首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented to substantiate a chloroplastic respiratory pathway in the green alga, Chlamydomonas reinhardtii, whereby reducing equivalents generated during the degradation of starch enter the thylakoidal chain at the plastoquinone site catalyzed by NADH-plastoquinone reductase. In this formulation, the reduced plastoquinone is oxidized either by the photoevolution (photosystem I) of H2 under anaerobic conditions or by O2 during dark respiration.  相似文献   

2.
Fermentative Metabolism of Hydrogen-evolving Chlamydomonas moewusii   总被引:3,自引:3,他引:0       下载免费PDF全文
Klein U  Betz A 《Plant physiology》1978,61(6):953-956
The anaerobic metabolism of Chlamydomonas moewusii under both light (160 lux) and dark conditions has been examined using manometric and enzymic techniques. During anaerobiosis starch is broken down to glycerol, acetate, ethanol, CO2, and H2. The release of CO2 and H2 comes to an end when the starch pool is depleted.

There are only slight differences in the ratio of the end products of fermentation between light and dark metabolism. In the light, glycerol production is diminished and H2 evolution is enhanced, whereas the production rate of all other end products generally does not change.

  相似文献   

3.
The anaerobic photodissimilation of acetate by Chlamydomonas reinhardii F-60 adapted to a hydrogen metabolism was studied utilizing manometric and isotopic techniques. The rate of photoanaerobic (N2) acetate uptake was approximately 20 μmoles per milligram chlorophyll per hour or one-half that of the photoaerobic (air) rate. Under N2, cells produced 1.7 moles H2 and 0.8 mole CO2 per mole of acetate consumed. Gas production and acetate uptake were inhibited by monofluoroacetic acid (MFA), 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) and by H2. Acetate uptake was inhibited about 50% by 5% H2 (95% N2). H2 in the presence of MFA or DCMU stimulated acetate uptake and the result was interpreted to indicate a transition from oxidative to reductive metabolism. Carbon-14 from both [1-14C]- and [2-14C]acetate was incorporated under N2 or H2 into CO2, lipids, and carbohydrates. The methyl carbon of acetate accumulated principally (75-80%) in the lipid and carbohydrate fractions, whereas the carboxyl carbon contributed isotope primarily to CO2 (56%) in N2. The presence of H2 caused a decrease in carbon lost from the cell as CO2 and a greater proportion of the acetate was incorporated into lipid. The results support the occurrence of anaerobic and light-dependent citric acid and glyoxylate cycles which affect the conversion of acetate to CO2 and H2 prior to its conversion to cellular material.  相似文献   

4.
1. A fully automated phototaxis monitoring device is described for measuring photo-topotactic responses of flagellated organisms. 2. Photokinesis can be demonstrated in Chlamydomonas cells only after a dark period of about 72 hrs. 3. Pre-darkening of a few hours duration raises the phototactic disposition, whereas pre-illumination has no significant effect. 4. Circadian rhythms can be initiated by only one period of darkness or lower light intensity, whereas a period of higher intensity does not induce rhythms. The period length of the circadian rhythms is about 24 hrs.  相似文献   

5.
Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes.  相似文献   

6.
Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii   总被引:1,自引:1,他引:0  
The flux of glycolate through the C2 pathway in Chlamydomonas reinhardtii was estimated after inhibition of the pathway with aminooxyacetate (AOA) or aminoacetonitrile (AAN) by measurement of the accumulation of glycolate and glycine. Cells grown photoautotrophically in air excreted little glycolate except in the presence of 2 mm AOA when they excreted 5 micromoles glycolate per hour per milligram clorophyll. Cells grown on high CO2 (1-5%) when transferred to air produced three times as much glycolate, with half of the glycolate metabolized and half excreted. The lower amount of glycolate produced by the air-grown cells reflects the presence of a CO2 concentrating mechanism which raises the internal CO2 level and decreases the ribulose-1,5-bisP oxygenase reaction for glycolate production. Despite the presence of the CO2 concentrating mechanism, there was still a significant amount of glycolate produced and metabolized by air-grown Chlamydomonas. The capacity of these cells to metabolize between 5 and 10 micromoles of glycolate per hour per milligram chlorophyll was confirmed by measuring the biphasic uptake of added labeled glycolate. The initial rapid (<10 seconds) phase represented uptake of glycolate; the slow phase represented the metabolism of glycolate. The rates of glycolate metabolism were in agreement with those determined using the C2-cycle inhibitors during CO2 fixation.  相似文献   

