首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml–1 CO2 (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml?1 CO2 (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=?2.8, p=0.026, CI=?5.2 to ?0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.  相似文献   

2.
Lipid peroxidation can be monitored by measuring one or several highly volatile alkanes in exhaled air. The concentrations of ethane and pentane were determined in breath samples from patients with alcoholic and non-alcoholic cirrhosis as well as from healthy subjects. The greatest increase of exhaled pentane was found in 17 patients with alcoholic cirrhosis (2.85 +/- 2.37 pmol/ml) in comparison with 10 patients with non-alcoholic cirrhosis (0.71 +/- 0.33 pmol/ml) and 10 control subjects (0.59 +/- 0.41 pmol/ml). On the contrary, no significant difference was detected as far as exhaled ethane is concerned. These data suggest that: a) gas-chromatographic determination of exhaled pentane may play a significant role in detecting alcohol-induced liver disease; b) hepatic injury may be mediated by lipid peroxidation in these patients.  相似文献   

3.
Exercise-induced oxidative stress (EIOS) refers to a condition where the balance of free radical production and antioxidant systems is disturbed during exercise in favour of pro-oxidant free radicals. Breath ethane is a product of free radical-mediated oxidation of cell membrane lipids and is considered to be a reliable marker of oxidative stress. The heatshock protein, haem oxygenase, is induced by oxidative stress and degrades haemoglobin to bilirubin, with concurrent production of carbon monoxide (CO). The aim of this study was to investigate the effect of maximal exercise on exhaled ethane and CO in human, canine, and equine athletes. Human athletes (n = 8) performed a maximal exercise test on a treadmill, and canine (n = 12) and equine (n = 11) athletes exercised at gallop on a sand racetrack. Breath samples were taken at regular intervals during exercise in the human athletes, and immediately before and after exercise in the canine and equine athletes. Breath samples were stored in gas-impermeable bags for analysis of ethane by laser spectroscopy, and CO was measured directly using an electrochemical CO monitor. Maximal exercise was associated with significant increases in exhaled ethane in the human, equine, and canine athletes. Decreased concentrations of exhaled CO were detected after maximal exercise in the human athletes, but CO was rarely detectable in the canine and equine athletes. The ethane breath test allows non-invasive and real-time detection of oxidative stress, and this method will facilitate further investigation of the processes mediating EIOS in human and animal athletes.  相似文献   

4.
We measured 8-isoprostane, a biomarker of oxidative stress, and prostaglandin (PG) E(2) in exhaled breath condensate in 36 stable and 14 unstable cystic fibrosis (CF) patients, and in 15 healthy age-matched controls. We studied the relationships of these eicosanoids with clinical, radiological, and systemic inflammatory parameters. Compared with controls [15.5 (11.5-17.0) pg/ml] exhaled 8-isoprostane was increased in stable CF patients [30.5 (25.3-36.0) pg/ml, P<0.001]. Unstable CF patients had higher exhaled 8-isoprostane levels [47.5 (44.0-50.0) pg/ml, P<0.001] than stable CF patients. Unlike PGE(2), exhaled 8-isoprostane was negatively correlated with FEV(1) (r=-0.67; P<0.0001; r=-0.63; P<0.02) and Shwachman score (r=-0.43, P=0.012; r=-0.58, P=0.031) and positively correlated with Chrispin-Norman score (r=0.51, P<0.002; r=0.56, P=0.039) in stable and unstable CF patients, respectively. No correlation was observed with C-reactive protein. Compared with controls [41.0 (29.0-50.0) pg/ml], exhaled PGE(2) was also elevated in stable [72.0 (64.3-81.8) pg/ml, P<0.001) and, to a greater extent, in unstable CF patients [83.0 (74.3-91.3) pg/ml, P<0.001). In patients with CF, exhaled 8-isoprostane and PGE(2) could be a useful marker of disease severity.  相似文献   

