首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The substrate-specific selenoprotein B of glycine reductase (PBglycine) from Eubacterium acidaminophilum was purified and characterized. The enzyme consisted of three different subunits with molecular masses of about 22 (alpha), 25 (beta) and 47 kDa (gamma), probably in an alpha 2 beta 2 gamma 2 composition. PBglycine purified from cells grown in the presence of [75Se]selenite was labeled in the 47-kDa subunit. The 22-kDa and 47-kDa subunits both reacted with fluorescein thiosemicarbazide, indicating the presence of a carbonyl compound. This carbonyl residue prevented N-terminal sequencing of the 22-kDa (alpha) subunit, but it could be removed for Edman degradation by incubation with o-phenylenediamine. A DNA fragment was isolated and sequenced which encoded beta and alpha subunits of PBglycine (grdE), followed by a gene encoding selenoprotein A (grdA2) and the gamma subunit of PBglycine (grdB2). The cloned DNA fragment represented a second GrdB-encoding gene slightly different from a previously identified partial grdBl-containing fragment. Both grdB genes contained an in-frame UGA codon which confirmed the observed selenium content of the 47-kDa (gamma) subunit. Peptide sequence analyses suggest that grdE encodes a proprotein which is cleaved into the previously sequenced N-terminal 25-kDa (beta) subunit and a 22-kDa (alpha) subunit of PBglycine. Cleavage most probably occurred at an -Asn-Cys- site concomitantly with the generation of the blocking carbonyl moiety from cysteine at the alpha subunit.  相似文献   

2.
The obligate anaerobe Eubacterium acidaminophilum metabolized the glycine derivatives sarcosine (N-monomethyl glycine) and betaine (N-trimethyl glycine) only by reduction in a reaction analogous to glycine reductase. Using formate as electron donor, sarcosine and betaine were stoichiometrically reduced to acetate and methylamine or trimethylamine, respectively. The N-methyl groups of the cosubstrates or of the amines produced were not transformed to CO2 or acetate. Under optimum conditions (formate/acceptor ratio of 1 to 1.2, 34°C, pH 7.3) the doubling times were 4.2 h on formate/sarcosine and 3.6 h on formate/betaine. The molar growth yields were 8.15 and 8.5 g dry cell mass per mol sarcosine and betaine, respectively. The assays for sarcosine reductase and betaine reductase were optimized in cell extracts; NADPH was preferred as physiological electron donor compared to NADH, dithioerythritol was used as artificial donor; no requirements for AMP and ADP could be detected. Growth experiments mostly revealed diauxic substrate utilization pattern using different combinations of glycine, sarcosine, and betaine (plus formate) and inocula from different precultures. Glycine was always utilized first, what coincided with the presence of glycine reductase activity under all growth conditions except for serine as substrate. Sarcosine reductase and betaine reductase were only induced when E. acidaminophilum was grown on sarcosine and betaine, respectively. Creatine was metabolized via sarcosine. [75Se]-selenite labeling revealed about the same pattern of predominant labeled proteins in glycine-, sarcosine-, and betaine-grown cells.Abbreviations DTE dithioerythritol - TES N-Tris (hydroxymethyl) methyl-2-amino-ethane sulfonic acid  相似文献   

3.
The proteins P1, P2, and P4 of the glycine cleavage system have been purified from the anaerobic, glycine-utilizing bacterium Eubacterium acidaminophilum. By gel filtration, these proteins were determined to have Mrs of 225,000, 15,500, and 49,000, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, protein P1 was determined to have two subunits with Mrs of 59,500 and 54,100, indicating an alpha 2 beta 2 tetramer, whereas the proteins P2 and P4 showed only single bands with estimated Mrs of 15,500 and 42,000, respectively. In reconstitution assays, proteins P1, P2, P4 and the previously reported lipoamide dehydrogenase (P3) had to be present to achieve glycine decarboxylase or synthase activity. All four glycine decarboxylase proteins exhibited highest activities when NADP+ was used as the electron acceptor or when NADPH was used as the electron donor in the glycine synthase reaction. The oxidation of glycine depended on the presence of tetrahydrofolate, dithioerythreitol, NAD(P)+, and pyridoxal phosphate. The latter was loosely bound to the purified protein P1, which was able to catalyze the glycine-bicarbonate exchange reaction only in combination with protein P2. Protein P2 could not be replaced by lipoic acid or lipoamide, although lipoic acid was determined to be a constituent (0.66 mol/mol of protein) of protein P2. Glycine synthase activity of the four isolated proteins and in crude extracts was low and reached only 12% of glycine decarboxylase activity. Antibodies raised against P1 and P2 showed cross-reactivity with crude extracts of Clostridium cylindrosporum.  相似文献   

