首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial frequency difference thresholds for sinewave gratings near contrast threshold were measured using a two-alternative forced-choice technique, and the threshold frequency differences were plotted as a proportion of standard frequency for standards from 2 to 7 cycles/degree. This function shows reliable local maxima and minima, and these features are more pronounced than they are when stimuli of 30% contrast are used. This result is consistent with the notion that at low contrasts, fewer spatial frequency channels are above threshold in the area of the visual field covered by the stimulus than when the stimulus is at high contrast.  相似文献   

2.
D W Heeley 《Spatial Vision》1987,2(4):317-335
Spatial frequency difference thresholds for vertical, high contrast sinewave gratings were estimated at 1.25, 2.5, 5.0 and 10.0 cyc deg-1. Within an experiment two independent manipulations of the stimulus were employed: (1) the number of cycles of the sinewave grating was varied over a range of 2.0 to 15.0 cycles; and (2) a stationary, random frequency modulation was imposed on the sinewave. The probability density function of the frequency modulation was a Gaussian whose dispersion coefficient was varied, in different experiments, in the range of 0 to 10% of the frequency of the parent sinewave. Both of these experimental variables were found to affect the precision with which spatial frequency discrimination could be performed. The Weber fraction increased both as the number of cycles present was decreased and as the dispersion coefficient of the modulating function was increased. These two effects were independent. The data support previous psychophysical findings that spatial frequency discrimination involves averaging over the total area of the stimulus and are compatible with spatial primitive models of spatial contrast vision. The data are not compatible with those of Hirsch and Hylton (J. opt. Soc. Am. 72, 1367-1374) which suggest that spatial interval discrimination occurs solely by operation of foveal mechanisms.  相似文献   

3.
A Gorea 《Spatial Vision》1985,1(2):85-102
Spatial integration characteristics were assessed with drifting gratings for both detection and direction-identification contrast thresholds. Thresholds were measured while stimulus width, length or both were varied. It was found that: (1) the shape of the size/sensitivity functions changes with spatial, but not with temporal, frequency; (2) direction-identification thresholds diverge from the detection thresholds below 1 cycle but can be reliably measured for stimulus widths as small as 0.1275 cycles; (3) the integration characteristics are slightly anisotropic for the identification but not for the detection process, and (4) the two-dimensional spatial integration cannot be directly predicted from its one-dimensional characteristics. Width/sensitivity detection functions are well fitted by predictions of Wilson and Bergen's four-channel model. Predictions from a temporal covariance model provide a poor fit to the identification data. It is argued that classes of detection and direction-identification models must involve identical nonlinearities prior to their respective thresholds. It is concluded that the hypothesis according to which both performances are determined by the same spatial integration stage cannot be rejected.  相似文献   

4.
We systematically classified goldfish ganglion cells according to their spatial summation properties using the same techniques and criteria used in cat and monkey research. Results show that goldfish ganglion cells can be classified as X-, Y-, or W-like based on their responses to contrast-reversal gratings. Like cat X cells, goldfish X-like cells display linear spatial summation. Goldfish Y-like cells, like cat Y cells, respond with frequency doubling at all spatial positions when the contrast-reversal grating consists of high spatial frequencies. There is also a third class of neurons, which is neither X- nor Y-like; many of these cells' properties are similar to those of the "not-X" cells found in the eel retina. Spatial filtering characteristics were obtained for each cell by drifting sinusoidal gratings of various spatial frequencies and contrasts across the receptive field of the cell at a constant temporal rate. The spatial tuning curves of the cell depend on the temporal parameters of the stimulus; at high drift rates, the tuning curves lose their low spatial frequency attenuation. To explore this phenomenon, temporal contrast response functions were derived from the cells' responses to a spatially uniform field whose luminance varied sinusoidally in time. These functions were obtained for the center, the surround, and the entire receptive field. The results suggest that differences in the cells' spatial filtering across stimulus drift rate are due to changes in the interaction of the center and surround mechanisms; at low temporal frequencies, the center and surround responses are out-of-phase and mutually antagonistic, but at higher temporal rates their responses are in-phase and their interaction actually enhances the cell's responsiveness.  相似文献   

