共查询到20条相似文献,搜索用时 15 毫秒
1.
Processing of the Epstein-Barr virus-encoded latent membrane protein p63/LMP. 总被引:6,自引:5,他引:1 下载免费PDF全文
We have analyzed the processing of the Epstein-Barr virus-encoded latent membrane protein (p63/LMP) in lymphoblastoid cell lines, Burkitt's lymphoma cell lines, and rodent fibroblasts transfected with the p63/LMP gene. Pulse-chase analysis by immunoprecipitation, under denaturing conditions, reveals a half-life of 2 h. This is due to turnover in the plasma membrane with cleavage of the protein, resulting in a 25,000-molecular-weight (p25) fragment derived from the carboxy-terminal portion of LMP. This fragment is rich in proline and acidic amino acids and sheds into the cytoplasm, where it appears to accumulate, being present in a six- to sevenfold molar excess over p63/LMP in immunoprecipitation analyses. p25 is, like p63/LMP, also phosphorylated (pp25) on serine and threonine residues, in the same ratio and to approximately the same extent as the intact p63/LMP molecule. Amino acid sequence analysis and carboxy-terminal labeling suggest that p25 is derived through a single cleavage adjacent to the sequence LGAPGGGPDNGPQDPD. 相似文献
2.
Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. 总被引:13,自引:50,他引:13 下载免费PDF全文
Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation. 相似文献
3.
Pai S O'Sullivan B Abdul-Jabbar I Peng J Connoly G Khanna R Thomas R 《Immunology and cell biology》2007,85(5):370-377
Sequence variation in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) oncogene structure may affect antigen-presenting cell (APC) function of infected B cells and immune escape by EBV-specific T cells and thus contribute to the development of malignancy. Normal B cell-associated LMP1 (B-LMP1) upregulates B cell APC function through activation of the necrosis factor (NF)-kappaB subunit, RelB. We examined the ability of B-LMP1 and a nasopharyngeal carcinoma-associated LMP1 (NPC-LMP1) to modulate B cell APC function and T-cell responses. B lymphoma cells transfected with NPC-LMP1 stimulated resting T cells in mixed lymphocyte reaction less efficiently than B-LMP1 transfectants. Unexpectedly, antigen presentation to CD4(+) T helper cells was reduced owing to potentiation of regulatory T-cell function by NPC-LMP1 transfectants, which produce increased levels of interleukin-10, rendering CD4(+) T cells hyporesponsive. Thus, after primary EBV infection, T cells may escape activation by NPC-LMP1. These observations have important implications for the establishment of EBV-associated malignancy in the context of infection with tumour-associated EBV LMP1 variants. 相似文献
4.
A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. 总被引:14,自引:18,他引:14 下载免费PDF全文
Recent cDNA cloning and sequencing of two Epstein-Barr virus (EBV)-specific mRNAs from latently infected cultures revealed that these RNAs are encoded across the fused terminal repeats of the viral genome and that they are likely to encode two nearly identical proteins with the same transmembrane domains. The smaller predicted protein (LMP2B) lacks 119 amino-terminal amino acids found in the larger one (LMP2A). To test whether these proteins are expressed in latently infected lymphocytes, antibodies to the LMP2 proteins were derived by immunizing rabbits with TrpE-LMP2A fusion proteins. Affinity-purified LMP2-specific antibodies recognized 54- and 40-kilodalton proteins, corresponding to LMP2A and LMP2B, in immunoblots of rodent fibroblasts stably transfected with eucaryotic expression plasmids containing either the LMP2A or LMP2B cDNA. Similar-size proteins were also identified in immunoblots of latently infected lymphocytes. LMP2A localized to membranes in cellular fractionation studies. In immunofluorescent studies, LMP2 localized in the plasma membrane of EBV-infected lymphocytes, with the majority of reactivity confined to the region of the LMP1 patch. This reactivity was detected in almost all lymphoblastoid cells latently infected with EBV. 相似文献
5.
6.
HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. 总被引:10,自引:7,他引:10 下载免费PDF全文
S P Lee W A Thomas R J Murray F Khanim S Kaur L S Young M Rowe M Kurilla A B Rickinson 《Journal of virology》1993,67(12):7428-7435
Cytotoxic T-lymphocyte (CTL) responses induced by persistent Epstein-Barr virus (EBV) infection in normal B-lymphoid tissues could potentially be directed against EBV-positive malignancies if expression of the relevant viral target proteins is maintained in tumor cells. For malignancies such as nasopharyngeal carcinoma and Hodgkin's disease, this will require CTL targeting against the nuclear antigen EBNA1 or the latent membrane proteins LMP1 and LMP2. Here we analyze in detail a B95.8 EBV-reactivated CTL response which is specific for LMP2 and restricted through a common HLA allele, A2.1. We found that in vitro-reactivated CTL preparations from several A2.1-positive virus-immune donors contained detectable reactivity against A2.1-bearing target cells expressing either LMP2A or the smaller LMP2B protein from recombinant vaccinia virus vectors. Peptide sensitization experiments then mapped the A2.1-restricted response to a single epitope, the nonamer CLGGLLTMV (LMP2A residues 426 to 434), whose sequence accords well with the proposed peptide binding motif for A2.1. Most Caucasian and African virus isolates (whether of type 1 or type 2) were identical in sequence to B95.8 across this LMP2 epitope region, although 2 of 12 such isolates encoded a Leu-->Ile change at epitope position 6. In contrast, most Southeast Asian and New Guinean isolates (whether of type 1 or type 2) constituted a different virus group with a Cys-->Ser mutation at epitope position 1. CTLs raised against the B95.8-encoded epitope were nevertheless able to recognize these variant epitope sequences in the context of A2.1 whether they were provided exogenously as synthetic peptides or generated endogenously in B cells transformed with the variant viruses. A CTL response of this kind could have therapeutic potential in that it is directed against a protein expressed in many EBV-positive malignancies, is reactive across a range of virus isolates, and is restricted through a relatively common HLA allele. 相似文献
7.
An Epstein-Barr virus-specific cytotoxic T-cell epitope present on A- and B-type transformants. 总被引:7,自引:1,他引:6 下载免费PDF全文
In this report we describe a cytotoxic T-cell epitope in the Epstein-Barr virus nuclear antigen EBNA 6. This epitope is present on both A- and B-type transformants. 相似文献
8.
The EBV-encoded latent membrane protein 1 (LMP1) functions as a constitutive active form of tumor necrosis factor receptor (TNFR) and activates multiple downstream signaling pathways similar to CD40 signaling in a ligand-independent manner. LMP1 expression in EBV-infected cells has been postulated to play an important role in pathogenesis of nasopharyngeal carcinoma. However, variable levels of LMP1 expression were detected in nasopharyngeal carcinoma. At present, the regulation of LMP1 levels in nasopharyngeal carcinoma is poorly understood. Here we show that LMP1 mRNAs are transcribed in an EBV-positive nasopharyngeal carcinoma (NPC) cell line (C666-1) and other EBV-negative nasopharyngeal carcinoma cells stably re-infected with EBV. The protein levels of LMP1 could readily be detected after incubation with proteasome inhibitor, MG132 suggesting that LMP1 protein is rapidly degraded via proteasome-mediated proteolysis. Interestingly, we observed that Id1 overexpression could stabilize LMP1 protein in EBV-infected cells. In contrary, Id1 knockdown significantly reduced LMP1 levels in cells. Co-immunoprecipitation studies revealed that Id1 interacts with LMP1 by binding to the CTAR1 domain of LMP1. N-terminal region of Id1 is required for the interaction with LMP1. Furthermore, binding of Id1 to LMP1 suppressed polyubiquitination of LMP1 and may be involved in stabilization of LMP1 in EBV-infected nasopharyngeal epithelial cells. 相似文献
9.