4.
The anaerobe Eubacterium acidaminophilum has been shown to contain an uncharacterized peroxidase, which may serve to protect the sensitive selenoproteins in that organism. We purified this peroxidase and found that it was identical with the substrate-specific “protein B”-complex of glycine reductase. The “protein B”-complex consists of the selenocysteine-containing GrdB subunit and two subunits, which derive from the GrdE proprotein. The specific peroxidase activity was 1.7 U (mg protein)−1 with DTT and cumene hydroperoxide as substrates. Immunoprecipitation experiments revealed that GrdB was important for DTT- and NADH-dependent peroxidase activities in crude extracts, whereas the selenoperoxiredoxin PrxU could be depleted without affecting these peroxidase activities. GrdB could be heterologously produced in Escherichia coli with coexpression of selB and selC from E. acidaminophilum for selenocysteine insertion. Although GrdB was sensitive to proteolysis, some full-size protein was present which accounted for a peroxidase activity of about 0.5 U (mg protein)−1 in these extracts. Mutation of the potentially redox-active UxxCxxC motif in GrdB resulted in still significant, but decreased activity. Heterologous GrdB was protected from degradation by full-length GrdE or by GrdE-domains. The GrdB-GrdE interaction was confirmed by copurification of GrdE with Strep-tagged GrdB. The data suggest that GrdE domains serve to stabilise GrdB. Dedicated to Prof. Dr. Gerhard Gottschalk.  相似文献   

5.
The lipoamide dehydrogenase of the glycine decarboxylase complex was purified to homogeneity (8 U/mg) from cells of the anaerobe Eubacterium acidaminophilum that were grown on glycine. In cell extracts four radioactive protein fractions labeled with D-[2-14C]riboflavin could be detected after gel filtration, one of which coeluted with lipoamide dehydrogenase activity. The molecular mass of the native enzyme could be determined by several methods to be 68 kilodaltons, and an enzyme with a molecular mass of 34.5 kilodaltons was obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblot analysis of cell extracts separated by sodium dodecyl sulfate-polyacrylamide or linear polyacrylamide gel electrophoresis resulted in a single fluorescent band. NADPH instead of NADH was the preferred electron donor of this lipoamide dehydrogenase. This was also indicated by Michaelis constants of 0.085 mM for NADPH and 1.1 mM for NADH at constant lipoamide and enzyme concentrations. The enzyme exhibited no thioredoxin reductase, glutathione reductase, or mercuric reductase activity. Immunological cross-reactions were obtained with cell extracts of Clostridium cylindrosporum, Clostridium sporogenes, Clostridium sticklandii, and bacterium W6, but not with extracts of other glycine- or purine-utilizing anaerobic or aerobic bacteria, for which the lipoamide dehydrogenase has already been characterized.  相似文献   

6.
Antibodies raised against the glycine decarboxylase proteins P1, P2, P3, and the selenoprotein PA, a component of the glycine reductase complex, were used for immunocytochemical localization experiments. Cells of Eubacterium acidaminophilum from logarithmic growth phase were fixed in the growth media with paraformaldehyde and glutaraldehyde. Fixed cells were embedded by the low-temperature procedure using Lowicryl K4M resin, and the protein A-gold technique was applied for the localization experiments. The vicinity of the cytoplasmic membrane contained about 27% of all gold particles when proteins P1 and P2 were to be localized, 50% for protein PA, and 61% for protein P3. Double immunocytochemical labeling experiments gave evidence for the existence of a protein P1/P2 complex located predominantly in the cytoplasm, and a P3/PA complex located at the cytoplasmic membrane. Only in very few instances the labels for proteins P3 and P1 were seen very close together in respective doublelabeling experiments. These results indicate that glycine decarboxylase does not occur in this organism as a complex consisting of all four proteins, but that protein P3, the atypical lipoamide dehydrogenase, takes part in both the glycine decarboxylase as well as in the glycine reductase reaction.  相似文献   

