首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Xenopus laevis egg vitelline envelope is composed of five glycoproteins (ZPA, ZPB, ZPC, ZPD, and ZPX). As shown previously, ZPC is the primary ligand for sperm binding to the egg envelope, and this binding involves the oligosaccharide moieties of the glycoprotein (Biol. Reprod., 62:766-774, 2000). To understand the molecular mechanism of sperm-egg envelope binding, we characterized the N-linked glycans of the vitelline envelope (VE) glycoproteins. The N-linked glycans of the VE were composed predominantly of a heterogeneous mixture of high-mannose (5-9) and neutral, complex oligosaccharides primarily derived from ZPC (the dominant glycoprotein). However, the ZPA N-linked glycans were composed of acidic-complex and high-mannose oligosaccharides, ZPX had only high-mannose oligosaccharides, and ZPB lacked N-linked oligosaccharides. The consensus sequence for N-linked glycosylation at the evolutionarily conserved residue N113 of the ZPC protein sequence was glycosylated solely with high-mannose oligosaccharides. This conserved glycosylation site may be of importance to the three-dimensional structure of the ZPC glycoproteins. One of the complex oligosaccharides of ZPC possessed terminal beta-N-acetyl-glucosamine residues. The same ZPC oligosaccharide species isolated from the activated egg envelopes lacked terminal beta-N-acetyl-glucosamine residues. We previously showed that the cortical granules contain beta-N-acetyl-glucosaminidase (J. Exp. Zool., 235:335-340, 1985). We propose that an alteration in the oligosaccharide structure of ZPC by glucosaminidase released from the cortical granule reaction is responsible for the loss of sperm binding ligand activity at fertilization.  相似文献   

2.
The zona pellucida, a transparent envelope surrounding the mammalian oocyte, comprises three glycoproteins, ZPA, ZPB and ZPC, and plays important roles in fertilization. We have previously reported that apparent relative molecular masses of bovine zona glycoproteins on SDS/PAGE under nonreducing conditions after removal of poly N-acetyllactosamine at the nonreducing portion of sugar chains with endo-beta-galactosidase are 72 000, 58 000 and 45 000 [Noguchi, S., Yonezawa, N., Katsumata, T., Hashizume, K.,Kuwayama, M., Hamano, S., Watanabe, S. & Nakano, M. (1994) Biochim. Biophys. Acta 1201, 7-14]. The N-terminal amino-acid sequences and crossreactivity to antibodies specific to each porcine zona component show that the bovine components correspond to porcine ZPA, ZPB and ZPC, respectively. In this study, we deduced amino-acid sequences of bovine ZPA and ZPB by cDNA cloning and sequencing. Identities in amino-acid sequences between bovine and porcine counterparts were 77% for ZPA and 75% for ZPB, whereas between bovine and murine counterparts identities were 57% for ZPA and 37% for ZPB. The positions of Cys were completely conserved in bovine ZPA and ZPB compared with counterparts of other mammalian species. Bovine ZPA was processed between Ala and Asp on fertilization, suggesting that the consensus motif for the processing is Ala-Asp-Asp/Glu. We purified bovine zona components and examined their sperm-binding activity with an in vitro competition assay and sperm-bead-binding assay. As a result, ZPB showed the strongest sperm-binding activity among the components. ZPC also showed sperm-binding activity and the activity per molecule was about one-sixth that of ZPB according to the result of the sperm-bead-binding assay. We could not determine if ZPA has significant sperm-binding activity, but the activity may be much lower than that of ZPB even if ZPA has significant activity. Thus, ZPB may play a major role in sperm binding in bovine zona.  相似文献   

3.
The Xenopus laevis egg envelope is composed of six or more glycoproteins, three of which have been cloned and identified as the mammalian homologs ZPA (ZP2), ZPB (ZP1) and ZPC (ZP3). The remaining glycoproteins are a triplet of high molecular weight components that are selectively hydrolyzed by the hatching enzyme. We have isolated one of these proteins and cloned its cDNA. The mRNA for the protein was found to be expressed only in early stage oocytes, as are other envelope components. From the deduced amino acid sequence, it was indicated to be a secreted glycoprotein with a characteristic ZP domain in the C-terminal half of the molecule. The N-terminal half was unrelated to any known glycoprotein. Comparative sequence analysis of the ZP domain indicated that it was derived from an ancestor of ZPA and ZPB, with the greatest identity to ZPA. This envelope component has been designated ZPAX.  相似文献   

