共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Dutour P. Giraud J. Y. Maltese D. Becquet G. Pesce P. Salers LH. Ouafik M. Renard C. Oliver 《Peptides》1990,11(6):1081-1085
The TRH secretory responsiveness of the pancreatic islet cell clusters from newborn rat in organ culture was studied. Basal TRH secretion was stable over a 9-day period. The response to various secretagogues was tested on day 4. TRH secretion was stimulated by high potassium-induced depolarization and also through both cAMP and protein kinase-C dependent pathways. Like insulin, TRH release was stimulated by glucose and arginine and inhibited by somatostatin. These data suggest the existence of a common mechanism for TRH and insulin secretion by the pancreatic β-cells. 相似文献
2.
Trine Bjøro Olav Sand Bjørn Chr. Østberg Jan O. Gordeladze Peter Torjesen Kaare M. Gautvik Egil Haug 《Bioscience reports》1990,10(2):189-199
The effect of vasoactive intestinal peptide (VIP) on prolactin (PRL) secretion from pituitary cells is reviewed and compared to the effect of thyrotropin releasing hormone (TRH). These two peptides induced different secretion profiles from parafused lactotrophs in culture. TRH was found to increase PRL secretion within 4 s and induced a biphasic secretion pattern, while VIP induced a monophasic secretion pattern after a lag time of 45–60 s.The secretion profiles are compared to changes in adenylate cyclase activity, production of inositol polyphosphates, changes in intracellular calcium concentrations and changes in electrophysiological properties of the cell membrane.Abbreviations AC
adenylate cyclase
- DG
diacyglycerol
- GH
growth hormone
- GTP
guanosine trisphosphate
- Gi
GTP binding proteins that mediate inhibition of adenylate cyclase and that are pertussis toxin sensitive
- Gs
GTP binding protein that mediates stimulation of adenylate cyclase
- GH cells
clonal rat pituitary tumor cells producing PRL and/or growth hormone
- GH3 GH4C1 and GH4B6
subclones of GH cells
- PKA
protein kinase A
- PKC
protein kinase C
- PLC
phospholipase C
- PRL
prolactin
- TPA
12-O-tetradecanoyl phorbol 13-acetate
- TRH
thyrotropin releasing hormone
- VIP
vasoactive intestinal peptide 相似文献
3.
4.
X B Wang N Sato M A Greer S E Greer S McAdams 《Biochemical and biophysical research communications》1991,180(1):112-117
Tetraethylammonium (TEA), a K+ channel blocker, induced prolactin (PRL) secretion in GH4C1 cells in a dose-dependent manner when applied at a concentration from 1-20 mM. During continuous exposure to TEA, a significant increase in PRL secretion occurred by 20 min and the response was sustained until the end of a 60-min exposure. Blocking Ca2+ influx by employing a Ca(2+)-depleted medium or the Ca2+ channel blocker, nifedipine, prevented induction of PRL secretion by 20 mM TEA. Preincubation of the cells for 10 min with 20 mM TEA did not inhibit PRL secretion induced by thyrotropin-releasing hormone (TRH), phorbol 12-myristate 13-acetate (TPA) or by cell swelling produced by 30% medium hyposmolarity, but significantly depressed that induced by depolarizing 30 mM K+. BaCl2, another K+ channel blocker, had the same effect on PRL secretion as TEA. The data suggest that blocking K+ channels may cause membrane depolarization, thereby inducing Ca2+ influx which is a potent stimulus for PRL secretion in GH4C1 cells. 相似文献
5.
Jaffe LF 《Biology of the cell / under the auspices of the European Cell Biology Organization》2007,99(3):175-184
For nearly 30 years, fast calcium waves have been attributed to a regenerative process propagated by CICR (calcium-induced calcium release) from the endoplasmic reticulum. Here, I propose a model containing a new subclass of fast calcium waves which is propagated by CICI (calcium-induced calcium influx) through the plasma membrane. They are called fast CICI waves. These move at the order of 100 to 1000 microm/s (at 20 degrees C), rather than the order of 3 to 30 microm/s found for CICR. Moreover, in this proposed subclass, the calcium influx which drives calcium waves is relayed by stretch-activated calcium channels. This model is based upon reports from approx. 60 various systems. In seven of these reports, calcium waves were imaged, and, in five of these, evidence was presented that these waves were regenerated by CICI. Much of this model involves waves that move along functioning flagella and cilia. In these systems, waves of local calcium influx are thought to cause waves of local contraction by inducing the sliding of dynein or of kinesin past tubulin microtubules. Other cells which are reported to exhibit waves, which move at speeds in the fast CICI range, include ones from a dozen protozoa, three polychaete worms, three molluscs, a bryozoan, two sea urchins, one arthropod, four insects, Amphioxus, frogs, two fish and a vascular plant (Equisetum), together with numerous healthy, as well as cancerous, mammalian cells, including ones from human. In two of these systems, very gentle local mechanical stimulation is reported to initiate waves. In these non-flagellar systems, the calcium influxes are thought to speed the sliding of actinomyosin filaments past each other. Finally, I propose that this mechanochemical model could be tested by seeing if gentle mechanical stimulation induces waves in more of these systems and, more importantly, by imaging the predicted calcium waves in more of them. 相似文献
6.
