首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive radiation resulting from differential selection acting on functional features is believed to be an important source of biodiversity. In this study, morphometric measures and mitochondrial DNA are used to test for adaptive radiation within four fish genera (Glossogobius, Oryzias, Dermogenys and Telmatherina) endemic to an ancient island lake (Lake Matano, Sulawesi, Indonesia), using the framework proposed by Schluter (The Ecology of Adaptive Radiation, Oxford University Press, 2000). We demonstrate common ancestry and rapid divergence in one genus (Telmatherina) based on 560 bp of 16S sequence data. We found higher levels of variation in feeding-related traits (N = 8) for Telmatherina relative to the other genera, while no differences were found for sexual display traits (N = 8) or neutral morphological traits (N = 8). Telmatherina also had the highest number of distinct colouration patterns among the four genera. These data, combined with the very low productivity of the lake, are indicative of selection driving adaptive radiation. The morphometric divergence in the Telmatherina likely results from selection acting on feeding traits in this low productivity lake, leading to trophic specialization among closely related morphotypes. These results provide indirect but compelling data supporting the adaptive radiation of Telmatherina in this system.  相似文献   

2.
Ancient lakes are natural laboratories for the study of adaptive radiation. Recently, two lake systems on the Indonesian island Sulawesi have emerged as promising new model systems. A species flock of atyid freshwater shrimps in the Malili lake system comprises 15 colorful endemic taxa. Mitochondrial DNA data suggest two independent colonizations by riverine ancestors. Only one colonization event led to subsequent radiation into 14 species, while the second clade comprises just one species. The vast majority of species (n= 12) are habitat specialists, which are confined to the larger Malili clade and include all taxa with species‐specific color patterns and a restricted distribution within the five connected Malili lakes. Morphological, genetic, and ecological data are consistent with the existence of an adaptive radiation in the Malili lakes, involving the habitat‐specific diversification of trophic morphology. In addition to testing criteria for the recognition of an adaptive radiation, an ancestral state reconstruction reveals an equal probability for either a riverine generalist or a lacustrine specialist as ancestor of the large Malili clade, which is interpreted as indicative of an early stage of habitat specialization within this radiation. Finally, our results suggest that species diversification may have been primarily driven by ecological specialization and allopatric speciation.  相似文献   

3.
An important environmental factor determining both phytoplankton and zooplankton community composition is lake depth and thermal stratification. However, there is little information on how the interaction between zooplankton grazers and their phytoplankton food changes along an environmental gradient of lake depth. We contrasted resource availability for daphniid zooplankton populations living in two shallow, unstratified lakes and in two deep, stratified lakes using a novel growth bioassay. Stratified lakes had consistently lower resource richness than shallow unstratified lakes. To test whether resources were important in explaining differences in daphniid composition of shallow and deep lakes, we performed reciprocal transplant experiments. We raised daphniids typical of shallow (Ceriodaphnia reticulata) and deep (Daphnia dentifera) lakes in the resources from replicate shallow and deep lakes and monitored survival and reproduction. The two species exhibited a performance trade-off, measured by life table r and R 0, across a gradient in natural resource richness. D. dentifera had higher relative fitness than C. reticulata when raised in the poorest resource environment from a deep lake. However, under richer resource conditions typical of shallow lakes, C. reticulata outperformed D. dentifera. We further created a gradient in natural resource quantity (by dilution) to test whether this trade-off in species relative fitness involved aspects of resource quality. No trade-off in species performance was evident across the dilution gradient, indicating that resource quality was important to the trade-off. We conclude that shifts in daphniid species composition along a gradient of lake depth involve an adaptive trade-off in ability to exploit rich versus poor resource quality. Received: 11 May 1998 / Accepted: 15 January 1999  相似文献   

4.
There is ample empirical evidence that phenotypic diversification in an adaptive radiation is the outcome of divergent natural selection related to differential resource use. In contrast, the role of ecological forces in favoring and maintaining reproductive isolation in nature remains poorly understood. If the same forces driving phenotypic divergence are also responsible for speciation, one would predict a correlation between the extent of trophic specialization (reflecting variable intensity of divergent natural selection) and that of reproductive isolation being reached in a given environment. We tested this hypothesis by comparing the extent of morphological and genetic differentiation between sympatric dwarf and normal whitefish ecotypes (Coregonus sp.) from six lakes of the St. John River basin (eastern Canada and northern Maine). Eight meristic variables, 19 morphometric variables, and six microsatellite loci were used to quantify morphological and genetic differentiation, respectively. Dwarf and normal ecotypes in each lake differed primarily by traits related to trophic specialization, but the extent of differentiation varied among lakes. Significant but variable genetic divergence between ecotypes within lakes was also observed. A negative correlation was observed between the extent of gene flow between ecotypes within a lake and that of their morphological differentiation in trophic-related traits. The extent of reproductive isolation reached between dwarf and normal whitefish ecotypes appears to be driven by the potential for occupying distinct trophic niches and, thus, by the same selective forces driving tropic specialization in each lake. These results therefore support the hypothesis of ecological speciation.  相似文献   

