首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg2+‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.  相似文献   

2.
The structures of eukaryotic ribosomal 5S RNA from rat liver and of prokaryotic 5S RNA from E. coli (A-conformer) have been investigated by scattering methods. For both molecules, a molar mass of 44,500±4,000 was determined from small angle X-ray scattering as well as from dynamic light scattering. The shape parameters of the two rRNAs, volume V c, surface O c, radius of gyration R s, maximum dimension of the molecule L, thickness D, and cross section radius of gyration R sq, agree within the experimental error limits. The mean values are V c=57±3 nm3, O c=165±10 nm2, R s=3.37±0.05 nm, L=10.8±0.7 nm, D=1.57±0.07 nm, R sa=0.92±0.01 nm.Identical structures for the E. coli 5S rRNA and the rat liver 5S rRNA at a resolution of 1 nm can be deduced from this agreement and from the comparison of experimental X-ray scattering curves and of experimental electron distance distribution function. The flat shape model derived for prokaryotic and eukaryotic 5S rRNA shows a compact region and two protruding arms. Double helical stems are eleven-fold helices with a mean base pair distance of 0.28 nm. Combining the shape information obtained from X-ray scattering with the information about the frictional behaviour of the molecules, deduced from the diffusion coefficients D 20,w 0 =(5.9±0.2)·10-7 cm2s-1 and (6.2±0.2)·10-7 cm2s-1 for rat liver 5S rRNA and E. coli 5S rRNA, respectively, a solvation shell of about 0.3 nm thickness around both molecules is determined. This structural similarity and the consensus secondary structure pattern derived from comparative sequence analyses suggest that all 5S rRNAs may indeed have conserved essentially the same type of folding of their polynucleotide strands during evolution, despite having very different sequences.  相似文献   

3.
Summary Pollen tubes ofLilium longiflorum were loaded with quin-2 to determine the cytoplasmic free calcium. Quin-2-fluorescence was detected at 500 nm with alternating excitation at 340 nm and 360 nm. The calcium2+-concentration was obtained using the intensity ratio R=I340/I360. The analysis exhibits a [Ca2+] of nearly 10–7mol·l–1 in the tip region and about 2·10–8 mol·l–1at the tube base, near the pollen grain. The data give evidence for the existence of a continuous gradient of free calcium within growing pollen tubes of various length.  相似文献   

4.
The mechanisms of the hyperpolarizing and depolarizing actions of cesium were studied in cardiac Purkinje fibers perfused in vitro by means of a microelectrode technique under conditions that modify either the Na+-K+ pump activity or If. Cs+ (2 mM) inconsistently increased and then decreased the maximum diastolic potential (MDP); and markedly decreased diastolic depolarization (DD). Increase and decrease in MDP persisted in fibers driven at fast rate (no diastolic interval and no activation of If). In quiescent fibers, Cs+ caused a transient hyperpolarization during which elicited action potentials were followed by a markedly decreased undershoot and a much reduced DD. In fibers depolarized at the plateau in zero [K+]o (no If), Cs+ induced a persistent hyperpolarization. In 2 mM [K+]o, Cs+ reduced the undershoot and suppressed spontaneous activity by hyperpolarizing and thus preventing the attainment of the threshold. In 7 mM [K+]o, DD and undershoot were smaller and Cs+ reduced them. In 7 and 10 mM [K+]o, Cs+ caused a small inconsistent hyperpolarization and a net depolarization in quiescent fibers; and decreased MDP in driven fibers. In the presence of strophanthidin, Cs+ hyperpolarized less. Increasing [Cs+]o to 4, 8 and 16 mM gradually hyperpolarized less, depolarized more and abolished the undershoot. We conclude that in Purkinje fibers Cs+ hyperpolarizes the membrane by stimulating the activity of the electrogenic Na+-K+ pump (and not by suppressing If); and blocks the pacemaker potential by blocking the undershoot, consistent with a Cs+ block of a potassium pacemaker current.  相似文献   