5.
Spatial variance in the distribution of aquatic mobile organisms differs from that of passive tracers such as phytoplankton or water temperature. On average, spatial variance of phytoplankton scales with sample unit as $L^2$ or equivalently with frequency as $f^{-2}$. Limited evidence suggests that spatial variance in the distribution of mobile organisms is concentrated at relatively small scales, with little increase over larger scales: spatial variance scales as $f^{-1}$ or less. We investigated whether spatial variance in distributions of a mobile predator, Atlantic cod (Gadus morhua), and a schooling prey, capelin (Mallotus villosus), also scale with frequency as $f^{-1}$. Acoustic surveys showed that at short time scales spatial variance in cod and capelin densities, as measured by spectral density, peaked at various scales ranging from 20 m to 10 km. At longer time scales, spatial variance of cod scaled as $f^{-1.08}$ at resolutions finer than 90 m, while scaling as $f^{-0.18}$ at coarser scales. Spatial variance of capelin scaled as $f^{-1.1}$ at resolutions finer than 400 m, while scaling as $f^{-0.21}$ at coarser scales. Spatial variance plots of krill and marine birds showed similar transitions from shallow to steep scaling. Shoaling, schooling and the aggregative response by predators to concentrations of prey were three processes hypothesized to influence spatial variance in distributions of mobile organisms. Numerical experiments showed that shoaling injects variance at large to intermediate scales, resulting in scalings flatter than $f^{-1}$. Additional experiments showed that schooling produces a transition from shallow to steep scaling as frequency increases. Spatial variance patterns in cod density were not due to aggregative responses by the predator to concentrations of capelin: there was no association, on average, at resolution scales from 20 m to 10 km. Exponent values for aquatic or terrestrial mobile organisms are predicted to be approximately two at the scale of an individual organism, 0.2 at scales that contain aggregations, and two at scales larger than that of populations. These findings suggest that relations between mobile organisms and large scale habitat variables will be difficult to detect, that stratified survey designs used to estimate commercial population sizes will be inefficient, and that rates of interaction between predator and prey will be underestimated if local observations are averaged over the spatial scale of the population.  相似文献   

6.
Altogether 40 thymic tumor patients were investigated. Radiograms and pneumomediastinograms were subjected to processing aposteriori (increased contrast and spatial filtration). Spatial filtration improved selective analysis of spatial frequencies of imaging. Processing of images specified diagnosis of thymomas by underlining the shapes of normal and abnormal mediastinal formations and signs of invasion of the pericardium and pleura.  相似文献   

7.
Spatial frequency is a fundamental visual feature coded in primary visual cortex, relevant for perceiving textures, objects, hierarchical structures, and scenes, as well as for directing attention and eye movements. Temporal amplitude-modulation (AM) rate is a fundamental auditory feature coded in primary auditory cortex, relevant for perceiving auditory objects, scenes, and speech. Spatial frequency and temporal AM rate are thus fundamental building blocks of visual and auditory perception. Recent results suggest that crossmodal interactions are commonplace across the primary sensory cortices and that some of the underlying neural associations develop through consistent multisensory experience such as audio-visually perceiving speech, gender, and objects. We demonstrate that people consistently and absolutely (rather than relatively) match specific auditory AM rates to specific visual spatial frequencies. We further demonstrate that this crossmodal mapping allows amplitude-modulated sounds to guide attention to and modulate awareness of specific visual spatial frequencies. Additional results show that the crossmodal association is approximately linear, based on physical spatial frequency, and generalizes to tactile pulses, suggesting that the association develops through multisensory experience during manual exploration of surfaces.  相似文献   

8.
Dresp B 《Spatial Vision》1999,12(2):129-142
Psychophysical thresholds for the detection of luminance targets improve significantly when the targets are presented in a specific context of spatially separated, collinear inducing stimuli defining visual contours. This phenomenon is generally referred to as a special case of detection facilitation called spatial facilitation. Spatial facilitation has been observed with luminance-defined. achromatic stimuli on achromatic backgrounds as well as with targets and inducers defined by colour contrast. This paper reviews psychophysical results from detection experiments with human observers showing the conditions under which spatially separated contour inducers facilitate the detection of simultaneously presented target stimuli. The findings point towards two types of spatial mechanisms: (i) Short-range mechanisms that are sensitive to narrowly spaced stimuli of small size and, at distinct target locations, selective to the contrast polarity of targets and inducers. (ii) Long-range mechanisms that are triggered by longer stimuli, generate facilitation across wider spatial gaps between targets and inducers, and are insensitive to their contrast polarity. Spatial facilitation with chromatic stimuli requires a longer inducer exposure than spatial facilitation with achromatic stimuli, which is already fully effective at inducer exposures of 30 ms. This difference in temporal dynamics indicates some functional segregation between mechanisms for colour and luminance contrast in spatial coding. In general, spatially induced detection facilitation can to a large extent be explained by mechanisms involving from-short-to-long-range interactions between cortical detectors.  相似文献   