4.
Vertebrate eggs are surrounded by an extracellular matrix with similar functions and conserved individual components: the zona pellucida (ZP) glycoproteins. In mammals, chickens, frogs, and some fish species, we established an updated list of the ZP genes, studied the relationships within the ZP gene family using phylogenetic analysis, and identified ZP pseudogenes. Our study confirmed the classification of ZP genes in six subfamilies: ZPA/ZP2, ZPB/ZP4, ZPC/ZP3, ZP1, ZPAX, and ZPD. The identification of a Zpb pseudogene in the mouse genome, Zp1 pseudogenes in the dog and bovine genomes, and Zpax pseudogenes in the human, chimpanzee, macaque, and bovine genomes showed that the evolution of ZP genes mainly occurs by death of genes. Our study revealed that the extracellular matrix surrounding vertebrate eggs contains three to at least six ZP glycoproteins. Mammals can be classified in three categories. In the mouse, the ZP is composed of three ZP proteins (ZPA/ZP2, ZPC/ZP3, and ZP1). In dog, cattle and, putatively, pig, cat, and rabbit, the zona is composed of three ZP proteins (ZPA/ZP2, ZPB/ZP4, and ZPC/ZP3). In human, chimpanzee, macaque, and rat, the ZP is composed of four ZP proteins (ZPA/ZP2, ZPB/ZP4, ZPC/ZP3, and ZP1). Our review provides new directions to investigate the molecular basis of sperm-egg recognition, a mechanism which is not yet elucidated.  相似文献   

5.
The zona pellucida (ZP) surrounding the mammalian oocyte is composed of three glycoprotein components (ZPA, ZPB, and ZPC). Mammalian sperm bind to carbohydrate chains of a ZP glycoprotein in the initial phase of fertilization. Sperm-ligand carbohydrate chains have been characterized in mouse, cow, and pig. In pigs, triantennary/tetraantennary neutral complex-type chains from ZPB/ZPC mixture possess stronger sperm-binding activity than those of biantennary chains (Kudo et al., 1998: Eur J Biochem 252:492-499). Most of these oligosaccharides have beta-galactosyl residues at the nonreducing ends. This study used two in vitro competition assays to investigate the participation of the nonreducing terminal beta-galactosyl residues of the ligand active chains in porcine sperm binding. The removal of the nonreducing terminal beta-galactosyl residues from either the ligand active carbohydrate chains or endo-beta-galactosidase-digested glycoproteins significantly reduced their inhibition of sperm-egg binding, indicating that the beta-galactosyl residues at the nonreducing ends are involved in porcine sperm-egg binding. A correlation between the sperm-binding activity and in vitro fertilization rate is also presented.  相似文献   

6.
The zona pellucida, which surrounds the mammalian oocyte, consists of the ZPA, ZPB, and ZPC glycoproteins and plays roles in species-selective sperm-egg interactions via its carbohydrate moieties. In the pig, this activity is conferred by tri- and tetraantennary complex type chains; in cattle, it is conferred by a chain of 5 mannose residues. In this study, porcine zona glycoproteins were expressed as secreted forms, using the baculovirus-Sf9 insect cell system. The sperm binding activities of the recombinant proteins were examined in three different assays. The assays clearly demonstrated that recombinant ZPB bound bovine sperm weakly but did not bind porcine sperm; when recombinant ZPC was also present, bovine sperm binding activity was greatly increased, but porcine sperm still was not bound. The major sugar chains of ZPB were pauci and high mannose type chains that were similar in structure to the major neutral N-linked chain of the bovine zona. In fact, the nonreducing terminal alpha-mannose residues were necessary for the sperm binding activity. These results show that the carbohydrate moieties of zona glycoproteins, but not the polypeptide moieties, play an essential role in species-selective recognition of porcine and bovine sperm. Moreover, Asn to Asp mutations at either of two of the N-glycosylation sites of ZPB, residue 203 or 220, significantly reduced the sperm binding activity of the ZPB/ZPC mixture, whereas a similar mutation at the third N-glycosylation site, Asn-333, had no effect on binding. These results suggest that the N-glycans located in the N-terminal half of the ZP domain of porcine ZPB are involved in sperm-zona binding.  相似文献   