5.
Oxidative stress may initiate lipid peroxidation that generates ethane. Ethane, at low concentrations, is eliminated by pulmonary exhalation. Previous methods have not allowed frequent sampling, thus ethane kinetics has not been studied in man. A validated method over the range 3.8-100,000 ppb with a limit of quantitation of 3.8 ppb (CV 9.3%) based on cryofocusing technique of a 60 ml breath sample allowed frequent sampling. Due to a rapid analytical procedure batches of more than 100 samples may be analyzed. In human volunteers (24-55 years) uptake was studied for up to 23 min (n=9), elimination was studied for 210 min (n=9). Ethane was inhaled (concentrations varied from 16 to 29 ppm (parts per million)) through a non-rebreathing system; sampling was performed with short intervals from the expiratory limb. Samples were also drawn from the inhalatory limb. Ninety-five percent of steady state (inspired) concentration was reached within 1.75 min. Five percent of the initially inhaled concentrations was found in exhaled air 1.5 min after termination of inhalation. A terminal mean half life of 31 min for ethane was also observed. The data indicate that frequent sampling will be necessary to capture relevant changes in breath ethane.  相似文献   

6.
Oxidant stress may play a role in the accelerated pathology of patients on dialysis, especially in the development of cardiovascular disease, which is a frequent condition in end-stage renal disease (ESRD) patients. Measurement of hydrocarbons can be employed to assess oxidant stress since breath hydrocarbons have been directly traced to in vivo breakdown of lipid hydroperoxides. We undertook to measure ethane, a major breath hydrocarbon, in 15 control subjects, 13 patients on peritoneal dialysis (PD), and 35 patients on hemodialysis (HD). Within the HD group, we separately examined 12 diabetic and 23 nondiabetic patients. Breath samples were collected after patients had breathed purified air for 4 min, and ethane content was measured by GC and expressed as pmoles/kg-body weight-minute (pmol/kg-min). As the data for the hemodialysis patients appeared skewed, nonparametric statistical techniques were employed to analyze these data, which are reported as median and interquartile range (IQR). Ethane levels were similar in 15 control subjects (median, 2.50 pmol [1.38-3.30]/kg-min] and 13 PD patients (median, 2.51 pmol [1.57-3.17]/kg-min). Breath ethane was significantly elevated in a portion (18 of 35 patients, 52%) of the HD patients (median, 6.16 pmol [4.46-8.88]/kg-min) (p <.001 vs. control, Mann-Whitney U test). Two of the diabetic HD patients showed extremely high values of breath ethane. Breath ethane was not altered by a single hemodialysis session, suggesting that long-term metabolic processes contribute to its elevation. Measurement of breath ethane may provide insight into severity of oxidant stress and metabolic disturbances, and provide guidance for optimal therapy and prevention of pathology in patients on long-term hemodialysis.  相似文献   

7.
Quantitative analysis of plasma phosphatidylcholine hydroperoxide (PCOOH) is an important step in evaluating the biochemical processes leading to oxidative injury. However, secondary products of lipid peroxidation are now used as indices. One hundred nine alcoholic patients, aged 22-81 years (mean +/- SEM, 52.0 +/- 1.3 years), and 21 healthy volunteers, aged 41-79 years (51.2 +/- 2.2 years), participated in this study. Plasma PCOOH was measured by HPLC with chemiluminescence detection. Plasma PCOOH concentration was significantly higher in alcoholic patients (46.1 +/- 4.1 pmol/ml) than in controls (15.6 +/- 1.8 pmol/ml). It was significantly higher in patients with blood alcohol (88.0 +/- 10.5 pmol/ml) than in those without alcohol (32.6 +/- 3.1 pmol/ml). The patients with high levels of aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase (gamma-GTP), and triglyceride (TG) showed significantly higher PCOOH concentrations than did patients with normal levels. The PCOOH level was positively correlated with levels of gamma-GTP, HDL, blood alcohol concentration, and TG. Plasma PCOOH levels in 29 alcoholic patients after a 6 week abstinence were decreased significantly (22.8 +/- 11.1 pmol/ml), which was associated with improvement on liver function tests. This is the first measurement of plasma PCOOH in alcoholic patients. These results suggest the involvement of lipid peroxidation in alcohol-induced liver damage and confirm that the PCOOH plasma concentration is a new marker of alcohol consumption as well as oxidative stress in alcoholic patients.  相似文献   