9.
The spatial distribution of the current density of fast electrons and the ionization rate in a gap filled with atmospheric-pressure air under the conditions of a non-self-sustained discharge controlled by a fast electron beam were investigated. The experiments were carried out in a gas-discharge chamber with a grid electrode arranged in parallel to the exit window of the ionization source. Spatial variations in the current density of fast electrons resulting from the grid were measured. The propagation of the electron beam through the discharge system was simulated numerically by the Monte Carlo method in the so-called “effective collision” approximation. The calculated results agree well with the experimental data.  相似文献   

10.
Visually evoked potentials were used to determine the spatial contrast response function of the visual system and the visual acuity of the pigeon. The spatial contrast response describes the relationship between the contrast in a pattern of vertical stripes, whose luminance is a function of position, and the amplitude of the visually evoked response at various spatial frequencies for a given temporal frequency (pattern reversal frequency); it indicates how particular spatial frequencies are attenuated in the visual system. The visually evoked responses were recorded using monopolar stainless steel electrodes inserted into the stratum griseum superficiale of the optic tectum; the depth of penetration was determined on the basis of a stereotactic atlas. The stimulus patterns were generated on a video monitor placed 75 cm in front of the animal's eye perpendicular to the optic axis. The spatial contrast response function measured at 10% contrast and 0.5 Hz reversal frequency shows a peak at a spatial frequency of 0.5 c/deg, corresponding to 1 degree of visual angle, and decreases progressively at higher spatial frequencies. The high-frequency limit (cut-off frequency) for resolution of sinusoidal gratings, estimated from the contrast response function, is 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc.  相似文献   

11.
Spatial capture–recapture models (SCR) are used to estimate animal density and to investigate a range of problems in spatial ecology that cannot be addressed with traditional nonspatial methods. Bayesian approaches in particular offer tremendous flexibility for SCR modeling. Increasingly, SCR data are being collected over very large spatial extents making analysis computational intensive, sometimes prohibitively so. To mitigate the computational burden of large‐scale SCR models, we developed an improved formulation of the Bayesian SCR model that uses local evaluation of the individual state‐space (LESS). Based on prior knowledge about a species’ home range size, we created square evaluation windows that restrict the spatial domain in which an individual's detection probability (detector window) and activity center location (AC window) are estimated. We used simulations and empirical data analyses to assess the performance and bias of SCR with LESS. LESS produced unbiased estimates of SCR parameters when the AC window width was ≥5σ (σ: the scale parameter of the half‐normal detection function), and when the detector window extended beyond the edge of the AC window by 2σ. Importantly, LESS considerably decreased the computation time needed for fitting SCR models. In our simulations, LESS increased the computation speed of SCR models up to 57‐fold. We demonstrate the power of this new approach by mapping the density of an elusive large carnivore—the wolverine (Gulo gulo)—with an unprecedented resolution and across the species’ entire range in Norway (> 200,000 km2). Our approach helps overcome a major computational obstacle to population and landscape‐level SCR analyses. The LESS implementation in a Bayesian framework makes the customization and fitting of SCR accessible for practitioners working at scales that are relevant for conservation and management.  相似文献   

