首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interacting egg envelope and sperm surface components were identified for Xenopus laevis using blotting methods. Sperm were extracted with sodium dodecyl sulfate (SDS), the extracted proteins separated by gel electrophoresis and blotted, and the blots treated with 125I-labeled heat solubilized envelopes. The converse experiment was also performed where envelope components were separated by gel electrophoresis, blotted, and the blots treated with 125I-labeled sperm components. Blotted sperm components with apparent molecular weights of 14K, 19K, 25K, and 35K selectively bound the solubilized envelopes. All of the envelope binding components were found to be localized on the sperm surface by radioiodinating intact sperm using Iodo-Gen. The blotted egg envelope component with an apparent molecular weight of 37K selectively bound to solubilized sperm components, and this binding was due to the protein moiety of the glycoprotein. 125I-labeled heat solubilized envelopes from unfertilized and fertilized eggs showed the same pattern of binding to blotted sperm components. Selected sulfated carbohydrates (fucoidan, dextran sulfate, and heparin, but not chondroitin sulfate) inhibited fertilization and binding of 125I-labeled heat solubilized envelopes to blotted sperm extract. Thus, the binding of heat solubilized envelopes to electrophoretically separated and blotted sperm proteins may reflect cellular interactions.  相似文献   

2.
The Xenopus laevis egg vitelline envelope is composed of five glycoproteins (ZPA, ZPB, ZPC, ZPD, and ZPX). As shown previously, ZPC is the primary ligand for sperm binding to the egg envelope, and this binding involves the oligosaccharide moieties of the glycoprotein (Biol. Reprod., 62:766-774, 2000). To understand the molecular mechanism of sperm-egg envelope binding, we characterized the N-linked glycans of the vitelline envelope (VE) glycoproteins. The N-linked glycans of the VE were composed predominantly of a heterogeneous mixture of high-mannose (5-9) and neutral, complex oligosaccharides primarily derived from ZPC (the dominant glycoprotein). However, the ZPA N-linked glycans were composed of acidic-complex and high-mannose oligosaccharides, ZPX had only high-mannose oligosaccharides, and ZPB lacked N-linked oligosaccharides. The consensus sequence for N-linked glycosylation at the evolutionarily conserved residue N113 of the ZPC protein sequence was glycosylated solely with high-mannose oligosaccharides. This conserved glycosylation site may be of importance to the three-dimensional structure of the ZPC glycoproteins. One of the complex oligosaccharides of ZPC possessed terminal beta-N-acetyl-glucosamine residues. The same ZPC oligosaccharide species isolated from the activated egg envelopes lacked terminal beta-N-acetyl-glucosamine residues. We previously showed that the cortical granules contain beta-N-acetyl-glucosaminidase (J. Exp. Zool., 235:335-340, 1985). We propose that an alteration in the oligosaccharide structure of ZPC by glucosaminidase released from the cortical granule reaction is responsible for the loss of sperm binding ligand activity at fertilization.  相似文献   

3.
Sperm binding to the vitelline envelope in dejellied Xenopus laevis eggs was effectively inhibited by inhibitors for trypsin (soybean trypsin inhibitor and p-toluenesulfonyl-L-lysine chloroethyl ketone) and aminopeptidase B (o-phenanthroline, bestatin, and arphamenine B). Likewise, synthetic 4-methylcoumaryl-7-amide (MCA) substrates (t-butoxycarbonyl-GlyArgArg-MCA, benzyloxycarbonyl-ArgArg-MCA, and Arg-MCA) inhibited binding. Consistently, when jellied eggs were inseminated in the presence of these substrates or inhibitors for proteases, fertilization was effectively blocked. The medium in which live sperm or the sperm membrane fraction were suspended exhibited hydrolyzing activities against the synthetic substrates mentioned above, and these activities were effectively inhibited by the protease inhibitors. Ultracentrifugal fractionation of the sperm suspension following induction of the acrosome reaction by a calcium ionophore, A23187, indicated that a considerable amount of the total tryptic and aminopeptidase B activity was released into the medium. On this occasion, part of the tryptic and aminopeptidase B activity was definitely estimated to be discharged in association with a vesiculated membrane, supporting the notion that the proteases involved in binding to the vitelline envelope are present on the sperm plasma membrane.  相似文献   

