首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Polar amplification of global warming has led to an average 2 °C rise in air temperatures in parts of the polar regions in the last 50 years. Poikilothermic ectotherms that are found in these regions, such as Collembola and mites, may therefore be put under pressure by changing environmental conditions. However, it has also been suggested that the thermal sensitivity of invertebrates declines with higher latitudes and, therefore, that polar ectotherms may not be at risk. In the current study, the heat tolerance and physiological plasticity to heat stress of two well-studied Antarctic invertebrates, the collembolan, Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus, were investigated. Both species showed considerable heat tolerance, with each having an Upper Lethal Temperature (ULT) above 35 °C (1 h exposure). These species were also able to survive for over 43 d at 10 °C and for periods of 5–20 min at 40 °C. Across all experimental procedures, A. antarcticus possessed a somewhat greater level of heat tolerance than C. antarcticus. Water loss during short duration exposures did not differ between the two species at 30, 35 and 40 °C, suggesting that the greater tolerance of A. antarcticus over this timescale was not due to higher desiccation resistance. Physiological plasticity was investigated by testing for Rapid Heat Hardening (RHH) and long-term acclimation. RHH was observed to a small degree in both species at a warming rate of 0.5 °C min−1, and also 0.2 °C min−1 in A. antarcticus alone. Longer-term acclimation (1 week at 10 °C) did not enhance the heat tolerance of either species. Even with this limited physiological plasticity, the results of this study indicate that C. antarcticus and A. antarcticus have capacity in their heat tolerance to cope with current and future environmental extremes of high temperature.  相似文献   

2.
The construction of artificial seaweed beds in the intertidal zone is a challenge due to extreme levels of physical stress. In order to provide a basis for the construction using the dispersal of microscopic juveniles, a three-way factorial experimental design was used to evaluate the tolerance of Sargassum thunbergii germlings shortly released from fertile thalli to temperature, salinity and desiccation in this study. Results revealed that temperature, salinity and desiccation significantly affected the growth and survival of germlings. Germlings showed rapid growth with relative growth rate (RGR, % day−1) over 16% when cultured at 25 °C and full immersion in normal seawater. Although growths of germlings subjected to moderate conditions were significantly inhibited, RGRs over 13% were obtained. The RGRs of germlings below 10% were observed only at 35 °C and 9 h desiccation treatments. In comparison to growth, survival was less affected by physical stress. Germlings showed low mortalities below 10% under appropriate conditions (25 °C and 30 °C combined with full immersion), and below 60% under moderate conditions, by the end of experiment. However, the mortality rates increased to over 90% under extreme conditions (9 h desiccation and 35 °C combined with full immersion in salinity of 12). These results showed that S. thunbergii germlings had high tolerance to physical stresses. In addition to the main effects, both two-way and three-way interactions between temperature, salinity and desiccation were significant. Based on the magnitude of effect, desiccation was the predominant factor affecting both growth and survival. According to the results, construction of artificial tanks in natural habitat to minimize desiccation may be an effective strategy for S. thunbergii restoration using germlings.  相似文献   

3.
Salt marsh communities are known for well-defined species zonation patterns. Lower limits of plant growth are thought to be set by an ability to tolerate anoxic sediments, but the physiological differences between species have not previously been examined. To investigate responses to anoxic sediments, several estuarine species were grown in greenhouse experiments to compare how respiratory processes were affected by flooding. Metabolic characteristics related to respiration and anoxia tolerance were studied in the emergent estuarine species Spartina alterniflora, S. anglica, S. densiflora, S. foliosa, S. alterniflora × S. foliosa hybrids, S. patens, and Distichlis spicata and compared to the inland species maize (Zea mays). All species showed a strong ability to respire anaerobically, indicating flooding tolerance. High intertidal marsh species had significantly higher root aerobic respiration enzyme activities compared to low intertidal species that may suggest lower aerobic demand in low marsh species. Some higher marsh species showed an apparent high sensitivity to sulfide that may be related to high cytochrome c oxidase activities. In contrast, the low marsh species S. alterniflora and S. anglica had lower aerobic respiration enzyme activities and a lower sensitivity to sulfide. Thus differences in aerobic demand and sulfide sensitivity may influence estuarine species zonation.  相似文献   