7.
Photoexcitation of rhodopsin in Chlamydomonas reinhardtii triggers a complex of rapid bioelectric processes in the cell membrane. Photoreceptor and flagellar currents are the major components of this cascade and are the basis for the phototaxis and photoshock response, respectively. Desensitization and dark recovery of the extracellularly recorded photoreceptor current were investigated in double-flash excitation experiments. The data obtained show that the desensitization is determined by membrane depolarization rather than by rhodopsin bleaching. At external K+ concentrations less than 0.6 mM, generation of the flagellar current triggers a transient, depolarization-activated K+ efflux that contributes to membrane repolarization after light excitation. Acceleration of the dark recovery at 5 to 10 mM Ca2+ can be partially attributed to a blockade of K+ influx, which is triggered at higher external K+ concentrations. K+ currents constitute a novel component of the rhodopsin-mediated signaling system in C. reinhardtii that is involved in the process of dark adaptation of the system.  相似文献   

8.
9.
Cilia and flagella are cell organelles that are highly conserved throughout evolution. For many years, the green biflagellate alga Chlamydomonas reinhardtii has served as a model for examination of the structure and function of its flagella, which are similar to certain mammalian cilia. Proteome analysis revealed the presence of several kinases and protein phosphatases in these organelles. Reversible protein phosphorylation can control ciliary beating, motility, signaling, length, and assembly. Despite the importance of this posttranslational modification, the identities of many ciliary phosphoproteins and knowledge about their in vivo phosphorylation sites are still missing. Here we used immobilized metal affinity chromatography to enrich phosphopeptides from purified flagella and analyzed them by mass spectrometry. One hundred forty-one phosphorylated peptides were identified, belonging to 32 flagellar proteins. Thereby, 126 in vivo phosphorylation sites were determined. The flagellar phosphoproteome includes different structural and motor proteins, kinases, proteins with protein interaction domains, and many proteins whose functions are still unknown. In several cases, a dynamic phosphorylation pattern and clustering of phosphorylation sites were found, indicating a complex physiological status and specific control by reversible protein phosphorylation in the flagellum.Cilia and flagella, which are essentially identical, are among the most ancient cellular organelles, providing motility for primitive eukaryotic cells living in aqueous environments. The assembly and motility of flagella have been studied extensively with the unicellular biflagellate green alga Chlamydomonas reinhardtii. This alga uses flagella for motility and for cell-cell recognition during mating. In basal land plants, such as bryophytes and pteridophytes, the only flagellated cells are motile sperm cells, which require water to swim to the egg. With the evolution of pollen tubes in higher gymnosperms and angiosperms, these plant species lost the ability to assemble flagella (24, 42). Flagella of animals have acquired new functions in multicellular organizations during evolution (6). In mammals, cilia and flagella can be motile or immotile. Motile cilia can be found, for example, in airways (respiratory cilia), in the brain (ependymal cilia), or in the male reproductive system (sperm flagella). Defects in cilia in humans can cause severe diseases, such as polycystic kidney disease, retinal degeneration, hydrocephalus, or changes in the left-right symmetry of organs, collectively known as ciliopathies (20, 32).Although C. reinhardtii and mammals are separated by more than 109 years of evolution, C. reinhardtii flagella are amazingly similar in structure and function to the 9+2-type axonemes of most motile mammalian flagella and cilia (42). They are composed of nine microtubular doublets surrounding two central microtubular singlets. The axoneme of motile flagella includes substructures such as dynein arms and radial spokes that generate and control axoneme bending (31). The flagellum also contains matrix proteins that are not tightly associated with the flagellar membrane or the axoneme. They serve diverse functions and can be involved in intraflagellar transport (IFT) (37).Proteome analyses of cilia, including, for example, a human cilium, a mouse photoreceptor sensory cilium, and the flagella of the green alga Chlamydomonas reinhardtii, have unraveled hundreds of so far unknown proteins of this organelle (18, 29, 33) and have paved the way to further study the functions of these proteins. Several kinases and phosphatases were found in these