7.
Tsuneharu Sato Toshikuni Jyujo Toshikiyo Iesaka Junko Ishikawa Masao Igarashi 《Prostaglandins & other lipid mediators》1974,5(5):483-490
Ten to 60 minutes following a single i.v. injection of PGE2 (500 μg/rat) into male rats of 30 to 35 days of age FSH concentration in the serum was raised significantly. The rise in FSH was maintained from 10 to 60 minutes after treatment, then at 90 minutes FSH had declined and was not significantly different from that of the control before treatment. Prostaglandin E1, E2 or F2α (670μg/rat) significantly increased the serum prolactin level 10 to 60 minutes after a single i.v. injection in spayed rats primed with estrogen and progesterone. And, rats primed with estrogen and progesterone. And, increases in prolactin in the serum were observed with as little as 2μg of PGE1 or E2, and 20μg of PGF2α. Twenty μg of PGE2, and 200μg of PGE1 or F2α gave the maximum stimulation. These results indicate that release of pituitary hormones is affected by prostaglandins.Prostaglandins (PGs) are widely distributed in mammalian tissues, and they have been reported to have an almost equally wide variety of endocrine and metabolic effects. It was recently postulated that PGs may be involved in the process of ovulation because ovulation was blocked by inhibitors of PG synthesis (1–5). 相似文献
8.
《Cell calcium》2016,59(6):617-627
Neurons possess an elaborate system of endolysosomes. Recently, endolysosomes were found to have readily releasable stores of intracellular calcium; however, relatively little is known about how such ‘acidic calcium stores’ affect calcium signaling in neurons. Here we demonstrated in primary cultured neurons that calcium released from acidic calcium stores triggered calcium influx across the plasma membrane, a phenomenon we have termed “acidic store-operated calcium entry (aSOCE)”. aSOCE was functionally distinct from store-operated calcium release and calcium entry involving endoplasmic reticulum. aSOCE appeared to be governed by N-type calcium channels (NTCCs) because aSOCE was attenuated significantly by selectively blocking NTCCs or by siRNA knockdown of NTCCs. Furthermore, we demonstrated that NTCCs co-immunoprecipitated with the lysosome associated membrane protein 1 (LAMP1), and that aSOCE is accompanied by increased cell-surface expression levels of NTCC and LAMP1 proteins. Moreover, we demonstrated that siRNA knockdown of LAMP1 or Rab27a, both of which are key proteins involved in lysosome exocytosis, attenuated significantly aSOCE. Taken together our data suggest that aSOCE occurs in neurons, that aSOCE plays an important role in regulating the levels and actions of intraneuronal calcium, and that aSOCE is regulated at least in part by exocytotic insertion of N-type calcium channels into plasma membranes through LAMP1-dependent lysosome exocytosis. 相似文献
9.
10.
K Tojo Y Kato Y Kabayama H Ohta T Inoue H Imura 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1986,181(4):517-522
Intracerebroventricular (icv) injection of neurotensin (NT) (2 micrograms/rat) suppressed prolactin (PRL) release induced by L-5-hydroxytryptophan (1 mg/100 g body wt, iv), prostaglandin E2(1 microgram/rat, icv), and FK33-824 (10 micrograms/100 g body wt, iv), a Met5-enkephalin analog, in urethane-anesthetized or conscious rats. In contrast, NT did not suppress elevated plasma PRL levels sustained by a large dose of domperidone (10 micrograms/100 g body wt, iv), a peripheral dopamine antagonist. In in vitro experiments, NT (10(-5) M) stimulated dopamine release from perifused rat hypothalamic fragments. These results suggest that central NT inhibits PRL secretion by stimulating dopamine release from the hypothalamus into hypophysical portal blood in the rat. 相似文献
11.