4.
The glycoproteins of the Xenopus laevis egg envelope function in fertilization and development. As the unfertilizable coelomic egg transits the pars recta region of the oviduct, it is converted to a fertilizable egg by limited proteolysis of the envelope glycoprotein gp43 to gp41. This conversion is caused by an oviductally secreted serine active site protease, oviductin. We cloned a cDNA for gp43 from an oocyte cDNA library. The cDNA encoded a 454 amino acid protein homologous to the ZPC family of glycoproteins previously shown to be present in mammalian and fish egg envelopes. Conserved ZPC domains and motifs present in the Xenopus sequence included a signal peptide sequence, an N-linked glycosylation site, and 12 aligned Cys residues. In mammalian and Xenopus sequences, a furin-like (convertase) site and a C-terminal transmembrane domain were present reflecting the biosynthesis of ZPC in these species via the secretory glycoprotein pathway. However, fish envelope glycoproteins lack these sequences since they are synthesized via a different route (in the liver, transported to the ovary, and assembled into the egg envelope surrounding the oocyte). Consensus amino acid residues were identified by sequence comparisons of seven ZPC family members; 19% of the amino acid residues were invariant and 48% of the residues were identical in at least four of the seven sequences. The consensus sequence was used to make structure-fertilization function predictions for this phylogenetically conserved family of glycoproteins.  相似文献   

5.
The egg envelope of most animal eggs is modified following fertilization, resulting in the prevention of polyspermy and hardening of the egg envelope. In frogs and mammals a prominent feature of envelope modification is N-terminal proteolysis of the envelope glycoprotein ZPA. We have purified the ZPA protease from Xenopus laevis eggs and characterized it as a zinc metalloprotease. Proteolysis of isolated egg envelopes by the isolated protease resulted in envelope hardening. The N-terminal peptide fragment of ZPA remained disulfide bond linked to the ZPA glycoprotein moiety following proteolysis. We propose a mechanism for egg envelope hardening involving ZPA proteolysis by an egg metalloprotease as a triggering event followed by induction of global conformational changes in egg envelope glycoproteins.  相似文献   

6.
Microtubules take part in several mechanisms of intracellular motility, including organelle transport and mitosis. We have studied the ability of Xenopus egg extract to support nuclear membrane and pore complex formation when microtubule dynamics are manipulated. In this report we show that the formation of a nuclear envelope surrounding sperm chromatin requires polymerized microtubules. We have observed that microtubule-depolymerizing reagents, and AS-2, a known inhibitor of the microtubule motor protein kinesin, do not inhibit the formation of a double nuclear membrane. However these double membranes contain no morphologically identifiable nuclear pore complexes and do not support the accumulation of karyophilic proteins. In contrast, the assembly of annulate lamellae, cytoplasmic structures containing a subset of pore complex proteins, was not affected. Our data show that not only polymerized microtubules, but also the microtubule motor protein kinesin, are involved in the formation of the nuclear envelope. These results support the conclusion that multiple nuclear envelope-forming mitotic vesicle populations exist, that microtubules play an essential and selective role in the transport of nuclear envelope-forming vesicle population(s), and that separate mechanisms are involved in nuclear envelope and annulate lamellae formation.  相似文献   

7.
8.
The cell-free extracts from animal Xenopus laevis egg could induce chromatin decon-densation and pronuclear formation from demembranated plant (Orychophragmus violaceus) sperm. The demembranated Orychophragmus violaceus sperm began to swell in 30 min incubation, and then were gradually decondensed. The reassembly of nuclear envelope in the reconstituted nuclei had been visualized by means of electron microscopy and fluorescent microscopy. Membrane vesicles fused to form the double envelope around the periphery of the decondensed chromatin. The morphology of the newly formed nucleus, with a double membrane, was similar to those nuclei after fertilization. Transmission electron microscope micrograph of the whole mount prepared nuclear matrix-lamina showed the reconstituted nucleus to be filled with a dense network.  相似文献   