4.
The synergistic effect of steam explosion pretreatment and sodium hydroxide post-treatment of Lespedeza stalks (Lespedeza crytobotrya) has been investigated in this study. In this case, Lespedeza stalks were firstly exploded at a fixed steam pressure (22.5 kg/m2) for 2–10 min. Then the steam-exploded Lespedeza stalks was extracted with 1 M NaOH at 50 °C for 3 h with a shrub to water ratio of 1:20 (g/ml), which yielded 57.3%, 53.1%, 55.4%, 52.8%, 53.2%, and 56.4% (% dry weight) cellulose rich fractions, comparing to 68.0% from non-steam-exploded material. The content of glucose in cellulose rich residues increased with increment of the steaming time and reached to 94.10% at the most severity. The similar increasing trend occurred during the dissolution of hemicelluloses. It is evident that at shorter steam explosion time, autohydrolysis mainly occurred on the hemicelluloses and the amorphous area of cellulose. The crystalline region of cellulose was depolymerized under a prolonged incubation time. The characteristics of the cellulose rich fractions in terms of FT-IR and CP/MAS 13C NMR spectroscopy and thermal analysis were discussed, and the surface structure was also investigated by SEM.  相似文献   

5.
张华兵  刘红玉  侯明行 《生态学报》2013,33(15):4767-4775
将盐城国家级自然保护区核心区划分为人工管理区和自然湿地区两种模式,根据2000年、2006年、2011年3个时相的ETM+影像,运用RS、GIS技术和景观生态学方法,分析不同驱动力下互花米草沼泽景观变化的差异.结果表明:(1)人工管理区,2000-2011年,互花米草沼泽面积由272hm2增加到781hm2;平均分维数呈下降的趋势,聚合度指数呈上升的趋势,表明互花米草沼泽在空间上趋于聚集,在形状上趋于规则;从互花米草沼泽增长速率看,2000-2011年,呈现先快后慢的特征.在景观空间演变上,互花米草沼泽的平均宽度从598.679m增加到1719.002m,表现出向海陆两个方向扩张的特征.(2)自然湿地区,2000-2011年互花米草沼泽面积由2023hm2增加到3974hm2;平均分维数和聚合度指数呈先上升后下降的趋势;米草沼泽增长稳定,年增长约160-180 hm2/a,单位长度岸线年增长面积约为15 hm2· km-1·a-1左右;比较发现,自然湿地区互花米草沼泽的增长速度高于人工管理区的增长速度.在景观空间演变上,互花米草沼泽平均宽度从1625.586m增加到3193.317m,2000-2006年表现出向海洋单方向扩张的特征,2006-2011年表现出向海陆两个方向扩张的性质.(3)在自然条件下互花米草沼泽扩张受到气候、地貌过程、水文过程、植被类型及种间竞争的影响,表现出明显的带状特征.在人工管理下,通过建设拦水堤坝等,阻止了潮汐作用下海水的扩散能力,生态过程发生改变,致使生态系统类型向淡水湿地方向演变,抑制了互花米草沼泽的扩张,表现出一定的镶嵌格局.  相似文献   

6.
7.
Factors that directly impact horizontal transmission of the microsporidium Amblyospora albifasciati to its intermediate copepod host, Mesocyclops annulatus were examined in laboratory bioassays. Results were evaluated in relation to life history strategies that facilitate persistence of the parasite in natural populations of its definitive mosquito host, Ochlerotatusalbifasciatus. A moderately high quantity of meiospores from mosquito larvae was required to infect adult female copepods; the IC50 was estimated at 3.6 × 104 meiospores/ml. Meiospore infectivity following storage at 25 °C was detected up to 30 days, while meiospores stored at 4 °C remained infectious to copepods for 17 months with virtually no decline in infectivity. Uninfected female M. annulatus are long-lived; no appreciable mortality was observed in field-collected individuals for 26 days, with a few individuals surviving up to 70 days. The pathological impact of A. albifasciati infection on M. annulatus resulted in a 30% reduction in survivorship after 7 days followed by gradual progressive mortality with no infected individuals surviving more than 40 days. This moderate level of pathogenicity allows for a steady continual release of spores into the environment where they may be ingested by mosquito larvae. Infected female copepods survived in sediment under conditions of desiccation up to 30 days, thus demonstrating their capacity to function as a link for maintaining A. albifasciati between mosquito generations following periods of desiccation. The susceptibility of late stage copepodid M. annulatus to meiospores of A. albifasciati and subsequent transstadial transmission of infection to adult females was established.  相似文献   