Henderson HL Hodson DJ Gregory SJ Townsend J Tortonese DJ 《Biology of reproduction》2008,78(2):370-377
Previous studies have provided evidence for a paracrine interaction between pituitary gonadotrophs and lactotrophs. Here, we show that GnRH is able to stimulate prolactin (PRL) release in ovine primary pituitary cultures. This effect was observed during the breeding season (BS), but not during the nonbreeding season (NBS), and was abolished by the application of bromocriptine, a specific dopamine agonist. Interestingly, GnRH gained the ability to stimulate PRL release in NBS cultures following treatment with bromocriptine. In contrast, thyrotropin-releasing hormone, a potent secretagogue of PRL, stimulated PRL release during both the BS and NBS and significantly enhanced the PRL response to GnRH during the BS. These results provide evidence for a photoperiodically modulated functional interaction between the GnRH/gonadotropic and prolactin axes in the pituitary gland of a short day breeder. Moreover, the stimulation of PRL release by GnRH was shown not to be mediated by the gonadotropins, since immunocytochemical, Western blotting, and PCR studies failed to detect pituitary LH or FSH receptor protein and mRNA expressions. Similarly, no gonadotropin receptor expression was observed in the pituitary gland of the horse, a long day breeder. In contrast, S100 protein, a marker of folliculostellate cells, which are known to participate in paracrine mechanisms within this tissue, was detected throughout the pituitaries of both these seasonal breeders. Therefore, an alternative gonadotroph secretory product, a direct effect of GnRH on the lactotroph, or another cell type, such as the folliculostellate cell, may be involved in the PRL response to GnRH in these species. 相似文献
12.
P C Ross A M Burkman 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1988,188(1):87-91
The effects of permanently charged and uncharged analogs of dopamine were examined for their ability to inhibit basal prolactin release from primary cultures of rat pituitary lactotrophs. The charged quaternary trimethyldopamine and the charged dimethylsulfonium analogs were active (IC50's were 4.3 and 31 microM, respectively) while the permanently uncharged monoethylsulfide was devoid of significant activity. Dopamine and dimethyldopamine, which are able to exist in both charged and uncharged forms, are more potent (IC50's were 36 and 44 nM, respectively) but all compounds were capable of approaching the same maximum degree of prolactin release inhibition. Haloperidol, a dopamine receptor antagonist, was able to block the actions of each of the agonists. The data suggest that (a) dopamine agonists do not have to be in the uncharged form in order to activate the dopamine receptor that regulates prolactin release, (b) the uncharged monomethylsulfide analog of dopamine is incapable of activating the dopamine receptor, and (c) the nitrogen on the side chain of dopamine can be replaced by another atom and still retain prolactin release inhibiting activity. 相似文献
13.
Summary Semi-thin sections of three-dimensional reaggregates from adult female rat pituitary, cultured in serum-free defined medium, were stained for prolactin, gonadotropin, thyrotropin, growth hormone and S-100, using the double immunolabelling technique. The frequency of juxtaposition between lactotrophs and gonadotrophs was enumerated and compared with the expected frequency at random distribution of polygonal cell profiles in a hexagonal configuration. The proportions of lactotrophs and gonadotrophs in the aggregate sections were determined using stereometrical analysis. The observed frequency of juxtaposition did not differ significantly from the expected frequency. Hence, no reason was found to assume a selective adhesion between lactotrophs and gonadotrophs in adult female rat pituitary reaggregates. A constant proportion of lactotrophs was found to meet the criteria of a cup-shaped morphology, and 70%±9% (mean ±S.D.) of these so-called cupshaped lactotrophs were found to be juxtaposed at their concave side to gonadotrophs. Administration of 0.01 nM 17-oestradiol to the culture medium resulted in a significant reduction of the proportion of cup-shaped lactotrophs but did not affect the selectivity of juxtaposition to gonadotrophs. The selectivity of juxtaposition between cup-shaped lactotrophs and gonadotrophs may be the morphological correlate of the functional relationship between these cells, which are known to be involved in an intra-pituitary paracrine communication system. 相似文献
14.