7.
The zona pellucida, a transparent envelope surrounding the mammalian oocyte, consists of three glycoproteins, ZPA, ZPB and ZPC, and plays a role in sperm-egg interactions. In bovines, these glycoproteins cannot be separated unless the acidic N-acetyllactosamine regions of the carbohydrate chains are removed by endo-beta-Galactosidase digestion. Endo-beta-Galactosidase-digested ZPB retains stronger sperm-binding activity than ZPC. It is still unclear whether ZPA possesses significant activity. Recently, we reported that bovine sperm binds to Man5GlcNAc2, the neutral N-linked chain in the cow zona proteins. In this study, we investigated the localization of the sperm-ligand active high-mannose-type chain and the acidic complex-type chains in bovine ZPA. Three N-glycopeptides of ZPA, containing an N-glycosylation site at Asn83, Asn191 and Asn527, respectively, were obtained from endo-beta-Galactosidase-digested ZPA. Of these glycosylation sites, only Asn527 is present in the ZP domain common to all the zona proteins. The carbohydrate structures of the N-linked chains obtained from each N-glycopeptide were characterized by two-dimensional sugar mapping analysis, while considering the structures of the N-linked chains of the zona protein mixture reported previously. Acidic complex-type chains were found at all three N-glycosylation sites, while Man5GlcNAc2 was found at Asn83 and Asn191, but there was very little of this sperm-ligand active chain at Asn527 in the ZP domain of ZPA.  相似文献   

8.
The egg envelope, referred to as zona pellucida (ZP) in mammalian eggs, is a fibrous and noncollagenous extracellular matrix surrounding vertebrate eggs, and composed of three to four homologous glycoproteins with a common ZP domain. In birds, a liver-derived ZP glycoprotein (ZP1/ZPB1) is transported through the bloodstream to ovarian follicles and joins the egg-envelope matrix construction together with the other ZP glycoproteins, such as ZPC and ZPD/ZPX2, both secreted from follicular granulosa cells. We report here that, through its ZP domain, ZPB1 specifically associates with ZPC, which might lead to the construction of egg-envelope matrix. The ZPB1 in laying hen's serum specifically bound to ZPC, but not to ZPX2, separated by SDS-PAGE and blotted on a membrane. Hemagglutinin (HA)-tagged ZPC expressed in a mammalian cell line (COS-7) cells was processed and secreted as a mature-form into the culture medium. From the culture supernatant of ZPC-expressing transfectants cultured in the presence of ZPB1, both ZPB1 and ZPC were recovered as heterocomplexes by immunoprecipitation using either anti-HA or anti-ZPB1 antibody. Interestingly, a monoclonal antibody, 8E1, which immunoprecipitated free ZPB1, did not immunoprecipitate the ZPB1-ZPC heterocomplexes. An 8E1 epitope was mapped on a C-terminal region of the ZP domain in a ZPB1 molecule by identifying an 8E1-positive peptide using mass spectroscopy. Furthermore, by laser scanning confocal microscopy, ZPB1 and ZPC were observed to colocalize on the surface of ZPC-expressing transfectants cultured in the presence of ZPB1, whereas almost no ZPC was detected on the surface of the transfectants cultured in the absence of ZPB1. Taken together, these results suggest that ZPB1 transported into ovarian follicles encounters and associates with ZPC secreted from granulosa cells, resulting in the formation of heterocomplexes around an oocyte. In addition, it appears that such ZPB1-ZPC complexes accumulated on the oocyte surface act as a scaffold for subsequent matrix construction events including ZPX2 association.  相似文献   

9.
The egg envelope of most animal eggs is modified following fertilization, resulting in the prevention of polyspermy and hardening of the egg envelope. In frogs and mammals a prominent feature of envelope modification is N-terminal proteolysis of the envelope glycoprotein ZPA. We have purified the ZPA protease from Xenopus laevis eggs and characterized it as a zinc metalloprotease. Proteolysis of isolated egg envelopes by the isolated protease resulted in envelope hardening. The N-terminal peptide fragment of ZPA remained disulfide bond linked to the ZPA glycoprotein moiety following proteolysis. We propose a mechanism for egg envelope hardening involving ZPA proteolysis by an egg metalloprotease as a triggering event followed by induction of global conformational changes in egg envelope glycoproteins.  相似文献   