8.
Increased carbon monoxide in exhaled air of critically ill patients   总被引:7,自引:0,他引:7  
Heme oxygenase produces carbon monoxide (CO) during breakdown of heme molecules primarily in liver and spleen. Recent data suggest that CO is also produced in the lungs. CO is excreted by exhalation via the lungs. A number of inflammatory agents induce the expression of heme oxygenase, possibly leading to increased CO production. To investigate whether critical illness results in increased CO production we measured the CO concentration in exhaled air in 30 critically ill patients and in healthy controls (n = 6). Critically ill patients showed a significantly higher CO concentration in exhaled air (median 2.4 ppm, 95% CI 1.0-7.0 ppm vs median 1.55 ppm, 95% CI 1.2-1.7 ppm, P = 0.01) as well as total CO production (median 20 ml/min, 95% CI 8 to 90 ml/min vs median 13.5 ml/min, 95% CI 11 to 19 ml/min, P = 0.026) compared to healthy controls. No correlation was found between CO concentration in exhaled air and carboxyhemoglobin concentration in arterial and central venous blood (P > 0.05). The increase of CO concentration in exhaled air in critical illness suggests an induction of inducible heme oxygenase (HO-1) and might reflect the severity of illness.  相似文献   

9.
The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO2 and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress.  相似文献   

10.
The aim of this study was to quantify lung oxidant stress after short-term ozone exposure as reflected by 8-isoprostane concentrations in exhaled breath condensate (EBC) and to investigate the effects of inhaled budesonide on this response. 8-Isoprostane is a prostaglandin-F(2 alpha) isomer that is formed in vivo by free radical-catalyzed peroxidation of arachidonic acid. EBC is a noninvasive method to collect airway secretions. We undertook a double-blind, randomized, placebo-controlled, crossover study with inhaled budesonide (800 microg) or placebo twice daily for 2 weeks prior to ozone exposure (400 parts per billion) for 2 h in nine healthy nonsmokers. Exhaled 8-isoprostane was measured by an enzyme immunoassay. 8-Isoprostane was increased 4 h after ozone exposure compared to pre-exposure values in both placebo (36.9 +/- 3.9 pg/ml, mean +/- SEM, vs. 16.9 +/- 0.7 pg/ml; p <.001) and budesonide groups (33.4 +/- 2.6 pg/ml vs. 15.8 +/- 0.3 pg/ml; p <.001). Pretreatment with budesonide did not affect the increases in 8-isoprostane (mean differences 3.4 pg/ml, 95% CI -8.9 to 15.7, p =.54). Short-term ozone exposure causes acute increase in lung oxidative stress as reflected by exhaled 8-isoprostane. This increase is resistant to pretreatment with a high dose of inhaled budesonide.  相似文献   

11.
Effects of ventilation on the collection of exhaled breath in humans.   总被引:1,自引:0,他引:1  
A computerized system has been developed to monitor tidal volume, respiration rate, mouth pressure, and carbon dioxide during breath collection. This system was used to investigate variability in the production of breath biomarkers over an 8-h period. Hyperventilation occurred when breath was collected from spontaneously breathing study subjects (n = 8). Therefore, breath samples were collected from study subjects whose breathing were paced at a respiration rate of 10 breaths/min and whose tidal volumes were gauged according to body mass. In this "paced breathing" group (n = 16), end-tidal concentrations of isoprene and ethane correlated with end-tidal carbon dioxide levels [Spearman's rank correlation test (r(s)) = 0.64, P = 0.008 and r(s) = 0.50, P = 0.05, respectively]. Ethane also correlated with heart rate (r(s) = 0.52, P < 0.05). There was an inverse correlation between transcutaneous pulse oximetry and exhaled carbon monoxide (r(s) = -0.64, P = 0.008). Significant differences were identified between men (n = 8) and women (n = 8) in the concentrations of carbon monoxide (4 parts per million in men vs. 3 parts per million in women; P = 0.01) and volatile sulfur-containing compounds (134 parts per billion in men vs. 95 parts per billion in women; P = 0.016). There was a peak in ethanol concentration directly after food consumption and a significant decrease in ethanol concentration 2 h later (P = 0.01; n = 16). Sulfur-containing molecules increased linearly throughout the study period (beta = 7.4, P < 0.003). Ventilation patterns strongly influence quantification of volatile analytes in exhaled breath and thus, accordingly, the breathing pattern should be controlled to ensure representative analyses.  相似文献   