5.
The anisotropic self-diffusion coefficient of 7Li+ (I = 3/2) counterions has been studied in hydrated, macroscopically oriented Li-(B)DNA fibers at relatively high water contents, corresponding to approximate DNA-DNA helix axis distances of 22–35 Å, using the pulsed field gradient hmr spin-echo method. Self-diffusion coefficients parallel (D) and perpendicular (D?) to the DNA helix axis increase with increasing salt content and with increasing DNA-DNA helix axis distance. The observed anisotropy D/D? decreases from 1.6 to 1.2 with the DNA-DNA separation increasing from 22 to 35 Å in the salt-free sample. This result can be understood by the obstruction effect caused by the DNA molecules themselves. The values of the Li+ self-diffusion coefficients in the most water-rich system with no added salt (corresponding to an approximate distance of 35 Å between the DNA helix axes) were D ~ 1.15 × 10?10 m2 s?1 and D? ~ 0.98 × 10?10 m2 s?1, compared to 9.14 × 10?10 m2 s?1 for the diffusion of Li+ in an aqueous solution of LiCl (~ 2.1M). The possible occurrence of restriction effects in the DNA fibers have also been studied by determining the self-diffusion coefficient at different effective diffusion times. The self-diffusion coefficient of Li+ in the sample with the largest DNA-DNA helix axis distance seems to be independent of the effective diffusion time, which indicates that the lithium ions are not trapped within impermeable barriers. The possibility of diffusion through permeable barriers has also been investigated, and is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Andreas Weith 《Chromosoma》1985,91(3-4):287-296
The fine structure of constitutive heterochromatin and euchromatin was compared in electron microscope whole-mount preparations of Tenebrio molitor (Insecta, Coleoptera) spermatocyte nuclei. Tenebrio molitor pachytene chromosomes display extended segments of centromeric heterochromatin and thus are especially suitable for this purpose. When nuclei were incubated in solutions containing different concentrations of NaCl or of MgCl2, two levels of chromatin fine structures were observed in the euchromatic segments: nucleosome fibers (0.1 mM–20 mM NaCl) and supranucleosomal fibers with 28 nm in diameter (40 mM–100 mM NaCl, 0.2 mM–1.0 mM MgCl2). The fine structure in the heterochromatic segments was the same as that in the euchromatic segments in all NaCl concentrations and in MgCl2 concentrations up to 0.4 mM. In higher MgCl2 concentrations the heterochromatin remained more compact than the euchromatin and consisted of 37-nm-thick fibers in 0.6 mM MgCl2 and of 65-nm-thick fibers in 1.0 mM MgCl2. After the 37-nm and the 65-nm fibers had been dispersed in Mg2+-free solutions they could be recondensed by incubation in 0.6 mM and 1.0 mM MgCl2, respectively. It is concluded that a Mg2+-sensitive component of the heterochromatin is responsible for the folding of the nucleosome chain to heterochromatin-specific supranucleosomal structures.  相似文献   

7.
Summary The K conductance (g K) kinetics were studied in voltage-clamped frog nodes (Rana ridibunda) in double-pulse experiments. The Cole-Moore translation forg Kt curves associated with different initial potentials (E) was only observed with a small percentage of fibers. The absence of the translation was found to be caused by the involvement of an additional, slow,g K component. This component cannot be attributed to a multiple-state performance of the K channel. It can only be accounted for by a separate, slow K channel, the fast channel being the same as then 4 K channel inR. pipiens.The slow K channel is characterized by weaker sensitivity to TEA, smaller density, weaker potential (E) dependence, and somewhat more negativeE range of activation than the fast K channel. According to characteristics of the slow K system, three types of fibers were found. In Type I fibers (most numerous) the slow K channel behaves as ann 4 HH channel. In Type II fibers (the second largest group found) the slow K channel obeys the HH kinetics within a certainE range only; beyond this range the exponential decline of the slowg K component is preceded by anE-dependent delay, its kinetics after the delay being the same as those in Type I fibers. In Type III fibers (rare) the slow K channel is lacking, and it is only in these fibers that the Cole-Moore translation of the measuredg Kt curves can be observed directly.The physiological role of the fast and slow K channel in amphibian nerves is briefly discussed.  相似文献   