9.
In avian species, a glycoprotein homologous to mammalian ZPC is synthesized in the granulosa cells of developing follicles. We have previously reported that the newly synthesized ZPC (proZPC) in the granulosa cells is cleaved at the consensus furin cleavage site to generate mature ZPC prior to secretion. In the present study, we examined the role of asparagine (N)-linked oligosaccharides in the proteolytic processing of proZPC and the subsequent secretion of ZPC by using site-directed mutagenesis of the consensus sequence for N-glycosylation, and tunicamycin, an inhibitor for N-glycosylation of glycoprotein. Western blot analysis demonstrated that tunicamycin did not block either proteolytic cleavage of proZPC or the subsequent ZPC secretion. Moreover, a site-directed mutant that possesses a mutated sequence for N-glycosylation was efficiently secreted from the cells. These results indicate that proteolytic cleavage of proZPC, and the subsequent ZPC secretion occur in the absence of N-linked oligosaccharides. Therefore, the addition of N-glycans to ZPC polypeptide is not required for quail ZPC secretion.  相似文献   

10.
We report the identification of a previously undetected Xenopus laevis egg envelope component discovered through cloning experiments. A cDNA sequence was found that represented a mature protein of 32 kDa. Peptide antibodies were generated to probe for the protein in egg envelope samples and reactivity was found to a glycoprotein of approximately 80 kDa. When deglycosylated egg envelope samples were probed, a 32 kDa protein was labeled, confirming the size of the translated cDNA sequence. A BLAST analysis showed that it is most closely related (34% amino acid identity) to the ZP domains of mammalian tectorin, uromodulin and ZPA. From a dendrogram of known egg envelope glycoproteins, the new glycoprotein was shown to be unique among egg envelope components and was designated ZPD. A similar glycoprotein was identified by immunocrossreactivity in Xenopus tropicalis and Xenopus borealis egg envelopes.  相似文献   

11.
Distribution of lectin binding sites in Xenopus laevis egg jelly.   总被引:1,自引:0,他引:1  
Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  相似文献   

12.
An amphibian egg recovered from the body cavity is enclosed by a coelomic egg envelope. Upon transport down the oviduct, the envelope is converted to the vitelline envelope. The coelomic and vitelline envelopes are distinct in terms of sperm penetrability, ultrastructural morphology, and radioiodination profiles. In this study, the macromolecular compositions of these two envelopes were determined. Isolated envelopes were compared by one- and two-dimensional gel electrophoresis, peptide mapping, and radiolabeling. A protein with a molecular weight of 57,000 (57K) was present in the vitelline envelope but was absent in the coelomic envelope. A glycoprotein with a molecular weight of 43K in the coelomic envelope was converted to a component with a molecular weight of 41K in the vitelline envelope. The 43K-molecular weight component of the coelomic envelopes could be radioiodinated by lactoperoxidase but no labeling of the 41K-molecular weight component occurred in the vitelline envelope. Peptide mapping using limited proteolysis established that the 43K-molecular weight component of the coelomic envelope was a precursor to the 41K-molecular weight component of the vitelline envelope. These molecular alterations may underlie the ultrastructural and physiological changes occurring in these envelopes.  相似文献   