7.
Arkowitz RA  Abeles RH 《Biochemistry》1989,28(11):4639-4644
It has been reported [Tanaka, H., & Stadtman, T. C. (1979) J. Biol. Chem. 254, 447-452] that glycine reductase from Clostridium sticklandii catalyzes the reaction glycine + ADP + P(i) + 2(e)- - acetate + ATP + NH(4)+. Glycine reductase consists of three proteins, designated A, B, and C. Only A has been purified to homogeneity. A dithiol serves as an electron donor. We find that ADP is not essential for the reaction and that in its absence acetyl phosphate is formed. Upon further purification of components B and C, an acetate kinase activity can be separated from both proteins. This observation establishes that acetate kinase activity is not an intrinsic property of glycine reductase, and therefore the reaction catalyzed by glycine reductase is glycine + P(i) + 2(e)- - acetyl phosphate + NH(4)+. Experiments with [(14)C]glycine and unlabeled acetate show that free acetate is not a precursor of acetyl phosphate. When glycine labeled with l8(O) is converted to product, l8(O) is lost. The l 8 (O) content of unreacted glycine remains unchanged after approximately 50% is converted to product. We propose that an acyl enzyme, most probably an acetyl enzyme,is an intermediate in the reaction and that the acetyl enzyme reacts with P(i) to form acetyl phosphate. A mechanism is proposed for the formation of the acetyl enzyme.  相似文献   

8.
Transglutaminase (TGase) from Streptomyces mobaraensis is secreted as a precursor protein which is completely activated by the endoprotease TAMEP, a member of the M4 protease family [Zotzel, J., Keller, P. & Fuchsbauer, H.-L. (2003) Eur. J. Biochem. 270, 3214-3222]. In contrast with the mature enzyme, TAMEP-activated TGase exhibits an additional N-terminal tetrapeptide (Phe-Arg-Ala-Pro) suggesting truncation, at least, by a second protease. We have now isolated from the culture broth of submerged colonies a tripeptidyl aminopeptidase (SM-TAP) that is able to remove the remaining tetrapeptide. The 53-kDa peptidase was purified by ion-exchange and phenyl-Sepharose chromatography and subsequently characterized. Its proteolytic activity was highest against chromophoric tripeptides at pH 7 in the presence of 2 mm CaCl2. EDTA and EGTA (10 mm) both diminished the proteolytic activity by half. Complete inhibition was only achieved with 1 mm phenylmethanesulfonyl fluoride, suggesting that SM-TAP is a serine protease. Alignment of the N-terminal sequence confirmed its close relation to the Streptomyces TAPs. That removal of Phe-Arg-Ala-Pro from TAMEP-activated TGase by SM-TAP occurs in a single step was confirmed by experiments using various TGase fragments and synthetic peptides. SM-TAP was also capable of generating the mature N-terminus by cleavage of RAP-TGase. However, AP-TGase remained unchanged. As SM-TAP activity against chromophoric amino acids such as Pro-pNA or Phe-pNA could not be detected, the tetrapeptide of TAMEP-activated TGase must be removed without formation of an intermediate.  相似文献   

9.
The gene encoding the selenoprotein A component of glycine reductase was isolated from Clostridium purinolyticum. The nucleotide sequence of this gene (grdA) was determined. The opal termination codon (TGA) was found in-frame at the position corresponding to the location of the selenocysteine residue in the gene product. A comparison of the nucleotide sequences and secondary mRNA structures corresponding to the selenoprotein A gene and the fdhF gene of Escherichia coli formate dehydrogenase shows that there is a similar potential for regulation of the specific insertion of selenocysteine at the UGA codon.  相似文献   