8.
Novel naphthalimide–poly(amidoamine) dendrimer fluorescent dyes were synthesized, and their structures were identified and confirmed using different characterization methods such as Fourier transform infrared, 1H NMR, 13C NMR, differential scanning calorimetry, elemental analysis and UV–vis spectroscopy. The spectrophotometric studies demonstrated absorption maxima (λmax) and extinction coefficient (εmax) values in the ranges of 429–438 nm and 25,635–88,618 L/mol/cm, respectively. The dyeing, fastness and antimicrobial properties of dyed wool fibers were examined. Colorimetric measurements demonstrated a greenish‐yellow hue with remarkable fluorescence intensity on dyed wool. Although the fastness properties of naphthalimide dye on wool fibers were poor/moderate, color fastness was appreciably improved through modification of the dye using dendrimers. The results revealed that the newly synthesized dyes are potent antimicrobial agents on wool fibers. Overall, it was deduced that poly(amidoamine) (PAMAM) dendrimers could be exploited as a promising tool in tailoring the different properties of naphthalimide dyes, being suitable for dyeing and antimicrobial finishing agents for wool fibers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, the effects of carbachol (CCh) on twitch tension, intracellular Na+ activity (a Na i ), and action potential were simultaneously measured in canine cardiac Purkinje fibers in order to examine the regulation of inotropy through muscarinic receptors and its relation to a Na i . In fibers driven at 1 Hz, CCh (10 µM) initially and transiently decreased and then increased the twitch tension by 36±8%. The action potential showed a significant elevation of the plateau and a significant shortening of the duration at 90% repolarization (APD90), from 403±7 to 389±7 ms. The a Na i decreased from 7.4±0.4 to 6.7±0.3 mM (n=23, p<0.05). Atropine (1 µM) decreased the twitch tension by 21±6% (n=7, p<0.05) without significant effects on the action potential and a Na i , and inhibited the effects of CCh. Cs+ (20 mM) increased the plateau height and APD90, enhanced the twitch tension by 66±24%, but decreased a Na i from 7.3±0.3 to 6.3±0.4 mM (n=6, p<0.05). In the presence of 20 mM Cs+, some fibers generated slow responses. The addition of 10 µM CCh further increased the twitch tension and APD90, and decreased a Na i from 6.3±0.4 to 5.3±0.3 mM. Ouabain (0.3 µM) increased the twitch tension and a Na i , and inhibited the CCh-induced decrease of a Na i . In the presence of ouabain, 20 mM Cs+ depolarized the fiber and generated slow responses with a decreased a Na i . The addition of 10 µM CCh enhanced the slow action potential, and increased a Na i although there was a transient decrease during early exposure. These results suggest that activation of muscarinic receptors in canine Purkinje fibers results in an enhancement of the Na+-K+ pump activity and a biphasic inotropic response, probably via different receptor subtypes. The inhibitory effect, most likely through M2 receptors, is associated with the activation of K+ channels. The stimulatory effect, on the other hand, is probably due to the action on the M1 receptors, resulting in increases in Ca2+ currents.  相似文献   

10.
Labelled steroid hormones,3H-hydrocortisone and14C-testosterone, being injected in the gray matter of theL 5L 6 spinal cord segments were shown to be transported via ventral and dorsal root fibers (antero- and retrograde directions, respectively) of old (25 to 28 months) rats with a lower velocity than in adult young (6 to 11 months) animals. The averaged maximum velocities of axon transport (AT) through the ventral and dorsal roots were: for3H-hydrocortisone, 756±63 and 738±46 mm per day, and for14H-testosterone, 624±54 and 608±80 mm per day, respectively. Therefore, in old rats the AT velocities for3H-hydrocortisone and14C-testosterone were about four and seven-eight times lower than those in adult rats. In the course of anterograde, AT through the ventral roots in old rats the inclusion of3H-hydrocortisone is sharply suppressed (by more than an order of magnitude), as compared with than in adult animals. The doses of non-labelled steroid hormones within a 10−7 – 10−6 range, injected into the lumbar spinal segments, resulted in hyperpolarization of muscle fibers of themm. gastrocnemius anddeltoideus, but this phenomenon developed in old rats much later than in adult rats. It is obvious that AT of steroid hormones can be considered one of the mechanisms of their effects on the tissue of an organism, and this mechanism undergoes extremely intensive modifications with aging.  相似文献   