The signaling pathways of Epstein-Barr virus-encoded latent membrane protein 2A (LMP2A) in latency and cancer 总被引:1,自引:0,他引:1
Epstein-Barr virus (EBV) is a ubiquitous virus with infections commonly resulting in a latency carrier state. Although the
exact role of EBV in cancer pathogenesis remains not entirely clear, it is highly probable that it causes several lymphoid
and epithelial malignancies, such as Hodgkin’s lymphoma, NK-T cell lymphoma, Burkitt’s lymphoma, and nasopharyngeal carcinoma.
EBV-associated malignancies are associated with a latent form of infection, and several of these EBV-encoded latent proteins
are known to mediate cellular transformation. These include six nuclear antigens and three latent membrane proteins. Studies
have shown that EBV displays distinct patterns of viral latent gene expression in these lymphoid and epithelial tumors. The
constant expression of latent membrane protein 2A (LMP2A) at the RNA level in both primary and metastatic tumors suggests
that this protein might be a driving factor in the tumorigenesis of EBV-associated malignancies. LMP2A may cooperate with
the aberrant host genome, and thereby contribute to malignant transformation by intervening in signaling pathways at multiple
points, especially in the cell cycle and apoptotic pathway. This review summarizes the role of EBV-encoded LMP2A in EBV-associated
viral latency and cancers. We will focus our discussions on the molecular interactions of each of the conserved motifs in
LMP2A, and their involvement in various signaling pathways, namely the B-cell receptor blockade mechanism, the ubiquitin-mediated
(Notch and Wnt) pathways, and the MAPK, PI3-K/Akt, NK-κB and STAT pathways, which can provide us with important insights into
the roles of LMP2A in the EBV-associated latency state and various malignancies. 相似文献
10.
Shair KH Bendt KM Edwards RH Nielsen JN Moore DT Raab-Traub N 《Journal of virology》2012,86(9):5352-5365
The Epstein-Barr virus (EBV) proteins latent membrane proteins 1 and 2 (LMP1 and LMP2) are frequently expressed in EBV-associated lymphoid and epithelial cancers and have complex effects on cell signaling and growth. The effects of these proteins on epithelial cell growth were assessed in vivo using transgenic mice driven by the keratin 14 promoter (K14). The development of papillomas and carcinomas was determined in the tumor initiator and promoter model using dimethyl benzanthracene (DMBA), followed by repeated treatments of 12-O-tetradecanoyl phorbol 13-acetate (TPA). In these assays, LMP1 functioned as a weak tumor promoter and increased papilloma formation. In contrast, mice expressing LMP2A did not induce or promote papilloma formation. Transgenic LMP1 mice had slightly increased development of squamous cell carcinoma; however, the development of carcinoma was significantly increased in the doubly transgenic mice expressing both LMP1 and LMP2A. DMBA treatment induces an activating mutation in the Harvey-ras (H-ras(61)) oncogene, and this mutation was identified in most papillomas and carcinomas although several papillomas and carcinomas in K14-LMP1 and K14-LMP1/LMP2A mice lacked the mutation. Analysis of signaling pathways that are known to be activated by LMP1 and/or LMP2 indicated that all genotypes had high levels of activated extracellular signal-regulated kinase (ERK) and Stat3 in carcinomas with significantly higher activation in the doubly transgenic carcinomas. These findings suggest that, in combination, LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of the proteins on activation of multiple signaling pathways. This study is the first to characterize the effects of LMP2 on tumor initiation and promotion and to identify an effect of the combined expression of LMP1 and LMP2 on the increase of carcinoma development. 相似文献
11.