12.
Understanding how landscape heterogeneity mediates the effects of fire on biodiversity is increasingly important under global changes in fire regimes. We used a simulation experiment to investigate how fire regimes interact with topography and weather to shape neutral and selection‐driven genetic diversity under alternative dispersal scenarios, and to explore the conditions under which microrefuges can maintain genetic diversity of populations exposed to recurrent fire. Spatial heterogeneity in simulated fire frequency occurred in topographically complex landscapes, with fire refuges and fire‐prone “hotspots” apparent. Interannual weather variability reduced the effect of topography on fire patterns, with refuges less apparent under high weather variability. Neutral genetic diversity was correlated with long‐term fire frequency under spatially heterogeneous fire regimes, being higher in fire refuges than fire‐prone areas, except under high dispersal or low fire severity (low mortality). This generated different spatial genetic structures in fire‐prone and fire‐refuge components of the landscape, despite similar dispersal. In contrast, genetic diversity was only associated with time since the most recent fire in flat landscapes without predictable refuges and hotspots. Genetic effects of selection driven by fire‐related conditions depended on selection pressure, migration distance and spatial heterogeneity in fire regimes. Allele frequencies at a locus conferring higher fitness under successional environmental conditions followed a pattern of “temporal adaptation” to contemporary conditions under strong selection pressure and high migration. However, selected allele frequencies were correlated with spatial variation in long‐term mean fire frequency (relating to environmental predictability) under weak dispersal, low selection pressure and strong spatial heterogeneity in fire regimes.  相似文献   

13.
We examined the effects of spatial frequency similarity and dissimilarity on human contour integration under various conditions of uncertainty. Participants performed a temporal 2AFC contour detection task. Spatial frequency jitter up to 3.0 octaves was applied either to background elements, or to contour and background elements, or to none of both. Results converge on four major findings. (1) Contours defined by spatial frequency similarity alone are only scarcely visible, suggesting the absence of specialized cortical routines for shape detection based on spatial frequency similarity. (2) When orientation collinearity and spatial frequency similarity are combined along a contour, performance amplifies far beyond probability summation when compared to the fully heterogenous condition but only to a margin compatible with probability summation when compared to the fully homogenous case. (3) Psychometric functions are steeper but not shifted for homogenous contours in heterogenous backgrounds indicating an advantageous signal-to-noise ratio. The additional similarity cue therefore not so much improves contour detection performance but primarily reduces observer uncertainty about whether a potential candidate is a contour or just a false positive. (4) Contour integration is a broadband mechanism which is only moderately impaired by spatial frequency dissimilarity.  相似文献   

14.
放牧和刈割条件下草山草坡群落空间异质性分析   总被引:13,自引:1,他引:12  
采用变异矩分析和分形方法,研究了草山草坡群落在放牧和刈割条件下的空间异质性及空间自相关性,结果表明,群落空间格局有尺度依赖性,刈割条件下空物异质性及空间相关性弱,多样性梯度即β多样性小,放牧消除地形引起的样地差异,因而使空间异质性简单化。  相似文献   

15.
16.
Vegetation patterns are strongly influenced by sand mobility in desert ecosystems. However, little is known about the spatial patterns of Artemisia ordosica, a dominant shrub in the Mu Us desert of Northwest China, in relation to sand fixation. The aim of this study was to investigate and contrast the effects of sand dune stabilization on the population and spatial distribution of this desert shrub. Spatial autocorrelation, semi-variance analysis, and point-pattern analysis were used jointly in this study to investigate the spatial patterns of A. ordosica populations on dunes in Yanchi County of Ningxia, China. The results showed that the spatial autocorrelation and spatial heterogeneity declined gradually, and the distance between the clustered individuals shortened following sand dune fixation. Seedlings were more aggregated than adults in all stage of dune stabilization, and both were more aggregated on shifting sand dunes separately. Spatial associations of the seedlings with the adults were mostly positive at distances of 0–5 m in shifting sand dunes, and the spatial association changed from positive to neutral in semi-fixed sand dunes. The seedlings were spaced in an almost random pattern around the adults, and their distances from the adults did not seem to affect their locations in semi-fixed sand dunes. Furthermore, spatial associations of the seedlings with the adults were negative in the fixed sand dune. These findings demonstrate that sand stabilization is an important factor affecting the spatial patterns of A. ordosica populations in the Mu Us desert. These findings suggest that, strong association between individuals may be the mechanism to explain the spatial pattern formation at preliminary stage of dune fixation. Sand dune stabilization can change the spatial pattern of shrub population by weakening the spatial association between native shrub individuals, which may affect the development direction of desert shrubs.  相似文献   