11.
Laser light-scattering has been used to investigate the size of native proteoglycan aggregates (PGA-aA1) from day-8 chick limb-bud chondrocyte cultures isolated under associative extraction and purification conditions in 0.4M guanidinium chloride (GdnHCl) solution. Dynamic light-scattering measurements yielded a hydrodynamic radius, Rs, of 244 ± 10 nm for PGA-aA1 in 0.4M GdnHCl, and a weight-average molecular weight (M w) of 150 ± 50 × 106 was obtained from a Zimm plot. Disaggregation in 4.0M GdnHCl aqueous solution yielded proteoglycan subunits (PGS) with Rs = 39 ± 2 nm, M w = 1.6 ± 0.3 × 106, which reassembled in 0.4M GdnHCl to form “reconstituted native” aggregates (PGA-raA1) with Rs = 121 ± 6 nm, M w = 17 ± 3 × 106. A second specimen of PGA-aA1 had Rs = 192 ± 10 nm, M w = 100 ± 10 × 106. The latter value was estimated from an empirical relationship between M w and Rs. After dissociation, this specimen reassembled to form PGA-raA1 with Rs = 85 ± 5 nm, M w = 12 ± 1 × 106. These data are compared with those for a specimen of reconstituted aggregate (PGA-A1) that had been extracted under dissociative conditions and then reaggregated by dialysis to 0.4M GdnHCl aqueous solution, for which Rs = 138 ± 9 nm, M w = 45 ± 8 × 106. From these values, we have calculated the weight-average number of subunits per aggregate Nw: 111 for PGA-aA1 and 12 for raA1 (70 and 7 for the second PGA-aA1 and PGA-raA1 specimen, respectively) as compared to 32 for PGA-A1. The numbers of subunits per aggregate were also determined from electron micrographs of spread specimens. The latter results show the same trends as those obtained by light scattering, but lead in each case to lower numbers of subunits per aggregate. These data demonstrate conclusively that PGA samples exhibit a higher degree of aggregation in solution than visualized in typical electron microscopy (EM) preparations, probably due to disaggregation during EM specimen preparation. Since Nw determined both by light scattering (LS) and by EM are larger for native versus reconstituted aggregate samples, our data point to a more compact aggregation of subunits along the hyaluronic acid (HA) chains in the former.  相似文献   

12.
Aims: To examine the killing efficiency of UV KrCl excilamp against Gram‐positive and Gram‐negative bacteria. Methods and Results: Vegetative cells of Bacillus cereus, Bacillus subtilis, Escherichia coli O157:H7, Staphylococcus aureus and Streptococcus pyogenes at initial populations from 102 to 107 colony‐forming units (CFU) ml?1 were treated by KrCl excilamp in sterile Ringer’s solution with and without H2O2. The number of viable cells was determined using spread plating techniques and nutrient agar method with subsequent incubation at 28°C or 37°C for 24 h. At estimated populations of 102–105 CFU ml?1E. coli O157:H7 and Staph. aureus were the most sensitive and showed 100% disinfection within 15 s (29·2 mJ cm?2). Bacillus subtilis was more sensitive to UV treatment than B. cereus. The UV/H2O2 inactivation rate coefficients within this population range were two times higher than those observed for UV treatment alone. No effect of H2O2 was observed at 107 CFU ml?1 for Bacillus sp. and Strep. pyogenes. Conclusions: The narrow‐band UV radiation at 222 nm was effective in the rapid disinfection of bacteria in aqueous suspensions. Significance and Impact of the Study: KrCl excilamps represent UV sources which can be applied for disinfection of drinking water in advanced oxidation processes.  相似文献   

13.
Ca3Al2Ge2O10:Cr3+ phosphors were prepared by a high‐temperature solid‐state method, and their luminescence properties were investigated. Under excitation at 550 nm, Ca3Al2Ge2O10:Cr3+ phosphors exhibited a broad red emission band at 697 nm in the range 650–750 nm that was caused by the 2E→4A2 transition of Cr3+. For the 697 nm emission peak, emission intensity reached a maximum at x = 0.07, and there was concentration quenching of Cr3+ in Ca3Al2Ge2O10; the corresponding concentration quenching mechanism was analysed. Under excitation at 262 nm, the Ca3Al2Ge2O10:Cr3+ phosphor showed a weakly broad emission band in the range 350–600 nm that was caused by intrinsic defects (V′′Ca and V′′O). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A novel multi-color emitting Na2YMg2V3O12:Sm3+ phosphor was synthesized using a solid-state reaction, and its crystal structure, luminescence properties, and thermal stability were studied. Charge transfer within the (VO4)3− groups in the Na2YMg2V3O12 host led to a broad emission band between 400 and 700 nm, with a maximum at 530 nm. The Na2Y1−xMg2V3O12:xSm3+ phosphors exhibited a multi-color emission band under 365 nm near-ultraviolet (near-UV) light, consisting of the green emission of the (VO4)3− groups and sharp emission peaks at 570 nm (yellow), 618 nm (orange), 657 nm (red), and 714 nm (deep red) of Sm3+ ions. The optimal doping concentration of Sm3+ ions was found to be 0.05 mol%, and the dipole–dipole (d–d) interaction was primarily responsible for the concentration quenching phenomenon. Using the acquired Na2YMg2V3O12:Sm3+ phosphors, commercial BaMgAl10O17:Eu2+ blue phosphor, and a near-UV light-emitting diode (LED) chip, a white-LED lamp was designed and packaged. It produced bright neutral white light, manifesting a CIE coordinate of (0.314, 0.373), a color rendering index (CRI) of 84.9, and a correlated color temperature (CCT) of 6377 K. These findings indicate the potential of Na2YMg2V3O12:Sm3+ phosphor to be used as a multi-color component for solid-state illumination.  相似文献   