13.
Fertilization of the Xenopus laevis egg causes the conversion of the vitelline envelope to the fertilization envelope, a change reflected in the loss of sperm penetrability of the egg and the appearance of an electron-dense layer on the outer aspect of the fertilization envelope. As seen by one-dimensional gel electrophoresis, two components with molecular weights of 69,000 and 64,000 in the vitelline envelope were converted to 66,000 and 61,000 in the fertilization envelope. By two-dimensional gel electrophoresis, the components in the 69,000 and 64,000 molecular weight regions of the vitelline envelope were seen to shift to more basic isoelectric points upon conversion to the fertilization envelope. Peptide mapping by limited proteolysis suggested that the 69,000 and 64,000 molecular weight components shared the same polypeptide chains but the smaller glycoprotein lacked a carbohydrate side chain found on the larger species. Similar sites on each glycoprotein were affected when the vitelline envelope was converted to the fertilization envelope. No N-terminal amino acids could be identified on the envelope components, indicating that these glycoproteins have blocked N-termini. Ionophore A23187-activation of jellied eggs (but not dejellied eggs) caused the molecular weight changes in the absence of sperm. Thus, factors from the jelly and the cortical granules but not from sperm apparently are involved in the processing of the 69,000 and 64,000 molecular weight components.  相似文献   

14.
A tribute to the Xenopus laevis oocyte and egg   总被引:5,自引:0,他引:5  
  相似文献   

15.
Now that transgenic strains of Xenopus laevis and X. tropicalis can be generated efficiently and with genomic sequence resources available for X. tropicalis, early amphibian development can be studied using integrated biochemical and genetic approaches. However, housing large numbers of animals generated during genetic screens or produced as novel transgenic lines presents a considerable challenge. We describe a method for cryopreserving Xenopus sperm that should facilitate low maintenance, long-term storage of male gametes. By optimising the cryoprotectant, the rates of cooling and thawing, and conditions for fertilisation, sperm from the equivalent of one-eighth of a X. laevis testis or of two X. tropicalis testes have been cryopreserved and used to fertilise eggs of both species after thawing. Sperm undergo a substantial loss of viability during a freeze-thaw cycle, but sufficient survive to fertilise eggs. Gametes of mutagenised frogs are being stored in connection with a screen for developmental mutations.  相似文献   

16.
The glycoprotein envelope surrounding the Xenopus laevis egg is converted from an unfertilizable to a fertilizable form during transit through the pars recta portion of the oviduct. Envelope conversion involves the pars recta protease oviductin, which selectively hydrolyzes envelope glycoprotein gp43 to gp41. Oviductin cDNA was cloned, and sequence analysis revealed that the protease is translated as the N terminus of an unusual mosaic protein. In addition to the oviductin protease domain, a protease domain with low identity to oviductin was present, possessing an apparent nonfunctional catalytic site. Three CUB domains were also present, which are related to the mammalian spermadhesin molecules implicated in mediating sperm-envelope interactions. We propose that during post-translational proteolytic processing of the mosaic oviductin glycoprotein, the processed N-terminal protease domain is released coupled to two C-terminal CUB domains and constitutes the enzymatically active protease molecule. In functional studies, isolated coelomic egg envelopes treated with oviductin purified from the oviduct showed a dramatic increase in sperm binding. This observation established that oviductin alone was the oviductal factor responsible for converting the egg envelope to a sperm-penetrable form, via an increase in sperm binding. Trypsin mimicked oviductin's effect on envelope hydrolysis and sperm binding, demonstrating that gp43 processing is the only requirement for envelope conversion.  相似文献   

17.
Previous studies have shown that the Xenopus laevis egg envelope exists in three forms with differing ultrastructural, macromolecular, and sperm penetrability properties. The coelomic envelope (CE) is derived from eggs released from the ovary into the body cavity of the female, the vitelline envelope (VE) from eggs which have passed through the oviduct, and the fertilization envelope (FE) from fertilized eggs. In the present study, the physicochemical characteristics of these three envelope types were differentiated. Investigation of envelope solubility, deformability, sulfhydryl reactivity, and hydrophobic dye and ferritin binding capacity demonstrated that profound physicochemical changes occur in envelope conversions CE----VE----FE. The physical strength of the envelopes, as evidenced by deformability studies, ranked FE greater than CE greater than VE. These differences were not accountable by differences in the number of disulfide bonds, although the CE sulfhydryl groups were significantly less accessible than those in the VE or FE. All three envelope forms were hydrophilic in nature, exhibiting little ability to bind 1-anilino-8-naphthalenesulfonic acid. The CE bound greater amounts of ferritin in comparison to the VE and FE, indicating the presence of a basic domain, presumably in the 43-kDa glycoprotein, which is lost upon proteolysis to 41 kDa during the CE----VE conversion. The envelope integrity of all three forms was maintained by both noncovalent and covalent (disulfide) bonds. Measurements of the effect of pH on envelope solubilization indicated the involvement of an ionizable group with pKa of 8.0 in maintaining envelope structure.  相似文献   

