首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
    
Summary Neuron-specific () enolase, a glycolytic enzyme used as a relatively specific marker for normal neurons and neuroendocrine cells, has recently been found in a variety of neoplastic cells and in reactive astrocytes. Its localization was investigated by immunohisto- and electron-immunocyto-chemistry, in the proliferating supportive Schwann cells of a peripheral ganglioneuroblastoma and in the neoplastic Schwann cells of four acoustic tumours. By light microscopy, the neoplastic Schwann cells showed moderate uneven diffuse immunopositivity for enolase. By electron-immunocy-tochemistry, both types of Schwann cells demonstrated immunopositivity discretely limited to their cell surface membranes. The neoplastic ganglion cells and axons of the ganglioneuroblastoma and the normal neurons and axons included in the schwannomas were, as expected, intensely immunopositive. The visualization of enolase on the cell surface membranes of both neoplastic and non-neoplastic proliferating Schwann cells suggests that increased glycolytic activity may occur on the surface of these proliferating cells irrespective of the nature of the proliferation.  相似文献   

2.
Antibodies raised against the C-terminus and N-terminus region of gamma gamma enolase, as well as a polyclonal antibody raised against bovine brain gamma gamma enolase, were used to study the distribution of this glycolytic enzyme during the cell cycle in HeLa cells. Enolase was found to be present throughout the cytoplasm of both interphase and dividing cells. In addition, a portion of cellular enolase was detected at the centrosome throughout the cell cycle. The capacity of glycolytic enzymes to play a structural as well as a glycolytic role suggests that the presence of enolase at the centrosome may be correlated with the organization of both the interphase cytoskeleton and the mitotic spindle.  相似文献   

3.
This study investigated the function of the adhesion molecule L1 in unmyelinated fibers of the peripheral nervous system (PNS) by analysis of L1- deficient mice. We demonstrate that L1 is present on axons and Schwann cells of sensory unmyelinated fibers, but only on Schwann cells of sympathetic unmyelinated fibers. In L1-deficient sensory nerves, Schwann cells formed but failed to retain normal axonal ensheathment. L1-deficient mice had reduced sensory function and loss of unmyelinated axons, while sympathetic unmyelinated axons appeared normal. In nerve transplant studies, loss of axonal-L1, but not Schwann cell-L1, reproduced the L1-deficient phenotype. These data establish that heterophilic axonal-L1 interactions mediate adhesion between unmyelinated sensory axons and Schwann cells, stabilize the polarization of Schwann cell surface membranes, and mediate a trophic effect that assures axonal survival.  相似文献   

4.
We studied the cellular and subcellular distribution of S-100b protein in normal, crushed, and transected rat sciatic nerves by an immunocytochemical procedure. In uninjured nerves, S-100b protein was restricted to the cytoplasm and membranes of Schwann cells, with no reaction product present in the nucleus or in axons. Similar images were seen from the first to the thirtieth day after the crush in activated Schwann cells during the degeneration period, i.e., up to the seventh post-lesion day, and in normal Schwann cells reappearing during the regeneration period, i.e., after the seventh post-lesion day, in the zone of the crush and proximal and distal to it. By the technique employed, there seemed to be no differences in the intensity of the immune reaction product in normal and activated Schwann cells. Also, similar images were seen in the proximal stump of transected nerves. Only a slight S-100b protein immune reaction product could be observed in the rare activated Schwann cells present in the distal stump around the seventh post-lesion day, the majority of cell types being represented by fibroblasts and elongated cells at this stage and thereafter. By immunochemical assays, similar results as those presented here have been reported and interpreted as indicative of the presence of S-100 protein in axons or, alternatively, of axonal control over expression of S-100 protein in Schwann cells. Our immunocytochemical data clearly show that the strong reduction in the S-100 protein content of the distal stump of transected nerves is owing to the paucity of Schwann cells and to the decrease in the S-100 protein content of these cells, rather than to degeneration of axons.  相似文献   