8.
This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml−1), CuCl2 (1 mM), UV-B (10 min), heat (47 °C), NaCl (6% w/v) and CdCl2 (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.  相似文献   

9.
In order to effectively preserve green spores, which have relatively higher water content and lose viability more quickly than non-green spores, we studied the effect of desiccation level and storage temperature on Osmunda japonica spores. The water content of fresh spores was 11.20%. After 12 h desiccation by silica gel, the water content decreased to 6% but spore viability did not change significantly. As the desiccation continued, the decrease in water content slowed, but spore viability dropped. For almost all storage periods, the effects of storage temperature, desiccation level, and temperature × desiccation level were significantly different. After seven days of storage, spores at any desiccation level stored at 4 °C obtained high germination rates. After more than seven days storage, liquid nitrogen (LN) storage obtained the best results. Storage at −18 °C led to the lowest germination rates. Spores stored at room temperature and −18 °C all died within three months. For storage at 4 °C and in LN, spores desiccated 12 and 36 h obtained better results. Spores without desiccation had the highest germination rates after being stored at room temperature, but suffered the greatest loss after storage at −18 °C. These results suggest that LN storage is the best method of long-term storage of O. japonica spores. The critical water content of O. japonica spores is about 6% and reduction of the water content to this level improves outcome after LN storage greatly. The reason for various responses of O. japonica spores to desiccation and storage temperatures are discussed.  相似文献   

10.
Lecanora muralis (Schreb.) Rabenh. is a ubiquitous epilithic crustose lichen of the temperate climate. It is well studied in terms of diel and annual carbon budget and productivity with continuous long-term observations in the field in 1995/96 by Otto L. Lange, Würzburg, and collaborators. However, these earlier studies left open the question to which extent the lichen is desiccation tolerant and if desiccation tolerance might possibly limit photosynthetic activity. In present study measurements of chlorophyll fluorescence parameters were performed to assess photosynthetic activity under various daily weather conditions throughout the year and recovery from desiccation after various periods of dryness in ambient air. Under any weather conditions, including strong frost for several days with night-temperatures around −15 °C and strong heat of several days with day-temperatures around 35 °C, the lichen was fully photosynthetically competent after wetting the samples for 15 min by submersion in water when they were dry in the field in the absence of actual incident precipitation. Chlorophyll fluorescence parameters were identical under all weather conditions sampled. A sample kept dry in ambient air for 37 days showed full recovery of chlorophyll fluorescence parameters after wetting for 30 min. Samples desiccated for longer periods up to 155 days took longer wetting times of about 300 min and recovered only partially but nevertheless showed active photosynthetic electron transport. Of 17 samples desiccated for 177–178 days only three recovered after rewetting for several days. It is concluded that the desiccation tolerance of L. muralis is sufficient to overcome dry spells of duration as it normally occurs in its natural environment. Desiccation tolerance is not likely to limit carbon budget and productivity.  相似文献   