proteomes, suggesting that reversible protein phosphorylation plays an important role in signaling in this organelle. This is underlined by earlier studies showing that phosphorylation and dephosphorylation control flagellar motility (35), signaling (30), length, and assembly (37, 53) in C. reinhardtii. Some phosphoproteins known or assumed to be involved in these processes, such as outer dynein arm heavy chain alpha (13), inner dynein arm intermediate chain protein IC138 (7), and central pair kinesin KLP1 (61), were characterized, but the exact in vivo phosphorylation sites were not determined. From earlier studies, it is known that >80 protein spots, representing axonemal components, are labeled by 32P by two-dimensional electrophoretic techniques (34), but many of them have not been identified so far. In the past years, the relevance of some of the flagellar kinases has been shown. For example, silencing of casein kinase 1 (CK1) disturbs flagellum formation, among several other effects (41). One of its targets is IC138 (54). Glycogen synthase kinase 3 was suggested to regulate the assembly and length of flagella (53). Also, in mammalian cilia, reversible protein phosphorylation plays an important role in ciliary beating. Second messengers such as cyclic AMP (cAMP) and cGMP, which activate special kinases, are known to be relevant there (39).An understanding of how reversible protein phosphorylation influences the function of cilia and their role in diseases will require increased information not only about the nature of the phosphoproteins but also on their in vivo phosphorylation sites. In order to gain insight into the phosphoproteome of a eukaryotic cilium, we used the green alga C. reinhardtii, whose entire genome has been sequenced, as a model (23). This organism has many advantages for biochemical and molecular genetic studies of the flagellum. Importantly, as mentioned before, its flagellar proteome is known (33), and in addition, the proteome of the centriole that anchors the flagella is also known (11, 12).For the identification of the targets of the kinases and phosphatases in the flagella, phosphoproteomics can be applied. However, phosphoproteome analysis has been and still is a challenging task (19, 36, 47). This is due to a few facts, as follows. (i) Phosphoproteins can have more than one phosphorylation site, and the phosphorylation status of these sites can fluctuate depending on the physiological conditions of the cell. (ii) Only a small portion of a given protein in the cell can be phosphorylated. (iii) Furthermore, phosphoproteins, especially those of signaling pathways, are often proteins found in low abundance. Therefore, it is necessary to enrich the phosphopeptides. Among different methods, immobilized metal affinity chromatography (IMAC) is frequently used for phosphopeptide enrichment. In C. reinhardtii, phosphopeptides from proteins of the cellular, thylakoid, and eyespot phosphoproteomes were identified by this way (49, 50, 51, 52). Thereby, it became obvious that biochemical enrichment of subcellular fractions as it was done with the eyespot apparatus results in an increase of phosphopeptide identification (52). In this study, we used IMAC and tandem mass spectrometry (MS/MS) along with the acquisition of data-dependent neutral loss (MS/MS/MS spectra) to identify phosphopeptides from isolated flagella of C. reinhardtii. In this way, we identified 32 flagellar phosphoproteins, including different functional categories, along with 126 in vivo phosphorylation sites. In many cases, a dynamic phosphorylation pattern within one peptide was observed.  相似文献   

10.
The y-1 mutant of Chlamydomonas reinhardtii is defective in the conversion of protochlorophyllide (Pchlide) to chlorophyllide in the dark. Aerobic δ-aminolevulinic acid (ALA) feeding of y-1 cells causes protoporphyrin monomethyl ester (PME) to accumulate in addition to increased levels of Pchlide. y-1 cell homogenates are not capable of methylating protoporphyrin (PROTO) to form PME but can methylate magnesium protoporphyrin (MgP) to form magnesium protoporphyrin monomethyl ester (MgPME). Anaerobic ALA feeding of y-1 causes concomitant accumulation of PME and MgPME. y-1 cells treated with α,α′-dipyridyl (DP) accumulate MgPME but not PROTO or PME. A mutant strain (bme) of Chlamydomonas has been isolated which has very little chlorophyll and accumulates PME. bme Cell homogenates can methylate MgP but not PROTO. We propose that: (a) in Chlamydomonas, PME is the initial breakdown product of MgPME; (b) both the breakdown of MgPME to PME and the conversion of MgPME to Pchlide require O2; (c) the breakdown of MgPME to PME appears to require Fe; and (d) the PME accumulated in the bme mutant is the result of an increased breakdown of MgPME.  相似文献   