10.
Lionne C  Iorga B  Candau R  Piroddi N  Webb MR  Belus A  Travers F  Barman T 《Biochemistry》2002,41(44):13297-13308
It has been suggested that the mechanical condition determines the rate-limiting step of the ATPase of the myosin heads in fibers: when fibers are isometrically contracting, the ADP release kinetics are rate-limiting, but as the strain is reduced and the fibers are allowed to shorten, the ADP release kinetics accelerate and P(i) release becomes rate-limiting. We have put this idea to the test with myofibrils as a model because with these both mechanical and chemical kinetic measurements are possible. With relaxed or rapidly shortening myofibrils, P(i) release is rate-limiting and (A)M.ADP.P(i) states accumulate in the steady state [Lionne, C., et al. (1995) FEBS Lett. 364, 59]. We have now studied the kinetics of P(i) release with chemically cross-linked myofibrils that, when adequately cross-linked, appear to be a good model for isometric contraction. By using a method that is specific for free P(i) and rapid quench flow that measures the amount of (A)M.ADP.P(i) states and free P(i), we show that (A)M.ADP.P(i) states predominate which suggests that the overall ATPase is limited by P(i) release kinetics. Therefore, under our experimental conditions with myofibrils prevented from shortening, the concentration of (A)M.ADP states is low, as with rapidly shortening and relaxed myofibrils. This result is difficult to reconcile with the sensitivity of force development in fibers and myofibrils to P(i) which implies interaction of P(i) with an (A)M.ADP state. We discuss two models for accommodating the mechanical and chemical kinetics with reference to the duty cycle in skeletal muscle.  相似文献   

11.
Methyl-coenzyme M reductase (= component C) from Methanobacterium thermoautotrophicum (strain Marburg) was highly purified via anaerobic fast protein liquid chromatography on columns of Mono Q and Superose 6. The enzyme was found to catalyze the reduction of methylcoenzyme M (CH3-S-CoM) with N-7-mercaptoheptanoylthreonine phosphate (H-S-HTP = component B) to CH4. The mixed disulfide of H-S-CoM and H-S-HTP (CoM-S-S-HTP) was the other major product formed. The specific activity was up to 75 nmol min-1 mg protein-1. In the presence of dithiothreitol and of reduced corrinoids or titanium(III) citrate the specific rate of CH3-S-CoM reduction to CH4 with H-S-HTP increased to 0.5-2 mumol min-1 mg protein-1. Under these conditions the CoM-S-S-HTP formed from CH3-S-CoM and H-S-HTP was completely reduced to H-S-CoM and H-S-HTP. Methyl-CoM reductase was specific for H-S-HTP as electron donor. Neither N-6-mercaptohexanoylthreonine phosphate (H-S-HxoTP) nor N-8-mercaptooctanoylthreonine phosphate (H-S-OcoTP) nor any other thiol compound could substitute for H-S-HTP. On the contrary, H-S-HxoTP (apparent Ki = 0.1 microM) and H-S-OcoTP (apparent Ki = 15 microM) were found to be effective inhibitors of methyl-CoM reductase, inhibition being non-competitive with CH3-S-CoM and competitive with H-S-HTP.  相似文献   

12.
Amyloid fibrils are aggregated and precipitated forms of protein in which the protein exists in highly ordered, long, unbranching threadlike formations that are stable and resistant to degradation by proteases. Fibril formation is an ordered process that typically involves the unfolding of a protein to partially folded states that subsequently interact and aggregate through a nucleation-dependent mechanism. Here we report on studies investigating the molecular basis of the inherent propensity of the milk protein, kappa-casein, to form amyloid fibrils. Using reduced and carboxymethylated kappa-casein (RCMkappa-CN), we show that fibril formation is accompanied by a characteristic increase in thioflavin T fluorescence intensity, solution turbidity, and beta-sheet content of the protein. However, the lag phase of RCMkappa-CN fibril formation is independent of protein concentration, and the rate of fibril formation does not increase upon the addition of seeds (preformed fibrils). Therefore, its mechanism of fibril formation differs from the archetypal nucleation-dependent aggregation mechanism. By digestion with trypsin or proteinase K and identification by mass spectrometry, we have determined that the region from Tyr(25) to Lys(86) is incorporated into the core of the fibrils. We suggest that this region, which is predicted to be aggregation-prone, accounts for the amyloidogenic nature of kappa-casein. Based on these data, we propose that fibril formation by RCMkappa-CN occurs through a novel mechanism whereby the rate-limiting step is the dissociation of an amyloidogenic precursor from an oligomeric state rather than the formation of stable nuclei, as has been described for most other fibril-forming systems.  相似文献   