12.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), the principal viral oncoprotein and a member of the tumor necrosis factor receptor superfamily, is a constitutively active membrane signaling protein that regulates multiple signal transduction pathways via its C-terminal-activating region 1 (CTAR1) and CTAR2, and also the less-studied CTAR3. Because protein sumoylation among other posttranslational modifications may regulate many signaling pathways induced by LMP1, we investigated whether during EBV latency LMP1 regulates sumoylation processes that control cellular activation and cellular responses. By immunoprecipitation experiments, we show that LMP1 interacts with Ubc9, the single reported SUMO-conjugating enzyme. Requirements for LMP1-Ubc9 interactions include enzymatically active Ubc9: expression of inactive Ubc9 (Ubc9 C93S) inhibited the LMP1-Ubc9 interaction. LMP1 CTAR3, but not CTAR1 and CTAR2, participated in the LMP1-Ubc9 interaction, and amino acid sequences found in CTAR3, including the JAK-interacting motif, contributed to this interaction. Furthermore, LMP1 expression coincided with increased sumoylation of cellular proteins, and disruption of the Ubc9-LMP1 CTAR3 interaction almost completely abrogated LMP1-induced protein sumoylation, suggesting that this interaction promotes the sumoylation of downstream targets. Additional consequences of the disruption of the LMP1 CTAR3-Ubc9 interaction revealed effects on cellular migration, a hallmark of oncogenesis. Together, these data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling and leads to biological effects. We propose that LMP1, by interaction with Ubc9, modulates sumoylation processes, which regulate signal transduction pathways that affect phenotypic changes associated with oncogenesis. 相似文献
13.
Latent membrane protein 2A (LMP2A) and LMP2B are viral proteins expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor (BCR) signal transduction by associating with the cellular tyrosine kinases Lyn and Syk via specific phosphotyrosine motifs found within the LMP2A N-terminal tail domain. LMP2A has been shown to alter normal BCR signal transduction in B cells by reducing levels of Lyn and by blocking tyrosine phosphorylation and calcium mobilization following BCR cross-linking. Although little is currently known about the function of LMP2B in B cells, the similarity in structure between LMP2A and LMP2B suggests that they may localize to the same cellular compartments. To investigate the function of LMP2B, B-cell lines expressing LMP2A, LMP2B, LMP2A/LMP2B, and the relevant vector controls were analyzed. As was previously shown, cells expressing LMP2A had a dramatic block in normal BCR signal transduction as measured by calcium mobilization and tyrosine phosphorylation. There was no effect on BCR signal transduction in cells expressing LMP2B. Interestingly, when LMP2B was expressed in conjunction with LMP2A, there was a restoration of normal BCR signal transduction upon BCR cross-linking. The expression of LMP2B did not alter the cellular localization of LMP2A but did bind to and prevent the phosphorylation of LMP2A. A restoration of Lyn levels, but not a change in LMP2A levels, was also observed in cells coexpressing LMP2B with LMP2A. From these results, we conclude that LMP2B modulates LMP2A activity. 相似文献
14.
Identification of a TAP-independent,immunoproteasome-dependent CD8+ T-cell epitope in Epstein-Barr virus latent membrane protein 2 下载免费PDF全文
Lautscham G Haigh T Mayrhofer S Taylor G Croom-Carter D Leese A Gadola S Cerundolo V Rickinson A Blake N 《Journal of virology》2003,77(4):2757-2761
We have identified an HLA-A2-restricted CD8(+) T-cell epitope, FLYALALLL, in the Epstein-Barr virus (EBV) latent membrane protein 2 (LMP2), an important target antigen in the context of EBV-associated malignancies. This epitope is TAP independent, like other hydrophobic LMP2-derived epitopes, but uniquely is dependent upon the immunoproteasome for its generation. 相似文献
15.
The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) regulates its own expression and the expression of human genes via its two functional moieties; the transmembrane domains of LMP1 are required to regulate its expression via the unfolded protein response (UPR) and autophagy in B cells, and the carboxy-terminal domain of LMP1 activates cellular signaling pathways that affect cellular proliferation and survival. An apparent anomaly in the complex regulation of the UPR and autophagy by LMP1 is that the induction of either pathway can lead to cellular death, yet neither EBV-infected B cells nor B cells expressing only LMP1 die. Thus, we sought to understand how B cells that express LMP1 survive. The transmembrane domains of LMP1 activated apoptosis in B cells, the apoptosis required the UPR, and the carboxy-terminal domain of LMP1 blocked this apoptosis. The expression of the mRNA of Bcl2a1, encoding an antiapoptotic homolog of BCL2, correlated directly with the expression of LMP1 in EBV-positive B-cell strains, and its expression inhibited the apoptosis induced by the transmembrane domains of LMP1. These findings illustrate how the carboxy-terminal domain of LMP1 supports survival of B cells in the presence of the deleterious effects of the complex regulation of this viral oncogene. 相似文献
16.