5.
Under the ecological theory of adaptive radiation, adaptation and reproductive isolation are thought to evolve as a result of divergent natural selection. Accordingly, elucidating the genetic basis of these processes is essential toward understanding the role of selection in shaping biological diversity. In this respect, the number of genes that evolved by selection remains contentious. To address this issue, the pattern of genetic differentiation obtained using 440 AFLP loci was compared with that expected under neutrality in four sympatric pairs of lake whitefish ecotypes that evolved adaptive phenotypic differences associated with the exploitation of distinct ecological niches. On average, 14 loci showed restricted gene flow relative to neutral expectation, suggesting a role of directional selection on their divergence. Among all loci that are most likely under directional selection, six exhibited parallel patterns of divergence, which provided further support for the role of selection in driving their divergence. Overall, these results indicate that only a small proportion of scored AFLP loci (between 1.4% and 3.2%) might be linked to genes implicated in the adaptive radiation of lake whitefish.  相似文献   

6.
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex‐specific adaptation. How competition‐driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade‐wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.  相似文献   

7.
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.  相似文献   

8.
Highly polymorphic colouration patterns are often associated with sexual selection in fish and can be the initial cause of divergence among closely related taxa. Here we use genetic, body colour and geometric morphometric data collected on 118 fish from Lake Matano, Sulawesi, Indonesia to test if colouration is the initial cause of divergence in the radiating Telmatherina genus. Results reveal that all Telmatherina previously described in this system can be categorized into three mitochondrial lineages and that colouration is only weakly associated with early divergence. Clade-specific body shapes, however, likely adapted to microenvironments are key to the initial divergence in this system. Data also show that although colourations were not likely instrumental in seeding divergence in these fish, they appear to have developed in parallel within each clade. Our results are consistent with an emerging pattern repeated in many vertebrate radiations, whereby divergence by colouration or other display traits is preceded by specialization to environmental adaptive peaks.  相似文献   

9.
Ecological speciation and adaptive radiation are key processes shaping northern temperate freshwater fish diversity. Both often involve parapatric differentiation between stream and lake populations and less often, sympatric intralacustrine diversification into habitat‐ and resource‐associated ecotypes. However, few taxa have been studied, calling for studies of others to investigate the generality of these processes. Here, we test for diversification within catchments in freshwater sculpins in a network of peri‐Alpine lakes and streams. Using 8047 and 13 182 restriction site‐associated (RADseq) SNPs, respectively, we identify three deeply divergent phylogeographic lineages associated with different major European drainages. Within the Aare catchment, we observe populations from geographically distant lakes to be genetically more similar to each other than to populations from nearby streams. This pattern is consistent with two distinct colonization waves, rather than by parapatric ecological speciation after a single colonization wave. We further find two distinct depth distribution modes in three lakes of the Aare catchment, one in very shallow and one in very deep water, and significant genomewide differentiation between these in one lake. Sculpins in the Aare catchment appear to represent an early‐stage adaptive radiation involving the evolution of a lacustrine lineage distinct from parapatric stream sculpins and the repeated onset of depth‐related intralacustrine differentiation.  相似文献   

10.
Abstract Lakes differ in the quality of food for planktonic grazers, but whether grazers adapt to this resource heterogeneity is poorly studied. We test for evidence of specialization to resource environment within a guild of suspension feeding daphniids inhabiting lakes that differ in food web structure. Using bioassays, we demonstrate that food quality for grazers increases from deep to shallow to temporary lakes, which also represents a gradient of increasing predation risk. We compare growth rates and reproductive performance of daphniid taxa specific to each of the three lake types and find they differ greatly in minimum resource requirements, and in sensitivity to the resource gradient. These differences express a trade‐off in ability to exploit rich vs. poor resources. Taxa from deep lakes, poor in resources, have low minimal needs, but they do relatively poorly in rich resource environments. We conclude that grazer distribution is consistent with an adaptive match of exploitation ability to resource environments.  相似文献   