11.
12.
Wetlands have proven effective at improving water quality of treated wastewater effluent, which in turn promotes increased primary productivity and vertical accretion. Baldcypress (Taxodium distichum) seedlings grown under different conditions (bare root and potted) were planted in four subunits of an effluent assimilation marsh and a control marsh in southeast Louisiana, USA, and basal diameter growth was monitored over one growing season. Mean basal diameter growth for seedlings in the assimilation subunits ranged from 16.1 (±1.4) mm to 9.5 (±0.9) mm, whereas growth for seedlings planted in the control marsh was 6.4 (±0.9) mm. Seedlings planted nearest the outfall experienced greater basal diameter growth (18.1 ± 2.6) compared to those planted 700 m away (8.0 ± 0.9), with growth generally decreasing with distance. Potted seedlings experienced greater growth (19.1 ± 1.0 and 20.6 ± 1.0 for five-month-olds and ten-month olds, respectively) than bare root seedlings (4.6 ± 0.6 and 4.0 ± 0.4 for one-year-olds and two-year olds, respectively). Planting assimilation marshes with baldcypress seedlings can be an effective restoration tool for coastal Louisiana, which will provide hurricane protection and improved surface water quality. Wastewater treatment wetlands may offer an effective tool for restoring coastal baldcypress (T. distichum)-water tupelo (Nyssa aquatic) swamps in Louisiana.  相似文献   

13.
Intertidal alga Gracilaria corticata growing in natural environment experiences various abiotic stresses during the low tides. The aim of this study was to determine whether desiccation exposure would lead to oxidative stress and its effect varies with exposure periods. This study gives an account of various biochemical changes in G. corticata following the exposure to desiccation for a period of 0 (control), 1, 2, 3 and 4 h under controlled conditions. During desiccation, G. corticata thalli showed dramatic loss of water by almost 47% when desiccated for 4 h. The enhanced production of reactive oxygen species (ROS) and increased lipid peroxidation observed during the exposure of 3-4 h were chiefly contributed by higher lipoxygenase (LOX) activity with the induction of two new LOX isoforms (LOX-2, ∼85 kDa; LOX-3, ∼65 kDa). The chlorophyll, carotenoids and phycobiliproteins (phycoerythrin and phycocyanin) were increased during initial 2 h exposure compared to control and thereafter declined in the succeeding exposure. The antioxidative enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione peroxidase (GPX) and the regeneration rate of reduced ascorbate (AsA) and glutathione (GSH) increased during desiccation up to 2-3 h. Further, the isoforms of antioxidant enzymes Mn-SOD (∼150 kDa), APX-4 (∼110 kDa), APX-5 (∼45 kDa), GPX-1 (∼80 kDa) and GPX-2 (∼65 kDa) responded specifically to the desiccation exposure. Compared to control, a relative higher content of both free and bound insoluble putrescine and spermine together with enhanced n-6 PUFAs namely C20:4(n-6) and C20:3(n-6) fatty acids found during 2 h exposure reveals their involvement in defence reactions against the desiccation induced oxidative stress.  相似文献   

14.
We examined chloroplast DNA (cpDNA) atpB–rbcL intergenic spacer sequences variation within Sagittaria potamogetifolia, an endangered and endemic marsh herb in China. Sequence data were obtained from 54 individuals in six extant populations of the species. Sequences appeared to evolve neutral (Tajima's criterion D = −1.59826, 0.1 > P > 0.05 and Fu and Li's tests D* = −1.44484, P > 0.1; F* = −1.83446, P > 0.1). Eleven haplotypes were identified in S. potamogetifolia. A relatively high level of haplotype diversity (h = 0.0.699) and low level of nucleotide diversity (pi = 0.0035 ± 0.0020) were detected in S. potamogetifolia. Pairwise comparisons of Fst and Nm deduced from cpDNA variation suggested no significant genetic differentiation between populations of S. potamogetifolia excepted for the WY-1 population. Low genetic differentiation among populations and also among regions was consistently indicated by both hierarchical analyses of molecular variance (AMOVA) and the structure of a neighbor-joining tree. Lack of population differentiation between populations or between regions in cpDNA sequences may be due to effects of lower substitution rates or lineage sorting. In the minimum spanning network, all tip haplotypes except for the haplotype J were unique to a particular population, while the interior nodes except for the haplotype E were widespread (haplotype A). From nested clade analysis (NCA), the evolutionary events such as restricted gene flow with isolation by distance and allopatric fragmentation were inferred to responsible for the current distribution of S. potamogetifolia populations, as well as their genetic diversity.  相似文献   