12.
Quantitations of exhaled nitric oxide (NO) and carbon monoxide (CO) have been proposed as noninvasive markers of airway inflammation. We hypothesized that exhaled CO is increased in individuals with alpha(1)-antitrypsin (AT) deficiency, who have lung inflammation and injury related to oxidative and proteolytic processes. Nineteen individuals with alpha(1)-AT deficiency, 22 healthy controls, and 12 patients with non-alpha(1)-AT-deficient chronic obstructive pulmonary disease (COPD) had NO, CO, CO(2), and O(2) measured in exhaled breath. Individuals with alpha(1)-AT deficiency had lower levels of NO and CO than control or COPD individuals. Alpha(1)-AT-deficient and COPD patients had lower exhaled CO(2) than controls, although only alpha(1)-AT-deficient patients had higher exhaled O(2) than healthy controls. NO was correlated inversely with exhaled O(2) and directly with exhaled CO(2), supporting a role for NO in regulation of gas exchange. Exhaled gases were not significantly related to corticosteroid use or lung function. Demonstration of lower than normal CO and NO levels may be useful as an additional noninvasive method to evaluate alpha(1)-AT deficiency in individuals with a severe, early onset of obstructive lung disease.  相似文献   

13.
3-Nitrotyrosine (3-NT) is considered as a marker of oxidative stress, which occurs during inflammation. Since 3-NT levels in exhaled breath condensate (EBC) are very low, we applied a specific and sensitive gas chromatography-negative ion chemical ionization-mass spectrometry (GC-NICI-MS) method and high performance liquid chromatography (HPLC) with electrochemical detection for the analysis of free 3-NT in EBC. A total of 42 children (aged 5-17 years) were enrolled in this study, including children with asthma (n=12), cystic fibrosis (n=12), and healthy controls (n=18). Additionally, 14 healthy non-smoking adults (aged 18-59 years) were included. An EcoScreen system was used for the collection of EBC samples. Free 3-NT levels in EBC ranged from 0.54-6.8 nM. Median (interquartile range) concentrations (nM) were similar in all groups: 1.46 (0.97-2.49) in healthy adults, 2.51 (1.22-3.51) in healthy children, 1.46 (0.88-2.02) in children with asthma, and 1.97 (1.37-2.35) in CF children, respectively (p=0.24, Kruskall-Walis test). No difference was found between the children with airway disease and age-matched healthy controls. In healthy subjects, there was no effect of age on 3-NT concentrations. HPLC analyses provided similar concentration ranges for EBC 3-NT when compared with GC-NICI-MS. Our study has clearly demonstrated that free 3-NT in EBC fails as a marker for oxidative stress in children with stable CF and asthma.  相似文献   

14.
Biomarkers of some pulmonary diseases in exhaled breath   总被引:16,自引:0,他引:16  
Analysis of various biomarkers in exhaled breath allows completely non-invasive monitoring of inflammation and oxidative stress in the respiratory tract in inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), bronchiectasis and interstitial lung diseases. The technique is simple to perform, may be repeated frequently, and can be applied to children, including neonates, and patients with severe disease in whom more invasive procedures are not possible. Several volatile chemicals can be measured in the breath (nitric oxide, carbon monoxide, ammonia), and many non-volatile molecules (mediators, oxidation and nitration products, proteins) may be measured in exhaled breath condensate. Exhaled breath analysis may be used to quantify inflammation and oxidative stress in the respiratory tract, in differential diagnosis of airway disease and in the monitoring of therapy. Most progress has been made with exhaled nitric oxide (NO), which is increased in atopic asthma, is correlated with other inflammatory indices and is reduced by treatment with corticosteroids and antileukotrienes, but not (β2-agonists. In contrast, exhaled NO is normal in COPD, reduced in CF and diagnostically low in primary ciliary dyskinesia. Exhaled carbon monoxide (CO) is increased in asthma, COPD and CF. Increased concentrations of 8-isoprostane, hydrogen peroxide, nitrite and 3-nitrotyrosine are found in exhaled breath condensate in inflammatory lung diseases. Furthermore, increased levels of lipid mediators are found in these diseases, with a differential pattern depending on the nature of the disease process. In the future it is likely that smaller and more sensitive analysers will extend the discriminatory value of exhaled breath analysis and that these techniques may be available to diagnose and monitor respiratory diseases in the general practice and home setting.  相似文献   