5.
During embryogenesis, Schwann cells interact with axons and other Schwann cells, as they migrate, ensheath axons, and participate in organizing peripheral nervous tissues. The experiments reported here indicate that the calcium-dependent molecule, N-cadherin, mediates adhesion of Schwann cells to neurites and to other Schwann cells. Cell cultures from chick dorsal root ganglia and sciatic nerves were maintained in media containing either 2 mM Ca++ or 0.2 mM Ca++, a concentration that inactivates calcium-dependent cadherins. When the leading lamellae of Schwann cells encountered migrating growth cones in medium with 2 mM Ca++, they usually remained extended, and the growth cones often advanced onto the Schwann cell upper surface. In the low Ca++ medium, the frequency of withdrawal of the Schwann cell lamella after contact with a growth cone was much greater, and withdrawal was the most common reaction to growth cone contact in medium with 2 mM Ca++ and anti-N-cadherin. Similarly, when motile leading margins of two Schwann cells touched in normal Ca++ medium, they often formed stable areas of contact. N-cadherin and vinculin were co-concentrated at these contact sites between Schwann cells. However, in low Ca++ medium or in the presence of anti-N-cadherin, interacting Schwann cells usually pulled away from each other in a behavior reminiscent of contact inhibition between fibroblasts. In cultures of dissociated cells in normal media, Schwann cells frequently were aligned along neurites, and ultrastructural examination showed extensive close apposition between plasma membranes of neurites and Schwann cells. When dorsal root ganglia explants were cultured with normal Ca++, Schwann cells migrated away from the explants in close association with extending neurites. All these interactions were disrupted in media with 0.2 mM Ca++. Alignment of Schwann cells along neurites was infrequent, as were extended close apposition between axonal and Schwann cell plasma membranes. Finally, migration of Schwann cells from ganglionic explants was reduced by disruption of adhesive contact with neurites. The addition of antibodies against N-cadherin to medium with normal Ca++ levels had similar effects as lowering the Ca++ concentration, but antibodies against the neuronal adhesive molecule, L1, had no effects on interactions between Schwann cells and neurites.  相似文献   

6.
7.
Laminins are heterotrimeric extracellular matrix proteins that regulate cell viability and function. Laminin-2, composed of alpha2, beta1, and gamma1 chains, is a major matrix component of the peripheral nervous system (PNS). To investigate the role of laminin in the PNS, we used the Cre-loxP system to disrupt the laminin gamma1 gene in Schwann cells. These mice have dramatically reduced expression of laminin gamma1 in Schwann cells, which results in a similar reduction in laminin alpha2 and beta1 chains. These mice exhibit motor defects which lead to hind leg paralysis and tremor. During development, Schwann cells that lack laminin gamma1 were present in peripheral nerves, and proliferated and underwent apoptosis similar to control mice. However, they were unable to differentiate and synthesize myelin proteins, and therefore unable to sort and myelinate axons. In mutant mice, after sciatic nerve crush, the axons showed impaired regeneration. These experiments demonstrate that laminin is an essential component for axon myelination and regeneration in the PNS.  相似文献   

8.
Primary cultures of rat dorsal root ganglion Schwann cells were used to assay the efficacy of PC12 cells in stimulating Schwann cell proliferation. Co-cultures of PC12 cells and Schwann cells assayed by [3H]thymidine labeling followed by autoradiography showed proliferation of Schwann cells only where contact occurred between PC12 neurites and Schwann cells. Membranes derived from PC12 cells were shown to have many characteristics similar to membranes derived from sensory neurons; both could mimic whole cells in stimulating Schwann cell division; both were inactivated by mild heat treatment and by trypsinization, and both elevated intracellular cyclic AMP concentrations in Schwann cells 16 h after addition of membranes. We conclude that PC12 cells will be a valuable source for the isolation of the neuronal cell surface component which controls proliferation of Schwann cells during development of the peripheral nervous system.  相似文献   

9.
10.
Neurons regulate Schwann cell genes by diffusible molecules   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

11.
12.
G C Owens  R P Bunge 《Neuron》1991,7(4):565-575
To elucidate the role of myelin-associated glycoprotein (MAG) in the axon-Schwann cell interaction leading to myelination, neonatal rodent Schwann cells were infected in vitro with a recombinant retrovirus expressing MAG antisense RNA or MAG sense RNA. Stably infected Schwann cells and uninfected cells were then cocultured with purified sensory neurons under conditions permitting extensive myelination in vitro. A proportion of the Schwann cells infected with the MAG antisense virus did not myelinate axons and expressed lower levels of MAG than control myelinating Schwann cells, as measured by immunofluorescence. Electron microscopy revealed that the affected cells failed to segregate large axons and initiate a myelin spiral despite having formed a basal lamina, which normally triggers Schwann cell differentiation. Cells infected with the MAG sense virus formed normal compact myelin. These observations strongly suggest that MAG is the critical Schwann cell component induced by neuronal interaction that initiates peripheral myelination.  相似文献   