18.
The sea urchin egg vitelline envelope (VE) is composed of eight major glycopolypeptides that are heavily mannosylated and contain fucose and N-acetylglucosamine moieties based on lectin staining. In the present study, the macromolecular composition of the VE and the potential role of a purified VE glycoprotein in initial gamete binding was investigated. The VE components were solubilized from the surface of intact, dejellied eggs with dithiothreitol in divalent cation-free seawater, and analyzed using native, reduced electrophoresis and immunoblotting. Three major VE glycoproteins, VE-A, VE-B and VE-C, and one minor component, VE-D, were identified with antisera against whole VE preparations and against glutaraldehyde-fixed, unfertilized eggs. The electrophoretically purified glycoproteins resolved into a common subunit doublet and one unique subunit each of decreasing size on blots of sodium dodecylsulfate polyacrylamide gels. Lectin affinity chromatography was used for analysis and purification of reduced VE components; a glycoprotein eluted from Con A columns with methyl-mannoside comigrated with VE-B when analyzed by immunoblotting. Whole VE preparations and VE-B obtained from Con A columns were found to inhibit fertilization when preincubated with sperm, thus directly establishing a role for VE-B in gamete binding.  相似文献   

19.
To analyze sperm surface molecules involved in sperm–egg envelope binding in Xenopus laevis, heat‐solubilized vitelline envelope (VE) dot blotted onto a polyvinylidene difluoride (PVDF) sheet was incubated with a detergent extract of sperm plasma membrane (SP‐ML). The membrane components bound to the VE were detected using an antibody library against sperm plasma membrane components, and a hybridoma clone producing a monoclonal antibody (mAb) 16A2A7 was identified. This mAb was used in a Far Western blotting experiment in which VE was separated by electrophoresis, and then transferred to a PVDF strip that was incubated with SP‐ML. It was found that SP‐ML binds to the VE component gp37 (Xenopus homolog of mammalian ZP1). The antigens reactive to mAb 16A2A7 showed apparent molecular weights of 65–130 and 20–30 kDa, and were distributed relatively evenly over the entire sperm surface. Periodate oxidation revealed that both the pertinent epitope on the sperm surface and the ligands of VE gp37 were sugar moieties. VE gp37 was exposed on the VE surface, and the mAb 16A2A7 dose‐dependently inhibited sperm binding to VE. The sperm membrane molecules reactive with mAb 16A2A7 also reacted with mAb 2A3D9, which is known to recognize the glycoprotein SGP in the sperm plasma membrane and is involved in interactions with the egg plasma membrane, indicating that the sperm membrane glycoprotein has a bifunctional role in Xenopus fertilization. Mol. Reprod. Dev. 77: 728–735, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Allurin, a sperm chemoattractant isolated from Xenopus laevis egg jelly, can be purified in one step from an extract of diffusible jelly proteins ("egg water") using a FPLC or HPLC anion exchange column and a multi-step NaCl gradient. Allurin homomultimers were detected by Western blotting with antibodies prepared against the purified protein or peptides within the protein. Allurin multimers were stable and resisted dissociation by SDS and beta-mercaptoethanol. Alkylation of allurin provided evidence for two free sulfhydryl groups but did not eliminate multimer formation, suggesting that intermolecular disulfide bond formation is not required for allurin aggregation. Concentration of egg water was accompanied by a reduction of chemoattractant activity that could not be fully accounted for by homomultimer formation. Rather, the presence of a multiphasic dose-activity curve upon partial purification and formation of hetero-allurin complexes during concentration suggested that egg water may contain allurin-binding proteins that reduce multimer formation and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号