Mark Stephen Kirby Clive Orchard Mark Richard Boyett 《Molecular and cellular biochemistry》1989,89(2):109-113
The role of Ca2+ in the initiation and maintenance of contraction has been extensively studies. Many of these studies have focused on how Ca2+ influx and efflux affect cytoplasmic Ca2+ (Cai) and, therefore, contraction in cardiac muscle. However, it has recently become apparent that Cai itself may play a major role in the control of Ca2+ influx and efflux from cardiac muscle. Here we review current ideas on the mechanisms underlying Ca2+ homeostasis in cardiac muscle, with specific attention to how Cai may control Ca2+ influx, both under normal and pathological conditions. 相似文献
15.
16.
B. Sarkadi A. Tordai L. Homolya O. Scharff G. Gárdos 《The Journal of membrane biology》1991,123(1):9-21
Summary Jurkat and MOLT-4 cultured T lymphoblasts were loaded with low concentrations (30–50 m) of indo-1 and with high concentrations (3.5–4.5mm) of quin-2, respectively, in order to follow the activation of calcium transport pathways after stimulation of the cells by a monoclonal antibody against the T cell antigen receptor (aCD3), or after the addition of thapsigargin, a presumed inhibitor of endoplasmic reticulum calcium pump. In the indo-1 loaded cells the dynamics of the intracellular calcium release and the calcium influx could be studied, while in the quin-2 overloaded cells the changes in cytoplasmic free calcium concentration ([Ca2+]
i
) were strongly buffered and the rate of calcium influx could be quantitatively determined. We found that in Jurkat lymphoblasts, in the absence of external calcium, both aCD3 and thapsigargin induced a rapid calcium release from internal stores, while upon the readdition of external calcium an increased rate of calcium influx could be observed in both cases, aCD3 and thapsigargin released calcium from the same intracellular pools. The calcium influx induced by either agent was of similar magnitude and had a nonadditive character if the two agents were applied simultaneously. As demonstrated in quin-2 overloaded cells, a significant initial rise in [Ca2+]
i
or a pronounced depletion of internal calcium pools was not required to obtain a rapid calcium influx. The activation of protein kinase C by phorbol ester abolished the internal calcium release and the calcium influx induced by aCD3, while having only a small effect on these phenomena when evoked by thapsigargin. Membrane depolarization by gramicidin inhibited the rapid calcium influx in both aCD3- and thapsigargin-treated cells, although it did not affect the internal calcium release produced by either agent. In MOLT-4 cells, which have no functioning antigen receptors, aCD3 was ineffective in inducing a calcium signal, while thapsigargin produced similar internal calcium release and external calcium influx to those observed in Jurkat cells. 相似文献
17.
Karen J. Loechner Ronald J. Knox John A. Connor Leonard K. Kaczmarek 《The Journal of membrane biology》1992,128(1):41-52
Summary The bag cell neurons of Aplysia provide a model system in which to investigate the effects of hyperosmolality on the electrical and secretory properties of neurons. Brief stimulation of these neurons triggers an afterdischarge of action potentials that lasts approximately 20–30 min, during which time they release several neuroactive peptides. We have found that pre-incubation of intact clusters of bag cell neurons in hyperosmotic media prior to stimulation prevents the initiation of afterdischarges. Furthermore, an increase in osmolality of the external medium during an ongoing afterdischarge causes its premature termination. Hyperosmotic media attenuate the release of peptide evoked by both electrically stimulated afterdischarges and potassium-induced depolarization. The ability of high potassium to depolarize the bag cell neurons is, however, not impaired. Exposure of isolated bag cell neurons to hyperosmotic media also inhibits the amplitude of action potentials evoked by depolarizing current injection and attenuates the voltage-dependent calcium current. In isolated bag cell neurons loaded with the calcium indicator dye, fura-2, hyperosmotic media reduced the rise in intracellular calcium levels that normally occurs in response to depolarization. Our results suggest that the effects of hyperosmotic media on peptide secretion in bag cell neurons can largely be attributed to their effects on calcium entry.This work was supported by NIH Grant NS-18492 to L.K. Kaczmarek. 相似文献
18.