15.
Sensitive detection of doxorubicin (DOX) is critical for clinical theranostics. A novel ratiometric fluorescence strategy based on the inner filter effect (IFE) has been established for the sensitive detection of DOX by designing a ratiometric fluorescence probe. In the presence of DOX, the fluorescence intensity of copper nanoclusters (CuNCs) at 485 nm decreases, and the fluorescence intensity of carbon dots at 560 nm increases. Therefore, DOX can be quantitatively detected by measuring the ratio of the fluorescence intensities at 560 and 485 nm (F560/F485). The F560/F485 ratio exhibits a linear correlation with the DOX concentration in the range from 1.0 × 10−8 M to 1.0 × 10−4 M with the detection limit of 3.7 nM. Furthermore, this method was also successfully applied to the analysis of DOX in human plasma samples, affording an effective platform for drug safety management.  相似文献   

16.
Summary Radiosodium efflux from barnacle muscle fibers is a function of pH e , the threshold pH e for stimulation of Na efflux into HCO 3 -artificial sea water (ASW) being 6.8 and the fixed thresholdpCO2 (in an open CO2 system) being approximately 30 mm Hg. Acidification of ASW containing non-HCO 3 buffer is without effect on the Na efflux. The Na efflux following stimulation by reducing the pH of 10mM HCO 3 -ASW from 7.8 to 6.3 is reduced by 17.3% as the result of microinjecting 100mM EGTA, and increased by 32.6% as the result of microinjecting 0.5M ATP. The Na efflux into K-free HCO 3 -ASW is markedly stimulated by external acidification. Ouabain-poisoned fibers are more responsive to a low pH e than unpoisoned fibers. Applying the 2-14C-DMO technique, it is found that fibers bathed in 10mM HCO 3 -ASW at pH 7.8 have an internal pH of 7.09±0.106 (mean±SD), whereas fibers bathed in 25mM TRIS-ASW at pH 7.8 have a pH i of 7.28±0.112. The relationship between pH i and pH e as external pH is varied by adding H+ is linear. Measurements of the resting membrane potential indicate that external acidification in the presence of HCO 3 as buffer is accompanied by a fall inE m , the threshold pH e being 7.3 both at 24 and 0°C. This sensitivity amounts to 8.2 mV per pH unit (at 24°C) over a wide range of pH e . Membrane resistance following external acidification remains unchanged. Microinjection of the protein inhibitor of Walsh before external acidification fails to stop depolarization from occurring. Cooling to 0°C also fails to abolish depolarization following acidification. Whereas external ouabain and ethacrynic acid reduceE m in the absence or presence of acidification, DPH hyperpolarizes the membrane or arrests depolarization both at 24 and 0°C. This effect of DPH at 0°C is seen in the absence or presence of acidification. It is suggested that depolarization following acidification of a HCO 3 -containing medium is due to activation of a Cl-and/or HCO 3 -pump and that ouabain and ethacrynic acid reducesE m by abolishing uncoupled Na transport.  相似文献   