17.
C-terminal domain of the Epstein-Barr virus LMP2A membrane protein contains a clustering signal 总被引:2,自引:0,他引:2 下载免费PDF全文
The latency-regulated transmembrane protein LMP2A interferes with signaling from the B-cell antigen receptor by recruiting the tyrosine kinases Lyn and Syk and by targeting them for degradation by binding the cellular E3 ubiquitin ligase AIP4. It has been hypothesized that this constitutive activity of LMP2A requires clustering in the membrane, but molecular evidence for this has been lacking. In the present study we show that LMP2A coclusters with chimeric rat CD2 transmembrane molecules carrying the 27-amino-acid (aa) intracellular C terminus of LMP2A and that this C-terminal domain fused to the glutathione-S-transferase protein associates with LMP2A in cell lysates. This molecular association requires neither the cysteine-rich region between aa 471 and 480 nor the terminal three aa 495 to 497. We also show that the juxtamembrane cysteine repeats in the LMP2A C terminus are the major targets for palmitoylation but that this acylation is not required for targeting of LMP2A to detergent-insoluble glycolipid-enriched membrane microdomains. 相似文献
18.
The oncogenic Epstein-Barr virus (EBV) infects the majority of the human population without doing harm and establishes a latent infection in the memory B-cell compartment. To accomplish this, EBV hijacks B-cell differentiation pathways and uses its own viral genes to interfere with B-cell signalling to achieve life-long persistence. EBV latent membrane protein 2A (LMP2A) provides a surrogate B-cell receptor signal essential for cell survival and is believed to have a crucial role in the maintenance of latency by blocking B-cell activation which would otherwise lead to lytic EBV infection. These two functions demand tight control of LMP2A activity and expression levels. Based on recent insights in the function of LMP2B, an isoform of LMP2A, we propose a model for how LMP2B modulates the activity of LMP2A contributing to maintenance of EBV latency. 相似文献
19.
20.
Lu XL Liang ZH Zhang CE Lu SJ Weng XF Wu XW 《Acta biochimica et biophysica Sinica》2006,38(3):157-163
Cytotoxic T lymphocytes (CTLs) specific for the Epstein-Barr virus (EBV) latent membraneprotein 2 (LMP2) antigen are important reagents for the treatment of some EBV-associated malignancies,such as EBV-positive Hodgkin's disease and nasopharyngeal carcinoma.However,the therapeutic amount ofCTLs is often hampered by the limited supply of antigen-presenting cells.To address this issue,an artificialantigen-presenting cell (aAPC) was made by coating a human leukocyte antigen (HLA)-pLMP2 tetramericcomplex,anti-CD28 antibody and CD54 molecule to a cell-sized latex bead,which provided the dual signalsrequired for T cell activation.By co-culture of the HLA-A2-LMP2 bearing aAPC and peripheral bloodmononuclear cells from HLA-A2 positive healthy donors,LMP2 antigen-specific CTLs were induced andexpanded in vitro.The specificity of the aAPC-induced CTLs was demonstrated by both HLA-A2-LMP2tetramer staining and cytotoxicity against HLA-A2-LMP2 bearing T2 cell,the cytotoxicity was inhibited bythe anti-HLA class Ⅰ antibody (W6/32).These results showed that LMP2 antigen-specific CTLs could beinduced and expanded in vitro by the HLA-A2-LMP2-bearing aAPC.Thus,aAPCs coated with an HLA-pLMP2 complex,anti-CD28 and CD54 might be promising tools for the enrichment of LMP2-specificCTLs for adoptive immunotherapy. 相似文献