11.
When intact cells of Chlamydomonas reinhardtii were anaerobicallyincubated in the dark, rapid inactivation of oxygen evolutionwith benzoquinone as the Hill oxidant occurred. Measurementsof electron transport using thylakoids isolated after anaerobictreatment showed that the inactivation occurred at, or before,the secondary electron acceptor of PS II, whereas PS I activitywas largely unaffected. In addition, after anaerobic treatmentfluorescence transients measured with no addition or with dibromomethylisopropylbenzoquinonepresent were virtually the same as those obtained with DCMUpresent. When 10 mM NaHCO3 was added to inactivated cells, partof the oxygen evolution capacity was restored rapidly. However,almost complete recovery (within 20 to 25 min) required theaddition of oxygen as well. This recovery was not light-dependentand was faster in the presence of 1 mM KCN. We suggest thatthe in activation of benzoquinone-dependent oxygen evolutionwas due to both bicarbonate depletion and reduction of the plastoquinonepool. 1Present address: Institute of Molecular Biophysics, FloridaState University, Tallahassee, Florida 32306, U.S.A. (Received January 17, 1984; Accepted February 25, 1984)  相似文献   

12.
Blue Light Regulation of Cell Division in Chlamydomonas reinhardtii   总被引:1,自引:0,他引:1       下载免费PDF全文
Münzner P  Voigt J 《Plant physiology》1992,99(4):1370-1375
A delay in cell division was observed when synchronized cultures of the unicellular green alga Chlamydomonas reinhardtii growing under heterotrophic conditions were exposed to white light during the second half of the growth period. This effect was also observed when photosynthesis was blocked by addition of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Light pulses of 10 minutes were sufficient to induce a delay in cell division in the presence or absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. A delay in cell division was induced by blue light but not by illumination with red or far-red light. The equal intensity action spectrum revealed two peaks at 400 and 500 nm.  相似文献   

13.
Beck CF  Acker A 《Plant physiology》1992,98(3):822-826
Gametic differentiation of the unicellular green alga Chlamydomonas reinhardtii proceeds in two steps controlled by the extrinsic signals nitrogen deficiency and light. Nitrogen deprivation induces the differentiation of vegetative cells to sexually immature pregametes. A light signal is required to convert the pregametes to gametes. Both signals are also required for the maintenance of mating competence. Two converging signal transduction chains are proposed to control gamete formation. For the differentiation of pregametes to gametes, a fluence rate-dependent reaction, requiring continuous irradiation, is suggested by photobiological experiments.  相似文献   

14.
Male and female mating types of Chlamydomonas eugametos Moewus show an absolute light requirement for gametogenesis. Increasing light intensity from 0.3 to 1.2 mw cm−2 during nitrogen starvation (a precondition for gametogenesis) caused an increase in gametogenesis throughout a 28-hour period. Gametogenesis was measured by determining the percentage of paired cells after a 1-hour mixing period. Light requirements for the male and female differed. There was a 9-hour lag period in gametogenesis in the male, but no lag in the female. Gametogenesis was reduced 50% in the female and 90% in the male when 6.0 μm 3-(3,4-dichlorophenyl)-1, 1-dimethyl-urea was in the N-starvation medium. Sodium acetate, 1.8 mm, in the N-starvation medium increased gametogenesis in both mating types and eliminated the 9-hour lag in the male for cells irradiated for 3, 6, 9, 12, 15, 18, or 23 hours during the last part of a 23-hour N-starvation period. Sodium acetate concentrations higher than 1.8 mm inhibited the mating process. 3-(3,4-Dichlorophenyl)-1, 1-dimethylurea inhibition of gametogenesis was decreased in the male but increased in the female, when sodium acetate was added to the N-starvation medium. These results indicate a nonphotosynthetic as well as a photosynthetic role for light in the gametogenesis of both mating types. Also, the male will not undergo gametogenesis unless a required amount of energy is provided either in the medium or through photosynthesis.  相似文献   