13.
Immunohistochemical evidence has recently been provided that in the normal adrenal medulla as well as in autonomic ganglia, satellite cells and Schwann cells react with S-100 protein antiserum. In the light of these data, we investigated primary peripheral neuroblastoma and ganglioneuroblastoma to determine firstly whether both cell populations actually exist in the malignancies, using the definite criteria of electron microscopy for their identification, and secondly whether they express S-100 protein using on immunohistochemical technique and light microscopy. The results indicate that in both neuroblastoma variants, satellite and Schwann cells are present and specifically express the S-100 antigen.  相似文献   

14.
During embryogenesis, Schwann cells interact with axons and other Schwann cells, as they migrate, ensheath axons, and participate in organizing peripheral nervous tissues. The experiments reported here indicate that the calcium-dependent molecule, N-cadherin, mediates adhesion of Schwann cells to neurites and to other Schwann cells. Cell cultures from chick dorsal root ganglia and sciatic nerves were maintained in media containing either 2mM Ca++ or 0.2 mM Ca++, a concentration that inactivates calcium-dependent cadherins. When the leading lamellae of Schwann cells encountered migrating growth cones in medium with 2 mM Ca++, they usually remained extended, and the growth cones often advanced onto the Schwann cell upper surface. In the low Ca++ medium, the frequency of withdrawal of the Schwann cell lamella after contact with a growth cone was much greater, and withdrawal was the most common reaction to growth cone contact in medium with 2 mM Ca++ and anti-N-cadherin. Similarly, when motile leading margins of two Schwann cells touched in normal Ca++ medium, they often formed stable areas of contact. N-cadherin and vinculin were co-concentrated at these contact sites between Schwann cells. However, in low Ca++ medium or in the presence of anti-N-cadherin, interacting Schwann cells usually pulled away from each other in a behavior reminiscent of contact inhibition between fibroblasts. In cultures of dissociated cells in normal media, Schwann cells frequently were aligned along neurites, and ultrastructural examination showed extensive close apposition between plasma membranes of neurites and Schwann cells. When dorsal root ganglia explants were cultured with normal Ca++, Schwann cells migrated away from the explants in close association with extending neurites. All these interactions were disrupted in media with 0.2 mM Ca++. Alignment of Schwann cells along neurites was infrequent, as were extended close apposition between axonal and Schwann cell plasma membranes. Finally, migration of Schwann cells from ganglionic explants was reduced by disruption of adhesive contact with neurites. The addition of antibodies against N-cadherin to medium with normal Ca++ levels had similar effects as lowering the Ca++ concentration, but antibodies against the neuronal adhesive molecule, L1, had no effects on interactions between Schwann cells and neurites.  相似文献   

15.
This report investigated mechanisms responsible for failed Schwann cell myelination in mice that overexpress P(0) (P(0)(tg)), the major structural protein of PNS myelin. Quantitative ultrastructural immunocytochemistry established that P(0) protein was mistargeted to abaxonal, periaxonal, and mesaxon membranes in P(0)(tg) Schwann cells with arrested myelination. The extracellular leaflets of P(0)-containing mesaxon membranes were closely apposed with periodicities of compact myelin. The myelin-associated glycoprotein was appropriately sorted in the Golgi apparatus and targeted to periaxonal membranes. In adult mice, occasional Schwann cells myelinated axons possibly with the aid of endocytic removal of mistargeted P(0). These results indicate that P(0) gene multiplication causes P(0) mistargeting to mesaxon membranes, and through obligate P(0) homophilic adhesion, renders these dynamic membranes inert and halts myelination.  相似文献   

16.
Schwann cell extracellular matrix molecules and their receptors   总被引:10,自引:0,他引:10  
The major cellular constituents of the mammalian peripheral nervous system are neurons (axons) and Schwann cells. During peripheral nerve development Schwann cells actively deposit extracellular matrix (ECM), comprised of basal lamina sheets that surround individual axon-Schwann cell units and collagen fibrils. These ECM structures are formed from a diverse set of macromolecules, consisting of glyco-proteins, collagens and proteoglycans. To interact with ECM, Schwann cells express a number of integrin and non-integrin cell surface receptors. The expression of many Schwann cell ECM proteins and their receptors is developmentally regulated and, in some cases, dependent on axonal contact. Schwann cell ECM acts as an organizer of peripheral nerve tissue and strongly influences Schwann cell adhesion, growth and differentiation and regulates axonal growth during development and regeneration.  相似文献   