13.
Four mouse and two human tumour cell lines resistant to alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), were analysed for the activities of polyamine-biosynthetic and -biodegradative enzymes as well as for cellular polyamine contents. In all but one of these cell lines the resistance to DFMO was based on an overproduction of ODC. In a human myeloma cell line the resistance was based on a greatly enhanced arginase activity. Except for one L1210 variant cell line, all the resistant cell lines contained elevated S-adenosylmethionine decarboxylase activity. Similarly, all the resistant mouse, but not human, cell lines displayed enhanced spermidine and spermine synthase activities. Arginase activity was detected only in human cell lines. In both DFMO-resistant cell lines the activity of arginase was strikingly elevated. Of the biodegradative enzymes, polyamine oxidase activity was readily detectable in all mouse cells, but no measurable activity was found in the human cells. Spermidine/spermine N1-acetyltransferase activity was elevated in three out of four resistant mouse cell lines. Even though the concentration of spermidine was usually lower in the overproducer cells, this was compensated by an increased content of spermine. The two resistant human myeloma cells contained intracellular ornithine concentrations that were from more than 5 to more than 20 times higher than those in the parental cells.  相似文献   

14.
The thiol RTEM-1 beta-lactamase [Sigal, Harwood & Arentzen (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7157-7160] is inactivated by 6-beta-bromopenicillanic acid with formation of a characteristic chromophore, absorbing maximally at 350 nm, which is covalently bound to the enzyme. Model studies suggest that the chromophore is that of a 6-carboxylate thiol ester of 2,3-dihydro-2,2-dimethyl-1,4-thiazine-3,6-dicarboxylate, which can arise by rearrangement of the thiol-penicilloate obtained by thiolysis of the beta-lactam of 6-beta-bromopenicillanate. Loss of activity of the enzyme is also concerted with disappearance of its single (cysteine) thiol group. These results indicate that the thiol group of this enzyme is indeed a nucleophilic catalyst in beta-lactam turnover. The thiol beta-lactamase is also inactivated by clavulanic acid with formation of a chromophore, presumably a 3-aminoacrylate thiol ester, at 308 nm. Both 6-beta-bromopenicillanate and clavulanate are hydrolysed more slowly by the thiol enzyme than by the native serine beta-lactamase, but, probably as a consequence of this, both compounds inactivate the former enzyme more efficiently. Cefoxitin, a poor substrate of the native enzyme, does not appear to interact covalently with the thiol beta-lactamase.  相似文献   

15.
We have constructed an efficient expression plasmid for the leucine dehydrogenase gene previously cloned from Bacillus stearothermophilus. The recombinant enzyme was overproduced in Escherichia coli cells to a level of more than 30% of the total soluble protein upon induction with isopropyl beta-D-thiogalactopyranoside. The enzyme could be readily purified to homogeneity by heat treatment and a single step of ion-exchange chromatography. The purified enzyme was inactivated in a time-dependent manner upon incubation with pyridoxal 5'-phosphate (PLP) followed by reduction with sodium borohydride. The inactivation was completely prevented in the copresence of L-leucine and NAD+. Concomitantly with the inactivation, several molecules of PLP were incorporated into each subunit of the hexameric enzyme. Sequence analysis of the fluorescent peptides isolated from a proteolytic digest of the modified protein revealed that Lys80, Lys91, Lys206, and Lys265 were labeled. Among these residues, Lys80 was predominantly labeled and, in the presence of L-leucine and NAD+, was specifically protected from the labeling. Furthermore, a linear relationship of about 1:1 was observed between the extent of inactivation and the amount of PLP incorporated into Lys80. A slightly active mutant enzyme, in which Lys80 is replaced by Ala, was not inactivated at all by incubation with PLP, showing that the inactivation is correlated with the labeling of only Lys80. Lys80is conserved in the corresponding regions of all the amino acid dehydrogenase sequences reported to date. These results suggest that Lys80 is located at the active site and plays an important role in the catalytic function of leucine dehydrogenase.  相似文献   