17.
Visual evoked potentials (VEPs) were obtained from the surface of teh cat visual cortex in response to contrast reversing sinusoidal gratings. Gratings of different spatial frequency were presented either separately, using signal averaging to increase the signal-to-noise ratio, or as a spatial frequency sweep, in which spatial frequency was sequentially increased every 5 sec during a 40 sec trial (3.99 Hz) or every 3 sec during a 24 sec trial (6.65 Hz). The second harmonic amplitude- and phase-spatial frequency functions derived from averaging or from sweep trials were similar, indicating that the swept stimulus method can be used to provide a rapid and reliable measure of the VEP-spatial frequency function. Intravenous administration of physostigmine, an acetylcholinesterase inhibitor, evoked a spatial frequency-dependent change in VEP amplitude. At 3.99 Hz, responses to low spatial frequencies were enhanced to a greater extent than were responses to high spatial frequency stimuli. At 6.65 Hz, responses to mid-range spatial frequencies were enhanced to a greater extent than were responses to low and high spatial frequency stimuli. VEP phase at both 3.99 and 6.65 Hz was advanced to a greater degree at the higher spatial frequencies. These results indicate that the swept spatial frequency method may be useful in studying spatial frequency-dependent pharmacological effects on the VEP and support the possibility that pharmacological disruption of the cholinergic visual system can produce such changes.  相似文献   

18.
Spatial Autocorrelation Analysis of Migration and Selection   总被引:17,自引:0,他引:17       下载免费PDF全文
R. R. Sokal  G. M. Jacquez    M. C. Wooten 《Genetics》1989,121(4):845-855
We test various assumptions necessary for the interpretation of spatial autocorrelation analysis of gene frequency surfaces, using simulations of Wright's isolation-by-distance model with migration or selection superimposed. Increasing neighborhood size enhances spatial autocorrelation, which is reduced again for the largest neighborhood sizes. Spatial correlograms are independent of the mean gene frequency of the surface. Migration affects surfaces and correlograms when immigrant gene frequency differentials are substantial. Multiple directions of migration are reflected in the correlograms. Selection gradients yield clinal correlograms; other selection patterns are less clearly reflected in their correlograms. Sequential migration from different directions and at different gene frequencies can be disaggregated into component migration vectors by means of principal components analysis. This encourages analysis by such methods of gene frequency surfaces in nature. The empirical results of these findings lend support to the inference structure developed earlier for spatial autocorrelation analysis.  相似文献   

19.
Zhang T  Lin G 《Biometrics》2009,65(2):353-360
Summary .  Spatial clustering is commonly modeled by a Bayesian method under the framework of generalized linear mixed effect models (GLMMs). Spatial clusters are commonly detected by a frequentist method through hypothesis testing. In this article, we provide a frequentist method for assessing spatial properties of GLMMs. We propose a strategy that detects spatial clusters through parameter estimates of spatial associations, and assesses spatial aspects of model improvement through iterated residuals. Simulations and a case study show that the proposed method is able to consistently and efficiently detect the locations and magnitudes of spatial clusters.  相似文献   

20.
温带落叶阔叶林地表鞘翅目成虫小尺度空间格局动态分析   总被引:1,自引:0,他引:1  
土壤动物空间格局是格局—过程以及生物多样性维持机制研究的重要基础,目前小尺度空间土壤动物空间格局动态特征仍不清楚。基于地统计空间分析方法,以鞘翅目成虫为研究对象,研究帽儿山温带落叶阔叶林小尺度空间(5m)地表鞘翅目成虫群落及类群的空间格局动态特征。结果表明:4次调查共捕获鞘翅目成虫11科、29类、1021只个体,调查月份鞘翅目成虫群落具有较强的时空变异性;Moran'sⅠ系数表明鞘翅目成虫群落和类群具有复杂的正的空间自相关性,其空间异质性可用球状、指数、高斯和线性模型进行拟合。这种空间异质性具有一定的时间变化特征,且这种空间分异是由随机性因素单一调控或结构性因素和随机性因素共同调控的结果;类群之间在多种尺度上表现为复杂的以负相关居多的空间关联性,这种空间关联性的形成主要是结构性因素或随机性因素单一调控的结果。本实验表明地表鞘翅目成虫群落在小尺度空间具有明显的空间异质性特征,这种空间异质性时间变异性较明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号