10.
The time for solubilization of the bovine zona pellucida in a hypotonic buffer containing 5% (v/v) beta-mercaptoethanol and 7 mol urea l-1 increased by 10% after fertilization. Coupling with a specific fluorescent thiol probe, monobromobimane (mBBr), was markedly greater in the zona pellucida of ovarian eggs compared with fertilized eggs, indicating that the cysteine residues in the zona pellucida of unfertilized eggs are oxidized to cystines during fertilization. After endo-beta-galactosidase digestion to remove N-acetyllactosamine repeats of the carbohydrate chains, three zona pellucida glycoproteins (ZPA, ZPB and ZPC) coupled with the fluorescent bimane groups were fractionated efficiently by reverse-phase HPLC. Estimation of bimane groups in the three components and SDS-PAGE revealed that intramolecular disulfide bonds in ZPA and intra- and intermolecular disulfide bonds in ZPB were formed during fertilization, but oxidation of cysteine residues in ZPC was low. Specific proteolysis of ZPA during fertilization was also observed. These results indicate that the formation of disulfide linkages together with specific proteolysis result in the construction of a rigid zona pellucida structure, which is responsible for hardening of the zona pellucida.  相似文献   

11.
While the anuran amphibian Xenopus laevis is a widely used vertebrate model system, it is not optimal for genetic manipulations due to its tetraploid genome and long generation time. A current alternative amphibian model system, Xenopus tropicalis, has the advantages of a diploid genome and a much shorter generation time. We undertook a comparative investigation of X. tropicalis egg extracellular matrix glycoproteins in relation to those already characterized in X. laevis. Fertilization methods and isolation of egg extracellular molecules were directly transferable from X. laevis to X. tropicalis. Cross-fertilizations were successful in both directions, indicating similar molecules involved in sperm-egg interactions. Egg envelopes analyzed by SDS-PAGE were found to have almost identical gel patterns, whereas jelly component profiles were similar only for the larger macromolecules (>90 kDa). The cDNA sequences for egg envelope glycoproteins ZPA, ZPB, ZPC, ZPD and ZPAX, and also egg cortical granule lectin involved in the block to polyspermy, were cloned for X. tropicalis and showed a consistent approximately 85% amino acid identity to the X. laevis sequences. Thus, homologous egg extracellular matrix molecules perform the same functions, and the molecular and cellular mechanisms of fertilization in these two species are probably equivalent.  相似文献   

12.
Zona pellucida, a transparent envelope surrounding the mammalian oocyte, plays important roles in fertilization and consists of three glycoproteins; ZPA, ZPB and ZPC. In pig, neutral complex-type N-linked chains obtained from a ZPB/ZPC mixture possess sperm-binding activity. We have recently reported that among neutral N-linked chains triantennary and tetraantennary chains have a sperm-binding activity stronger than that of diantennary chains. Triantennary and tetraantennary chains are localized at the second of the three N-glycosylation sites of ZPB. In this study, we focused on the localization of neutral N-linked chains in ZPC. ZPB and ZPC can not be separated from each other unless the acidic N-acetyllactosamine regions of their carbohydrate chains are removed by endo-beta-galactosidase digestion. A large part of the acidic N-linked chains becomes neutral by the digestion, but the main neutral N-linked chains are not susceptible to the enzyme. N-glycanase digestion indicated that ZPC has three N-glycosylation sites. Three glycopeptides each containing one of the N-glycosylation sites were obtained by tryptic digestion of ZPC and the N-glycosylation sites were revealed as Asn124, Asn146 and Asn271. The carbohydrate structures of the neutral N-linked chains from each glycopeptide were characterized by two-dimensional sugar mapping analysis taking into consideration the structures of the main, intact neutral N-linked chains of ZPB/ZPC mixture reported previously. Triantennary and tetraantennary chains were found mainly at Asn271 of ZPC, whereas diantennary chains were present at all three N-glycosylation sites. Thus, ZPC has tri-antennary and tetra-antennary chains as well as ZPB, but the localization of the chains is different from that in ZPB.  相似文献   

13.
The extracellular matrix surrounding mammalian oocytes plays important roles in fertilization and is known as the zona pellucida (ZP). The ZP consists of three glycoproteins, ZPA, ZPB, and ZPC, which contain homologous regions known as ZP domains. The ZP domain is also found in many other secretory glycoproteins. Putative transmembrane domains present at the C-termini of ZP glycoprotein precursors are removed as the proteins proceed through the secretory pathway. However, the details of this processing have been unclear. In particular, the precise locations of the C-termini of mammalian zona proteins have not yet been determined. In this study, the C-terminal residues of porcine ZPB and ZPC were identified as Ala-462 and Ser-332, respectively, by mass spectrometry of C-terminal polypeptide fragments of these proteins. These results suggest that ZPB is processed at its furin consensus site, whereas ZPC is processed N-terminal to the furin consensus site. In addition, the analyses of porcine ZPB and ZPC fragments revealed that disulfide bonds within the ZP domains are divided into two groups, suggesting that the ZP domain consists of two subdomains.  相似文献   