16.
Mercuric reductase catalyzes the two-electron reduction of Hg(II) to Hg(0) using NADPH as the reductant; this reaction constitutes the molecular basis for detoxification of Hg(II) by bacteria. The enzyme is an alpha 2 homodimer and possesses two pairs of cysteine residues, Cys135 and Cys140 (redox-active pair) and Cys558 and Cys559 (C-terminal pair), which are known to be essential for catalysis. In the present study, we have obtained evidence for an intersubunit active site, consisting of a redox-active cysteine pair from one subunit and a C-terminal pair from the adjacent subunit, by reconstituting catalytic activity both in vivo and in vitro starting with two inactive, mutant enzymes, Ala135Ala140Cys558Cys559 (AACC) and Cys135Cys140Ala558Ala559 (CCAA). Genetic complementation studies were used to show that coexpression of AACC and CCAA in the same cell yielded an HgR phenotype, some 10(4)-fold more resistant than cells expressing only one mutant. Purification and catalytic characterization of a similarly coexpressed protein mixture showed the mixture to have activity levels ca. 25% those of wild type; this is the same as that statistically anticipated for a CCAA-AACC heterodimeric/homodimeric mixture with only one functional active site per heterodimer. Actual physical evidence for the formation of active mutant heterodimers was obtained by chaotrope-induced subunit interchange of inactive pure CCAA and AACC homodimers in vitro followed by electrophoretic separation of heterodimers from homodimers. Taken together, these data provide compelling evidence that the active site in mercuric reductase resides at the subunit interface and contains cysteine residues originating from separate polypeptide chains.  相似文献   

17.
The final stage in the formation of the two large subunit rRNA species in Saccharomyces cerevisiae is the removal of internal transcribed spacer 2 (ITS2) from the 27SB precursors. This removal is initiated by endonucleolytic cleavage approximately midway in ITS2. The resulting 7S pre-rRNA, which is easily detectable, is then converted into 5.8S rRNA by the concerted action of a number of 3'-->5' exonucleases, many of which are part of the exosome. So far the complementary precursor to 25S rRNA resulting from the initial cleavage in ITS2 has not been detected and the manner of its conversion into the mature species is unknown. Using various yeast strains that carry different combinations of wild-type and mutant alleles of the major 5'-->3' exonucleases Rat1p and Xrn1p, we now demonstrate the existence of a short-lived 25.5S pre-rRNA whose 5' end is located closely downstream of the previously mapped 3' end of 7S pre-rRNA. The 25.5S pre-rRNA is converted into mature 25S rRNA by rapid exonucleolytic trimming, predominantly carried out by Rat1p. In the absence of Rat1p, however, the removal of the ITS2 sequences from 25.5S pre-rRNA can also be performed by Xrn1p, albeit somewhat less efficiently.  相似文献   

18.
19.
20.
1. Glycidol (2,3-epoxypropanol) phosphate is a specific irreversible inhibitor of rabbit muscle triose phosphate isomerase (EC 5.3.1.1); the site of attachment has now been studied. 2. The labelled enzyme was digested with pepsin and a modified peptide isolated. The sequence of the peptide is: Ala-Tyr-Glu-Pro-Val-Trp. 3. It is the glutamic acid residue in this peptide that is labelled: the peptide is thus a gamma-glutamyl ester derived from glycerol phosphoric acid. The same site is labelled by a mixture of glycidol and inorganic phosphate. 4. Kinetic and stereochemical features of these reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号