15.
The role of positive interactions is often crucial in communities with intense abiotic stress such as intertidal environments. Grasses acting as ecosystem engineers, for example, may ameliorate intertidal harsh physical conditions and modify the community structure. The mud snails Heleobia australis d'Orbigny frequently inhabit the SW Atlantic marshes, mainly associated to intertidal marsh plants (mainly the smooth cordgrass Spartina alterniflora Loisel) probably due to the plant indirect effects. The purpose of this work was to investigate the magnitude of these association and the processes that generate the pattern. Samples of the snail abundance in six SW Atlantic coastal marshes show that H. australis is associated to coastal areas of low energy and low or none freshwater input. This result is important because this species is being used as bioindicator of coastal estuarine systems during the Holocene. Thus the paleontological interpretation based on this species should be revised. Within the studied areas, snails are associated to intertidal marsh plants. However, stable isotope analysis shows that neither plant nor their epiphytes are their main food sources. Field experiments show that snails actively select areas with plants, although tethering experiments show that plants do not provide shelter from predators. However, plants do buffer physical stress factors such as temperature, which generate important mortality outside plants covered areas. These positive interactions have large effects on H. australis distributions in marsh communities; increasing the habitats available for colonization and affecting their local distribution.  相似文献   

16.
Juvenile or adult Artemia sp. are often used as live prey for the rearing of early life stages of some crustacean, fish and cephalopod species. The improvements of both Artemia growth and its biochemical composition are key issues for the suitable use of Artemia biomass in these rearing processes. In this study we evaluated the growth and survival rates of Artemia fed with the cryptophyte Rhodomonas lens in comparison with different microalgal species commonly used in aquaculture: the prasinophyte Tetraselmis suecica, the prymnesiophyte Isochrysis galbana Parke, and the eustigmatophyte Nannochloropsis gaditana. Microalgae were cultured semi-continuously in nutrient saturated conditions and with a daily renewal rate of 30% of the volume of cultures, to obtain biomass of controlled and optimized composition. Considerable differences in Artemia growth were observed, as well as in the survival rate. At day 8 of rearing, Artemia fed R. lens had the highest length (4.9 ±0.6 mm, P < 0.001), followed by individuals fed T. suecica (4.2 ± 0.7 mm), I. galbana (3.6 ± 0.7 mm) and finally those fed N. gaditana (1.5 ± 0.2 mm). The survival rate of Artemia fed N. gaditana (18 ± 3%) was much lower (P < 0.001) than values found for the remaining groups (69 to 88%). The growth rate of Artemia obtained with R. lens was in general much higher than with other microalgal diets previously reported in the literature. The higher protein content of R. lens could explain the higher growth obtained with this species, but differences of Artemia growth with the different diets could not be explained solely on the basis of the gross composition of microalgae. Factors such as cell size and digestibility all seem to contribute to the results observed. Another trial was carried out to investigate differences in Artemia growth and on its biochemical composition when fed the best two diets: R. lens or T. suecica. The fatty acid (FA) and total amino acid (AA) composition of both microalgal species and the composition of Artemia were assessed as well. As found in the first experiment individuals fed R. lens (group ARHO) grew faster than those fed T. suecica (group ATET), attaining 3.6 ± 0.3 mm and 3.2 ± 0.4 mm (P < 0.001), respectively, after 5 days of rearing. The much higher AA content obtained in R. lens may be on the basis of the higher growth obtained with this species. Protein and carbohydrate levels in Artemia juveniles were very similar in both groups (64-68% of dry weight, and 8-10%, respectively). Lipid was slightly lower in ARHO (12%) than in ATET (15%, P < 0.01). Regarding the FA composition, juveniles from group ARHO contained higher levels of eicosapentaenoic acid (EPA, 6.2%) than juveniles from ATET (4.1%, P < 0.01), whereas docosahexaenoic acid (DHA) was only found in juveniles from ARHO (1.1%). Taking into account that the daily productivity of R. lens culture was higher than, or at least equal, the remaining microalgal species this cryptophyte is confirmed as an excellent diet to optimize the growth of Artemia, as well as to improve its biochemical composition.  相似文献   