11.
The study of genetic evolution within the context of adaptive radiations offers insights to genes and selection pressures that result in rapid morphological change. Cichlid fishes are very species-rich and variable in coloration, behavior, and morphology, and so provide a classical model system for studying the genetics of adaptive radiation. In this study, we researched the evolution of the epithelial cell adhesion molecule (EPCAM), a candidate gene for the adaptive evolution of morphology broadly, and skin development specifically, in fishes. We compared EPCAM gene sequences from a rapidly speciating African cichlid lineage (the haplochromines), a species-poor African lineage (Nile tilapia Oreochromis niloticus), and a very young adaptive radiation in the Neotropics (sympatric crater lake Midas cichlids, Amphilophus sp.). Our results, based on a hierarchy of evolutionary analyses of nucleotide substitution, demonstrate that there are different selection pressures on the EPCAM gene among the cichlid lineages. Several waves of positive natural selection were identified not only on the terminal branches, but also on ancestral branches. Interestingly, significant positive or directional selection was found in the haplochromine cichlids only but not the comparatively species-poor tilapia lineage. We hypothesize that the strong signal of selection in the ancestral African cichlid lineage coincided with the transition from riverine to lacustrine habitat. The two neotropical species for which we collected new sequence data were invariant in the EPCAM locus. Our results suggest that functional changes promoted by positive Darwinian selection are widespread in the EPCAM gene during African cichlid evolution.  相似文献   

12.
Gut length plasticity in perch: into the bowels of resource polymorphisms   总被引:1,自引:0,他引:1  
Resource polymorphisms, intraspecific variation in morphology due to differential resource use, are common across a wide range of animal taxa. The focus in studies of such polymorphisms has been on external morphology, but the differential use of food resources could also influence other phenotypic traits such as the digestive performance. In the present study, we experimentally demonstrate that Eurasian perch ( Perca fluviatilis L.) display adaptive plasticity in gut length when exposed to different food types. Perch fed a less digestible food type developed relatively longer guts compared to fish fed a more easily digested food type. This divergence in gut length was also apparent under natural conditions because perch inhabiting the littoral and pelagic habitats of a lake differed in resource use and relative gut length. Despite that the digestive system in perch is plastic, we found that individuals switching to a novel food type might experience an initial fitness cost of the diet switch in the form of a temporary reduction in body condition. These results show the importance of gut length plasticity for an ontogenetic omnivore but also a cost that might prevent diet switching in polymorphic populations.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 517–523.  相似文献   

13.
Competitors are known to be important in governing the outcome of evolutionary diversification during an adaptive radiation, but the precise mechanisms by which they exert their effects remain elusive. Using the model adaptive radiation of Pseudomonas fluorescens, we show experimentally that the effect of competition on diversification of a focal lineage depends on both the strength of competition and the ability of the competitors to diversify. We provide evidence that the extent of diversification in the absence of interspecific competitors depends on the strength of resource competition. We also show that the presence of competitors can actually increase diversity by increasing interspecific resource competition. Competitors that themselves are able to diversify prevent diversification of the focal lineage by removing otherwise available ecological opportunities. These results suggest that the progress of an adaptive radiation depends ultimately on the strength of resource competition, an effect that can be exaggerated or impeded by the presence of competitors.  相似文献   

14.
Observations of a novel behavioural tactic employed by egg-eating male Telmatherina sarasinorum are described. Four T. sarasinorum males were observed actively courting females of closely related Telmatherina antoniae , enticing the female to spawn, and then eating the eggs. The possible evolutionary implications of sneaky egg-eating behaviour are discussed.  相似文献   

15.
Adaptive radiation in microbial microcosms   总被引:1,自引:0,他引:1  
It has often been argued that evolutionary diversification is the result of divergent natural selection for specialization on alternative resources. I provide a comprehensive review of experiments that examine the ecology and genetics of resource specialization and adaptive radiation in microbial microcosms. In these experiments, resource heterogeneity generates divergent selection for specialization on alternative resources. At a molecular level, the evolution of specialization is generally attributable to mutations that de-regulate the expression of existing biosynthetic and catabolic pathways. Trade-offs are associated with the evolution of resource specialization, but these trade-offs are often not the result of antagonistic pleiotropy. Replicate adaptive radiations result in the evolution of a similar assemblage of specialists, but the genetic basis of specialization differs in replicate radiations. The implications of microbial selection experiments for evolutionary theory are discussed and future directions of research are proposed.  相似文献   