15.
We have developed a rapid method for isolation of the Photosystem I (PS1) complex from Chlamydomonas reinhardtii using epitope tagging. Six histidine residues were genetically added to the N-terminus of the PsaA core subunit of PS1. The His6-tagged PS1 could be purified with a yield of 80–90% from detergent-solubilized thylakoid membranes within 3 h in a single step using a Ni-nitrilotriacetic acid (Ni-NTA) column. Immunoblots and low-temperature fluorescence analysis indicated that the His6-tagged PS1 preparation was highly pure and extremely low in uncoupled pigments. Moreover, the introduced tag appeared to have no adverse effect upon PS1 structure/function, as judged by photochemical assays and EPR spectroscopy of isolated particles, as well as photosynthetic growth tests of the tagged strain. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Levi C  Gibbs M 《Plant physiology》1984,74(3):459-463
The activities of amylase and phosphorylase were monitored during the 12-hour light/dark synchronous cell cycle of autotrophically grown Chlamydomonas reinhardtii 11-32/90. The activity of amylase increased from 7.3 to 42 micromole reducing equivalents per 109 cells per hour while phosphorylase increased from 43 to 214 micromole glucose 1-phosphate released per 109 cells per hour between the midlight and middark periods. Cellular fractionation indicated that both enzymes were localized solely within the chloroplast. The pH optima for amylase and phosphorylase were 6.7 to 7.6 and 6.0 to 7.4, respectively. The amylase is a heat-labile α-amylase which is insensitive to ethylenetetraaecetate but inhibited by N-ethylmaleimide.  相似文献   

18.
Laboratory strains of Chlamydomonas reinhardtii, which are descendantsof a 1945 isolate by G.M. Smith (Harris 1989), were dividedinto two groups depending upon whether the vegetative cellsrequire light to differentiate into gametes under ammonium ion-starvedconditions. Light-dependent (LD) strains were unable to becomegametes in the dark, while light-independent (LI) strains coulddo so. All the wild-type strains isolated recently from thefield showed light-dependency, suggesting that the LD-phenotypeis the wild-type. The LD-cells failed to acquire flagellar agglutinability,to accumulate cell body agglutinins, or to form mating structuresin the dark, but did so rapidly after transfer to light. Moreover,the light-induced LD-gametes, but not the Li-gametes, lost theirmating ability, cell body agglutinins, and mating structuresafter transfer to darkness, indicating that the LD-cells requirelight not only for gametic differentiation but also for maintenanceof gametic activity. (Received July 4, 1997; Accepted October 17, 1997)  相似文献   

19.
Blue light was specifically required for the induction of carbonicanhydrase (CA) activity in Chlamydomonas reinhardtii. The enhancingeffect of blue light (460 nm) was saturated at energy fluencerate as low as 0.6-0.8 W/m2. The wavelength dependency curvehad a peak at 460 nm with no effect at wavelengths above 510nm, thus showing the strong similarities to other blue lightresponses in microalgae. CA induction was strongly inhibitedby UV irradiation at 280 nm. Experiments with the flavin quencher,potassium iodide, suggested that flavin is somehow involvedin CA induction. 1On leave from the Institute of Biological Sciences, Collegeof Arts and Sciences, University of the Philippines at Los Banos,4031 College, Laguna, Philippines. (Received August 29, 1988; Accepted November 26, 1988)  相似文献   

20.
In this study we have isolated the chlorophyll a/b-binding proteins from a photosystem I preparation of the green alga Chlamydomonas reinhardtii and characterized them by N-terminal sequencing, fluorescence, and absorption spectroscopy and by immunochemical means. The results indicate that in this organism, the light-harvesting complex of photosystem I (LHCI) is composed of at least seven distinct polypeptides of which a minimum number of three are shown to bind chlorophyll a and b. Both sequence homology and immunological cross-reactivity with other chlorophyll-binding proteins suggest that all of the LHCI polypeptides bind pigments. Fractionation of LHCI by mildly denaturing methods showed that, in contrast to higher plants, the long wavelength fluorescence emission typical of LHCI (705 nm in C. reinhardtii) cannot be correlated with the presence of specific polypeptides, but rather with changes in the aggregation state of the LHCI components. Reconstitution of both high aggregation state and long wavelength fluorescence emission from components that do not show these characteristics confirm this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号