15.
A method is described for rapidly measuring the ethane concentration in exhaled human breath. Ethane is considered a volatile marker for lipid peroxidation. The breath samples are analyzed in real time during single exhalations by means of infrared cavity leak-out spectroscopy. This is an ultrasensitive laser-based method for the analysis of trace gases on the sub-parts per billion level. We demonstrate that this technique is capable of online quantifying of ethane traces in exhaled human breath down to 500 parts per trillion with a time resolution of better than 800 ms. This study includes what we believe to be the first measured expirograms for trace fractions of ethane. The expirograms were recorded after a controlled inhalation exposure to 1 part per million of ethane. The normalized slope of the alveolar plateau was determined, which shows a linear increase over the first breathing cycles and ends in a mean value between 0.21 and 0.39 liter-1. The washout process was observed for a time period of 30 min and was modelled by a threefold exponential decay function, with decay times ranging from 12 to 24, 341 to 481, and 370 to 1770 s. Our analyzer provides a promising noninvasive tool for online monitoring of the oxidative stress status.  相似文献   

16.
Oxidative stress may initiate lipid peroxidation that generates ethane. Ethane, at low concentrations, is eliminated by pulmonary exhalation. Previous methods have not allowed frequent sampling, thus ethane kinetics has not been studied in man. A validated method over the range 3.8-100,000 ppb with a limit of quantitation of 3.8 ppb (CV 9.3%) based on cryofocusing technique of a 60 ml breath sample allowed frequent sampling. Due to a rapid analytical procedure batches of more than 100 samples may be analyzed. In human volunteers (24-55 years) uptake was studied for up to 23 min &lt;formula&gt;(&lt;italic&gt;n&lt;/italic&gt;=9)&lt;/formula&gt;, elimination was studied for 210 min &lt;formula&gt;(&lt;italic&gt;n&lt;/italic&gt;=9).&lt;/formula&gt; Ethane was inhaled (concentrations varied from 16 to 29 ppm (parts per million)) through a non-rebreathing system; sampling was performed with short intervals from the expiratory limb. Samples were also drawn from the inhalatory limb. Ninety-five percent of steady state (inspired) concentration was reached within 1.75 min. Five percent of the initially inhaled concentrations was found in exhaled air 1.5 min after termination of inhalation. A terminal mean half life of 31 min for ethane was also observed. The data indicate that frequent sampling will be necessary to capture relevant changes in breath ethane.  相似文献   

17.
Measurements of the volume of CO2 exhaled per breath (VCO2/br) are preferable to end-tidal PCO2, when the exhaled flow and CO2 waveforms may be changing during unsteady states, such as during alterations in positive end-expiratory pressure or alterations in cardiac output. We describe computer algorithms that determine VCO2/br from digital measurements of exhaled flow (including discontinuous signals common in anesthesia circuits) and CO2 concentration at the airway opening. Fractional concentration of CO2 is normally corrected for dynamic response and transport delay (TD), measured in a separate procedure. Instead, we determine an on-line adjusted TD during baseline ventilation. In six anesthetized dogs, we compared the determination of VCO2/br with a value measured in a simultaneous collection of expired gas. Over a wide range of tidal volume (180-700 ml), respiratory rate (3-30 min-1), and positive end-expiratory pressure (0-14 cmH2O), VCO2/br was more accurate with use of the adjusted TD than the measured TD (P less than 0.05).  相似文献   