16.
17.
Disruptive natural selection on traits related to resource exploitation may lead to differential adaptation and finally to speciation. Trait utility, the performance of traits in terms of fitness, is a central criterion for the recognition of adaptive radiation. Utility of morphological structures involved in foraging can be detected by relating their variation to individual resource use. Here, we test for trophic adaptations in the radiation of “sharpfin” sailfin silversides (Atheriniformes: Telmatherinidae), endemic to ancient graben-lake Matano in central Sulawesi (Indonesia). This small species-flock is characterized by high phenotypic diversity, including traits most likely related to feeding ecology. Previous analyses suggest that species boundaries are porous, indicating very recent or possibly ongoing processes of species flock formation. To test for adaptation to resource use in this radiation, we compared morphological traits among trophic groups of individuals as identified by stomach content analyses. We analyzed variation in candidate structures or structural complexes commonly recognized as indicative of trophic adaptation in fish radiations, including shapes of body, oral and pharyngeal jaws, gill rakers and body size. We found fine-scaled morphological differentiation according to feeding habits, covering all traits analyzed. Fish-, shrimp- and egg-feeders were most distinct, with major axes of morphological variation fitting patterns of adaptation reported from other lacustrine fish radiations. Thus, the present results are consistent with fine-scaled morphological adaptation to resource use, supporting the adaptive character of the sharpfin sailfin silverside radiation.  相似文献   

18.
Lakes are disproportionately important ecosystems for humanity, containing 77% of the liquid surface freshwater on Earth and comprising key contributors to global biodiversity. With an ever-growing human demand for water and increasing climate uncertainty, there is pressing need for improved understanding of the underlying patterns of natural variability of water resources and consideration of their implications for water resource management and conservation. Here we use Bayesian harmonic regression models to characterise water level dynamics and study the influence of cyclic components in confounding estimation of long-term directional trends in water levels in natural Irish lakes. We found that the lakes were characterised by a common and well-defined annual seasonality and several inter-annual and inter-decadal cycles with strong transient behaviour over time. Importantly, failing to account for the longer-term cyclic components produced a significant overall underestimation of the trend effect. Our findings demonstrate the importance of contextualising lake water resource management to the specific physical setting of lakes.  相似文献   

19.
Advances in genomic techniques are greatly facilitating the study of molecular signatures of selection in diverging natural populations. Connecting these signatures to phenotypes under selection remains challenging, but benefits from dissections of the genetic architecture of adaptive divergence. We here perform quantitative trait locus (QTL) mapping using 488 F2 individuals and 2011 single nucleotide polymorphisms (SNPs) to explore the genetic architecture of skeletal divergence in a lake‐stream stickleback system from Central Europe. We find QTLs for gill raker, snout, and head length, vertebral number, and the extent of lateral plating (plate number and height). Although two large‐effect loci emerge, QTL effect sizes are generally small. Examining the neighborhood of the QTL‐linked SNPs identifies several genes involved in bone formation, which emerge as strong candidate genes for skeletal evolution. Finally, we use SNP data from the natural source populations to demonstrate that some SNPs linked to QTLs in our cross also exhibit striking allele frequency differences in the wild, suggesting a causal role of these QTLs in adaptive population divergence. Our study paves the way for comparative analyses across other (lake‐stream) stickleback populations, and for functional investigations of the candidate genes.  相似文献   

20.
How does natural selection shape the structure of variance and covariance among multiple traits, and how do (co)variances influence trajectories of adaptive diversification? We investigate these pivotal but open questions by comparing phenotypic (co)variances among multiple morphological traits across 18 derived lake‐dwelling populations of threespine stickleback, and their marine ancestor. Divergence in (co)variance structure among populations is striking and primarily attributable to shifts in the variance of a single key foraging trait (gill raker length). We then relate this divergence to an ecological selection proxy, to population divergence in trait means, and to the magnitude of sexual dimorphism within populations. This allows us to infer that evolution in (co)variances is linked to variation among habitats in the strength of resource‐mediated disruptive selection. We further find that adaptive diversification in trait means among populations has primarily involved shifts in gill raker length. The direction of evolutionary trajectories is unrelated to the major axes of ancestral trait (co)variance. Our study demonstrates that natural selection drives both means and (co)variances deterministically in stickleback, and strongly challenges the view that the (co)variance structure biases the direction of adaptive diversification predictably even over moderate time spans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号