17.
Summary Single barnacle muscle fibers fromBalanus nubilus were used to study the effect of elevated external potassium concentration, [K] o , on Na efflux, membrane potential, and cyclic nucleotide levels. Elevation of [K] o causes a prompt, transient stimulation of the ouabain-insensitive Na efflux. The minimal effective concentrations is 20mm. The membrane potential of ouabain-treated fibers bathed in 10mm Ca2+ artificial seawater (ASW) or in Ca2+-free ASW decreases approximately linearly with increasing logarithm of [K] o . The slope of the plot is slightly steeper for fibers bathed in Ca2+-free ASW. The magnitude of the stimulatory response of the ouabain-insensitive Na efflux to 100mmK o depends on the external Na+ and Ca2+ concentrations, as well as on external pH, but is independent of external Mg2+ concentration. External application of 10–4 m verapamil virtually abolishes the response of the Na efflux to subsequent K-depolarization. Stabilization of myoplasmic-free Ca2+ by injection of 250mm EGTA before exposure of the fiber to 100mm K o leads to 60% reduction in the magnitude of the stimulation. Pre-injection of a pure inhibitor of cyclic AMP-dependent protein kinase reduces the response of the Na efflux to 100mm K o by 50%. Increasing intracellular ATP, by injection of 0.5m ATP-Na2 before elevation of [K] o , fails to prolong the duration of the stimulation of the Na efflux. Exposure of ouabain-treated, cannulated fibers to 100mm K o for time periods ranging from 30 sec to 10 min causes a small (60%), but significant, increase in the intracellular content of cyclic AMP with little change in the cyclic GMP level. These results are compatible with the view that the stimulatory response of the ouabain-insensitive Na efflux to high K o is largely due to a fall in myoplasmicpCa resulting from activation of voltage-dependent Ca2+ channels and that an accompanying rise in internal cAMP accounts for a portion of this response.  相似文献   

18.
We have constructed an apparatus for the simultaneous measurement of electrophoretic mobility, μ, and diffusion coefficient, D, of macromolecules and cells. It combines band electrophoresis in a vertical, sucrose-gradient stabilized column, with quasielastic laser light-scattering determination of the diffusion coefficient of the species within the band. The entire electrophoresis cell is scanned through the laser beam of the quasielastic laser light-scattering apparatus by a vertical translation stage. Total intensity light-scattering measurement at each point in the cell gives the macromolecular concentration at that point. Solvent viscosity and electrical potential are measured at each point in the cell. Application of this apparatus to resealed red blood cell ghosts and to bovine hemoglobin indicates that measurements of field, viscosity, and migration distance are reliable, and that electroosmosis is insignificant. Application to T4D bacteriophage gives μ20,w = (?1.05 ± 0.05) × 10?4 cm2/V sec and D20,w = (3.35 ± 0.10) × 10?8 cm2/sec for fiberless particles, and μ20,w = ?(0.59 ± 0.03) × 10?4 cm2/V sec and D20,w = (2.86 ± 0.09) × 10?8 cm2/sec for whole phage with 6 fibers. Approximate analysis of these results with the Henry electrophoresis theory for spheres in dicates that each fiber contributes about 193 positive charges to the phage particle, compared with 327 from amino-acid analysis. The advantages and disadvantages of this apparatus, relative to conventional electrophoresis and to electrophoretic light scattering, are discussed.  相似文献   

19.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   

20.
Summary Oxalate-supported Ca accumulation by the sarcoplasmic reticulum (SR) of chemically skinned mammalian skeletal muscle fibers is activated by MgATP and Ca2+ and partially inhibited by caffeine. Inhibition by caffeine is greatest when Ca2+ exceeds 0.3 to 0.4 m, when free ATP exceeds 0.8 to 1mm, and when the inhibitor is present from the beginning of the loading period rather than when it is added after Ca oxalate has already begun to precipitate within the SR. Under the most favorable combination of these conditions, this effect of caffeine is maximal at 2.5 to 5mm and is half-maximal at approximately 0.5mm. For a given concentration of caffeine, inhibition decreases to one-half of its maximum value when free ATP is reduced to 0.2 to 0.3mm. Varying free Mg2+ (0.1 to 2mm) or MgATP (0.03 to 10mm) has no effect on inhibition. Average residual uptake rates in the presence of 5mm caffeine atpCa 6.4 range from 32 to 70% of the control rates in fibers from different animals. The extent of inhibition in whole-muscle homogenates is similar to that observed in skinned fibers, but further purification of SR membranes by differential centrifugation reduces their ability to respond to caffeine. In skinned fibers, caffeine does not alter the Ca2+ concentration dependence of Ca uptake (K 0.5, 0.5 to 0.8 m; Hilln, 1.5 to 2.1). Reductions in rate due to caffeine are accompanied by proportional reductions in maximum capacity of the fibers, and this configuration can be mimicked by treating fibers with the ionophore A23187. Caffeine induces a sustained release of Ca from fibers loaded with Ca oxalate. However, caffeine-induced Ca release is transient when fibers are loaded without oxalate. The effects of caffeine on rate and capacity of Ca uptake as well as the sustained and transient effects on uptake and release observed under different conditions can be accounted for by a single mode of action of caffeine: it increases Ca permeability in a limited population of SR membranes, and these membranes coexist with a population of caffeine-insensitive membranes within the same fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号