14.
The avian inner perivitelline layer (IPVL) contains zona pellucida protein-B1 (ZPB1), zona pellucida protein-C (ZPC) and zona pellucida protein-D (ZPD). These three proteins may be involved in sperm binding to the IPVL. ZPB1 is produced by the liver and transported to the developing preovulatory follicle, while ZPC and ZPD are synthesized and secreted by the granulosa cells of the preovulatory follicle. The mRNA of ZPB1, ZPC, and ZPD was investigated in two lines of turkey hens selected for over 40 generations for either increased egg production (E line) or increased body weight (F line). Total RNA was extracted from the liver and from 1cm(2) sections of the granulosa layer around the germinal disc and a nongerminal disc area of the F(1) and F(2) follicles of hens from each genetic line. Northern analysis was performed using chicken cDNA probes for all three ZP proteins. Hepatic mRNA for ZPB1 was greater (P<0.05) in turkey hens from the E line than the F line. Although, there was no difference in ZPC mRNA between the germinal disc and nongerminal disc region of the two largest follicles in E line hens, ZPC mRNA was greater in the nongerminal disc region compared to the germinal disc region in the two largest follicles obtained from the F line hens. There were no differences in ZPD mRNA between the germinal disc and nongerminal disc regions of the F(1) and F(2) follicles for either genetic line. The results suggest that the greater rates of fertility previously observed in eggs from the E line hens compared with the F line of hens may be related to differential amounts of the potential sperm binding proteins ZPB1 and ZPC.  相似文献   

15.
16.
17.
18.
The acquisition of egg fertilizability in Bufo arenarum takes place during the oviductal transit and during this process the extracellular coelomic envelope (CE) of the eggs is converted into the vitelline envelope (VE). It has been stated that one of the necessary events leading to a fertilizable state is the proteolytic cleavage of CE glycoproteins in the oviductal pars recta by oviductin, a serine protease. Consequently, there is a marked increase in the relative quantity of glycoproteins with 39 (gp39) and 42 kDa (gp42) in the VE. In the present study, sperm-VE binding assays using heat-solubilized biotin-conjugated VE glycoproteins revealed that both gp39 and gp42 have sperm binding capacity. According to this result, our study was focused on gp39, a glycoprotein that we have previously reported as a homologue of mammalian ZPC. For this purpose, rabbit polyclonal antibodies against gp39 were generated at our laboratory. The specificity of the antibodies was confirmed with western blot of VE glycoproteins separated on SDS-PAGE. Immunohistochemical and immunoelectron studies showed gp39 distributed throughout the width of the VE. In addition, immunofluorescence assays probed that gp39 bound to the sperm head. Finally, as an approach to elucidate the possible involvement of gp39 in fertilization, inhibition assays showed that pretreatment of eggs with antibodies against gp39 generated a significant decrease in the fertilization rate. Therefore, our findings suggest that gp39, which is modified by oviductal action, participates as a VE glycoprotein ligand for sperm in Bufo arenarum fertilization.  相似文献   

19.
A quantitative assay was developed to study the interaction of Xenopus laevis sperm and eggs. Using this assay it was found that sperm bound in approximately equal numbers to the surface of both hemispheres of the unfertilized egg, but not to the surface of the fertilized egg. To understand the molecular basis of sperm binding to the egg vitelline envelope (VE), a competition assay was used and it was found that solubilized total VE proteins inhibited sperm-egg binding in a concentration-dependent manner. Individual VE proteins were then isolated and tested for their ability to inhibit sperm binding. Of the seven proteins in the VE, two related glycoproteins, gp69 and gp64, inhibited sperm-egg binding. Polyclonal antibody was prepared that specifically recognized gp69 and gp64. This gp69/64 specific antibody bound to the VE surface and blocked sperm binding, as well as fertilization. Moreover, agarose beads coated with gp69/64 showed high sperm binding activity, while beads coated with other VE proteins bound few sperm. Treatment of unfertilized eggs with crude collagenase resulted in proteolytic modification of only the gp69/64 components of the VE, and this modification abolished sperm-egg binding. Small glycopeptides generated by Pronase digestion of gp69/64 also inhibited sperm-egg binding and this inhibition was abolished by treatment of the glycopeptides with periodate. Based on these observations, we conclude that the gp69/64 glycoproteins in the egg vitelline envelope mediate sperm-egg binding, an initial step in Xenopus fertilization, and that the oligosaccharide chains of these glycoproteins may play a critical role in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号