and pSH5) that eliminate the Ad co-infection requirement. The helper plasmids express the AAV rep and cap genes and the Ad E2A, VAI and E4 genes. When the helper plasmids are co-transfected onto human 293 cells with a vector plasmid in the absence of Ad infection, the rAAV vector yield is up to 80-fold greater than those obtained with the pAAV/Ad packaging plasmid. Moreover, replication competent AAV in the rAAV preparations is less than 0.00125%. The major advantages of this system are (1) the absence of infectious adenovirus and (2) the use of only two plasmids, which enhances transfection efficiencies and hence vector production. We believe that this two-plasmid transfection system will allow for more widespread use of the AAV vector system because of its simplicity and high yields. This system will be especially useful for preclinical analyses of multiple rAAV vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号