18.
Using a rapidly responding nitric oxide (NO) analyzer, we measured the steady-state NO diffusing capacity (DL(NO)) from end-tidal NO. The diffusing capacity of the alveolar capillary membrane and pulmonary capillary blood volume were calculated from the steady-state diffusing capacity for CO (measured simultaneously) and the specific transfer conductance of blood per milliliter for NO and for CO. Nine men were studied bicycling at an average O(2) consumption of 1.3 +/- 0.2 l/min (mean +/- SD). DL(NO) was 202.7 +/- 71.2 ml. min(-1). Torr(-1) and steady-state diffusing capacity for CO, calculated from end-tidal (assumed alveolar) CO(2), mixed expired CO(2), and mixed expired CO, was 46.9 +/- 12.8 ml. min(-1). Torr(-1). NO dead space = (VT x FE(NO) - VT x FA(NO))/(FI(NO) - FA(NO)) = 209 +/- 88 ml, where VT is tidal volume and FE(NO), FI(NO), and FA(NO) are mixed exhaled, inhaled, and alveolar NO concentrations, respectively. We used the Bohr equation to estimate CO(2) dead space from mixed exhaled and end-tidal (assumed alveolar) CO(2) = 430 +/- 136 ml. Predicted anatomic dead space = 199 +/- 22 ml. Membrane diffusing capacity was 333 and 166 ml. min(-1). Torr(-1) for NO and CO, respectively, and pulmonary capillary blood volume was 140 ml. Inhalation of repeated breaths of NO over 80 s did not alter DL(NO) at the concentrations used.  相似文献   

19.
Rapid and precise method for the determination of 8-iso-prostaglandin F(2alpha), an essential marker of the oxidative stress, in exhaled breath condensate (EBC) was developed. The protocol consisted of stable isotope dilution, immunoseparation combined with selective and sensitive LC-ESI-MS/MS operated in multiple reaction monitoring (MRM) mode. The imprecision of the developed method was below 8.8%, the parameter of mean inaccuracy was determined as <9.6% (0-250pg of 8-iso-prostaglandin F(2alpha)/ml EBC). The limit of detection (LOD) was 1 pg/ml EBC and limit of quantification (LOQ) 5 pg/ml EBC. A significant difference in 8-iso-prostaglandin F(2alpha) content between the group of asbestosis patients and healthy volunteers was found.  相似文献   

20.
Angiotensin (Ang) II induces oxidative stress in vitro and in animal models of hypertension. We tested the hypothesis that Ang II increases oxidative stress in human hypertension, as assessed by plasma F2-isoprostane concentrations. Plasma F2-isoprostanes, hemodynamic and endocrine parameters were measured at baseline and following a 55 min infusion of 3 ng/kg/min Ang II in 13 normotensive and 13 hypertensive volunteers ingesting a high- (200 mmol/d) or low- (10 mmol/d) sodium diet. Mean arterial pressure (MAP) and body mass index were higher in hypertensive subjects. Ang II infusion increased MAP (p<.001) and plasma aldosterone concentrations (p<.001) and decreased plasma renin activity (p<.001) and renal plasma flow (p<.001) to a similar extent in both groups. Plasma F2-isoprostane concentrations were similar at baseline. There was no effect of Ang II on F2-isoprostane concentrations during low-salt intake in either group (normotensive 51.7 +/- 7.1 to 53.7 +/- 6.5 pg/ml and hypertensive 52.2 +/- 8.2 to 56.2 +/- 10.0 pg/ml; mean +/- SE). During high-salt intake, Ang II increased F2-isoprostane concentrations in the hypertensive group (52.3 +/- 7.2 to 63.2 +/- 10.4 pg/ml, p=0.010) but not in the normotensive group (54.2 +/- 4.4 to 58.9 +/- 6.6 pg/ml, p=0.83). Acute Ang II infusion increases oxidative stress in vivo in hypertensive humans. The renin-angiotensin system may contribute to oxidative stress in human cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号