Akshaya Chandrasekaran May Y Lee Xuexin Zhang Shaheen Hasan Habben Desta Scott A Tenenbaum J Andrs Melendez 《Experimental biology and medicine (Maywood, N.J.)》2020,245(17):1560
Cellular senescence has evolved as a protective mechanism to arrest growth of cells with oncogenic potential but is accompanied by the often pathologically deleterious senescence-associated secretory phenotype (SASP). Here we demonstrate an H2O2-dependent functional disruption controlling senescence-associated Ca2+ homeostasis and the SASP. Senescent cells fail to respond to H2O2-dependent plasma lamellar Ca2+ entry when compared to pre-senescent cells. Limiting exposure to senescence-associated H2O2 restores H2O2-dependent Ca2+ entry as well as transient receptor potential cation channel subfamily C member 6 (TRPC6) function. SA-TRPC6 and SASP expression is blocked by restoring Ca2+ entry with the TRP channel antagonist SKF-96365 or by the mTOR inhibitors rapamycin and Ku0063794. Together, our findings provide compelling evidence that redox and mTOR-mediated regulation of Ca2+ entry through TRPC6 modulates SASP gene expression and approaches which preserve normal Ca2+ homeostasis may prove useful in disrupting SASP activity.Impact statementThrough its ability to evoke responses from cells in a paracrine fashion, the senescence-associated secretory phenotype (SASP) has been linked to numerous age-associated disease pathologies including tumor invasion, cardiovascular dysfunction, neuroinflammation, osteoarthritis, and renal disease. Strategies which limit the amplitude and duration of SASP serve to delay age-related degenerative decline. Here we demonstrate that the SASP regulation is linked to shifts in intracellular Ca2+ homeostasis and strategies which rescue redox-dependent calcium entry including enzymatic H2O2 scavenging, TRP modulation, or mTOR inhibition block SASP and TRPC6 gene expression. As Ca2+ is indispensable for secretion from both secretory and non-secretory cells, it is exciting to speculate that the expression of plasma lamellar TRP channels critical for the maintenance of intracellular Ca2+ homeostasis may be coordinately regulated with the SASP. 相似文献
19.
Paul Salers L'Houcine Ouafik Pierre Giraud Anne Dutour Jean-Yves Maltese Charles Oliver 《Molecular and cellular biochemistry》1991,106(1):15-24
Thyrotropin-R eleasing hormone (TRH)-degrading pyroglutamyl peptidase I(PGP I) and prolyl endopeptidase (PE) activities have been demonstrated in rat insulinoma RINm 5F cell line. These two enzymes catalyze the conversion of TRH to Histydyl-Proline-Diketopiperazine and to acid TRH respectively.After cell fractionation, we found all the PGP I and PE activities in the cytosolic fraction. The membranebound PGP II activity is not detectable in the RINm 5F cells. Further investigations on these two cytosolic enzymes show that pyroglutamyl- and proline-containing peptides are inhibitors of each TRH-degrading enzyme.Gelfiltration chromatography on Sephadex G100 shows that PGP I and PE activity have an apparent molecular mass of about 18 kDa and 57 kDa, respectively. Kinetic analysis with TRH as substrate, gives a Km of 44 µM and 235 µM, and a Vmax of 1.49 and 8.80 pmoUmin/µg protein for PGP I and PE, respectively. Immunoreactive TRH, His-Pro-Diketopiperazine and acid TRH levels in the cell line extracts are 2.2 ± 0.9, 22.5 ± 11.1 and 28.7 ± 14.6pg/106 cells, respectively. When cells have been incubated for 2 to 72 hours with a P. E. inhibitor (Z-Gly-Pro-CHN2) at 5 × 10–7M, both cell PGP I and PE activities are inhibited. No change in the cellular content of immunoreactive TRH, His-Pro-Diketopiperazine and acid TRH have been observed in treated cells.These data suggest that TRH is not degraded by cytosolic, unspecific PGP I and PE enzymes in RINm 5F. The finding that these cells contain 10 and 13 times more His-Pro-Diketopiperazine and acid TRH than TRH may be an indirect evidence for the existence of another precursor than TRH for these two peptides or of the possibility that TRH can be degraded by other peptidases.Abbreviations TRH
Thyrotropin-Releasing Hormone or Thyroliberin
- His-Pro-DKP
Histidyl-ProlineDiketopiperazine
- TRH-OH
acid TRH or deamidated TRH
- LH-RH
Luteinizing Hormone-Releasing Hormone
- Z-Gly-Pro-CHN2
N-benzyloxycarboxyl-Gly-Pro-diazomethylketone
- PGP
Pyroglutamyl Peptidase, PGP I (EC 3.4.19.3) and PGP II (EC 3.4.19.-)
- PE
Prolyl Endopeptidase or post-proline cleaving enzyme (EC 3.4.21.26) 相似文献