17.
The cellular distribution and intracellular localization of neuron-specific enolase (NSE) has been studied by electron microscopic immunocytochemistry in the brain of the rat and of the mouse. Although the intensity of staining was less in the mouse, the same structures were positive in both species. In the cerebrum, the neuronal perikarya and dendrites were intensely stained, but staining was almost entirely absent in the presynaptic terminals. The deep neurons of the brain stem were also positive. In the cerebellum, perikarya, axons, and parallel fibers of the granule cell neurons were stained as were the synaptic vesicles and presynaptic membranes of the synapses between the parallel fibers and the Purkinje cell dendrites. Golgi cell dendrites, basket cells and their axons, and mossy fibers were also positive. In contrast, the Purkinje cells including their dendrites, and the climbing fibers that formed synapses with the Purkinje cell dendrites were not stained. The majority of the myelinated axons in both the cerebrum and the cerebellum did not stain, but the fibrillary astrocytic processes between myelinated axons in the white matter did. Oligodendroglia, protoplasmic astrocytes, Bergmann glia, astrocytes investing capillaries, and vascular endothelial cells were negative for reaction product. In the positively staining cells and their processes, the positivity was dispersed throughout the cytoplasm and corresponded most closely to the distribution of ribosomes, the granular endoplasmic reticulum, and microtubules. Nuclei, mitochondria, the cisternae of the Golgi complex, myelin lamellae, and most membranes were not stained.  相似文献   

18.
Neuronal membranes from rat dorsal root ganglia provide a mitogenic signal to cultured Schwann cells and it has been suggested this is an important factor in regulating Schwann cell numbers during development. In this study, the influence of enteric neurons on the DNA synthesis of both Schwann cells and enteric glia has been investigated as well as the effect of axonal membrane fractions (axolemma) on enteric glia. The proliferation rate of rat Schwann cells and enteric glia was assessed in culture using [3H]thymidine uptake and autoradiography in combination with immunolabelling to identify cell types. When purified rat Schwann cells were co-cultured with guinea pig enteric neurons, their DNA synthesis rate was reduced compared with control cultures of pure Schwann cells or Schwann cells not close to neurites or neuronal cell bodies. Nevertheless, in accordance with previous findings that sensory neurons stimulate Schwann cell division, these Schwann cells increased their DNA synthesis rate when in contact with neurites from purified guinea pig or adult rat dorsal root ganglion neurons and on exposure to bovine axolemmal fractions. The enteric neurons also suppressed the DNA synthesis of enteric glia in co-cultures of purified enteric neurons and enteric glia, while bovine axolemma stimulated their DNA synthesis. These results indicate that a mitotic inhibitory signal is associated with enteric neurons and can exert its effect on both Schwann cells and enteric glia, and that enteric glia, like Schwann cells, are stimulated to divide by axolemmal fractions. It thus seems possible that during development glial cell numbers in the peripheral nervous system may be controlled by both positive and negative regulators of cell growth.  相似文献   

19.
Schwann cells elaborate myelin sheaths around axons by spirally wrapping and compacting their plasma membranes. Although actin remodeling plays a crucial role in this process, the effectors that modulate the Schwann cell cytoskeleton are poorly defined. Here, we show that the actin cytoskeletal regulator, neural Wiskott-Aldrich syndrome protein (N-WASp), is upregulated in myelinating Schwann cells coincident with myelin elaboration. When N-WASp is conditionally deleted in Schwann cells at the onset of myelination, the cells continue to ensheath axons but fail to extend processes circumferentially to elaborate myelin. Myelin-related gene expression is also severely reduced in the N-WASp-deficient cells and in vitro process and lamellipodia formation are disrupted. Although affected mice demonstrate obvious motor deficits these do not appear to progress, the mutant animals achieving normal body weights and living to advanced age. Our observations demonstrate that N-WASp plays an essential role in Schwann cell maturation and myelin formation.  相似文献   

20.
By using both pulse labeling of nascent RNA chains and lactoperoxidase-catalyzed cell surface radioiodination, we examined both the de novo synthesis of mRNA for gamma-chains and the expression of membrane IgG (mIgG) on cells which had been stimulated with LPS plus a T cell supernatant (SN) containing a B cell differentiation factor for IgG1 (BCDF gamma). Our results show that neither nascent mRNA for gamma 1 chains nor mIgG1 can be detected in B lymphocytes until they have been stimulated by both LPS and BCDF gamma-containing T cell SN, and suggest that cell surface expression and secretion of IgG1 are coordinately controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号