17.
The membrane lipid bilayer is one of the primary cellular components affected by variations in hydration level, which cause changes in lipid packing that may have detrimental effects on cell viability. In this study, Fourier transform infrared (FTIR) spectroscopy was used to quantify changes in the membrane phase behavior, as identified by membrane phase transition temperature (Tm), of Escherichia coli during desiccation and rehydration. Extensive cell desiccation (1 week at 20%-40% RH) resulted in an increase in Tm from 8.4 ± 1.7 °C (in undried control samples) to 16.5 ± 1.3 °C. Fatty acid methyl ester analysis (FAME) on desiccated samples showed an increase in the percent composition of saturated fatty acids (FAs) and a decrease in unsaturated FAs in comparison to undried control samples. However, rehydration of E. coli resulted in a gradual regression in Tm, which began approximately 1 day after initial rehydration and plateaued at 12.5 ± 1.8 °C after approximately 2 days of rehydration. FAME analysis during progressive rehydration revealed an increase in the membrane percent composition of unsaturated FAs and a decrease in saturated FAs. Cell recovery analysis during rehydration supported the previous findings that showed that E. coli enter a viable but non-culturable (VBNC) state during desiccation and recover following prolonged rehydration. In addition, we found that the delay period of approximately 1 day of rehydration prior to membrane reconfiguration (i.e. decrease in Tm and increase in membrane percent composition of unsaturated FAs) also preceded cell recovery. These results suggest that changes in membrane structure and state related to greater membrane fluidity may be associated with cell proliferation capabilities.  相似文献   

18.
Eulittoral seaweeds at different tidal elevations are exposed to various frequencies and durations of emergence. Their physiological activities (e.g. nutrient uptake) may be affected by water loss during emersion. We used three Porphyra species from different tidal elevations to test whether species at different vertical elevations on the shore respond differently to the increasingly non-marine environment, in terms of their physiological activities including nutrient uptake, tissue carbon, nitrogen and phycoerythrin contents. Simulated tidal cycles produced water losses of 0%, 40 ± 10% and 90 ± 5% tissue water. Emersion was stressful for all species regardless of their habitat. It was more stressful to nitrate and phosphate uptake for the sublittoral species P. yezoensis than eulittoral species, P. umbilicalis and P. leucosticta. Interestingly, tissue N for thalli that had been emerged and then re-submerged was significantly higher than those of continuously submerged individuals. During exposure, tissue N contents of all species declined but recovered quickly (e.g. within 30 min) after re-submergence. This result suggests that emersion-induced N release may constitute an undescribed biogeochemical pathway linking marine, terrestrial, and atmospheric N reservoirs.  相似文献   

19.
Responses of infaunal saltmarsh benthic invertebrates to whole-ecosystem fertilization and predator removal were quantified in Plum Island Estuary, Massachusetts, USA. Throughout a growing season, we enriched an experimental creek on each flooding tide to 70 μM NO3 and 4 μM PO4− 3 (a 10× increase in loading above background), and we reduced Fundulus heteroclitus density by 60% in a branch of the fertilized and a reference creek. Macroinfauna and meiofauna were sampled in creek (mudflat and creek wall), marsh edge (tall-form Spartina alterniflora) and marsh platform (Spartina patens and stunted S. alterniflora) habitats before and after treatments were begun; responses were tested with BACI-design statistics. Treatment effects were most common in the mid-range of the inundation gradient. Most fertilization effects were on creek wall where ostracod abundance increased, indices of copepod reproduction increased and copepod and annelid communities were altered. These taxa may use epiphytes (that respond rapidly to fertilization) of filamentous algae as a food source. Killifish reduction effects on meiobenthic copepod abundance were detected at the marsh edge and suggest predator limitation. Fish reduction effects on annelids did not suggest top-down regulation in any habitat; however, fish reduction may have stimulated an increased predation rate on annelids by grass shrimp. Interactions between fertilization and fish reduction occurred under S. patens canopy where indirect predator reduction effects on annelids were indicated. No effects were observed in mudflat or stunted S. alterniflora habitats. Although the responses of infauna to fertilization and predator removal were largely independent and of similar mild intensity, our data suggests that the effects of ecological stressors vary across the marsh landscape.  相似文献   

20.
Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39 °C), combined with either close to natural (22 °C) or elevated (32 °C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51 °C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号