首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) has shown promise in species identification of insect species. We evaluated its potential to consistently characterize laboratory-reared biting midges of the species Culicoides nubeculosus (Meigen) (Diptera: Ceratopogonidae). Twenty-one reproducible potential biomarker masses for C. nubeculosus were identified under different experimental treatments. These treatments included the homogenization of insects in either water or known concentrations of formic acid. The biomarker masses were present independent of age, gender and different periods of storage of individuals in 70% ethanol (a standard preservation method). It was found that the presence of blood in females reduced the intensity of the MALDI-TOF pattern, necessitating the removal of the abdomen before analysis. The protein profiles of a related non-biting midge, Forcipomyia sp. (Diptera: Ceratopogonidae), and of Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) mosquitoes were also examined and were distinctly different. These findings provide preliminary data to optimize future studies in differentiation of species within the Culicoides genus using MALDI-TOF MS which is a rapid, simple, reliable and cost-effective technique.  相似文献   

2.
A protocol has been developed that allows protein identifications using available DNA-based or protein sequences from a reference strain of a bacterial species to be extended to bacterial strains for which no prior DNA-based or protein sequence information exists. The protocol is predicated on careful isolation of a specific sub-cellular group of proteins. In this study, ribosomal proteins were chosen due to their high relative abundance and similarity in copy number per cell. After isolation of ribosomal proteins, MALDI-MS is used to acquire accurate protein molecular weights. An iterative comparison of reference protein molecular weights and identities is made to the resulting data, allowing for the straightforward identification of ribosomal proteins from any non-reference strains. This approach can reveal differences between proteins at the amino acid or post-translational level. The protocol was developed, validated and applied to ribosomal proteins from three strains of the extreme thermophile Thermus thermophilus. This approach revealed that nearly 60% of the ribosomal proteins from all three strains are identical. The extension of protein identification to additional bacterial strains can be useful in phylogenetic studies as well as in biomarker identification.  相似文献   

3.
Park SJ  Yoon WG  Song JS  Jung HS  Kim CJ  Oh SY  Yoon BH  Jung G  Kim HJ  Nirasawa T 《Proteomics》2006,6(1):349-363
Proteome analysis by 2-DE and PMF by MALDI-TOF MS was performed on human amnion and amniotic fluid at term. Ninety-two soluble and nineteen membrane proteins were identified from amnion. Thirty-five proteins were identified from amniotic fluid. Calgranulin A and B were found in all patients infected with Ureaplasma urealyticum, but not in any of the patients without infection, indicating that they are potential markers of intrauterine infection. Identity of calgranulin A and B was confirmed by MALDI-TOF/TOF MS. This study represents the first extensive analysis of the human amnion and amniotic fluid proteome at term and demonstrates that 2-DE and MALDI-TOF MS is a useful tool for identifying clinically significant biomarkers of problematic pregnancies.  相似文献   

4.
The 2-nitrobenzenesulfenyl (NBS) method, which is useful for quantitative proteome analysis, is based on stable isotope labeling of tryptophan residues with NBS chloride ((12)C(6)-NBSCl or (13)C(6)-NBSCl). We found that 3-hydroxy-4-nitrobenzoic acid (3H4NBA) is a more suitable matrix than 2,5-dihydroxybenzoic acid (DHB) for detecting NBS-labeled peptides by MALDI-quadrupole IT (QIT)-TOF MS . Furthermore, NBS-labeled peptides were selectively ionized and detected in a mixture of NBS-labeled and unlabeled peptides. Labeled paired peaks were easily detected without enrichment, nonpaired labeled peaks were clearly distinguished from unlabeled contaminating peptides, and nitrotyrosine-containing peptides were also selectively detected on the 3H4NBA matrix, while by-product-peaks arising from nitrobenzene moieties were suppressed. The use of 3H4NBA as a comatrix with CHCA improved the sensitivity of detection while substantially retaining the selectivity of 3H4NBA. The 3H4NBA matrix offers great advantages in terms of simplicity, sensitivity, and usability when used for the NBS method and for MALDI-TOF MS analysis applied to compounds having a nitrobenzene ring.  相似文献   

5.
Rapid and adequate identification of anaerobic bacterial species still presents a challenge for most diagnostic laboratories, hindering the selection of appropriate therapy. In this study, the identification capacity of 16S rRNA sequence analysis, VITEK 2 (BioMérieux, Lyon, France) compact analysis and VITEK MS‐mediated identification for anaerobic bacterial species was compared. Eighty‐five anaerobic bacterial isolates from 11 provinces in China belonging to 14 genera were identified by these three methods. Differences in identification between these three methods were compared. Consistent identification results were obtained for 54 (54/85, 63.5%) isolates by all three methods, the most discordant results being concentrated in Clostridium XI (n = 8) and Bacteroides fragilis (n = 9) clusters. Using the VITEK MS system, 74 (74/90, 82.2%) isolates were identified as single species consistent with 16S rRNA sequence analysis, which was significantly better than the results obtained with VITEK 2 Compact (P < 0.01). Misidentifications by the Vitek 2 Compact and Vitek MS systems were mainly observed in the Clostridium XI (n = 8)and B. fragilis clusters (n = 9). VITEK MS identified anaerobic bacteria even after they had been exposed to oxygen for a week. Identification by the Vitek MS system was more consistent with 16S rRNA sequence analysis than identification by Vitek 2 Compact. Continuous expansion of the VITEK MS database with rare described anaerobic species is warranted to improve both the efficiency and accuracy of VITEK MS identification in routine diagnostic microbiology.  相似文献   

6.
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry – one of the most commonly used analytical tools in proteomics – for high-throughput analyses.  相似文献   

7.
Cryptosporidium parvum oocysts were analyzed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Sample preparation proved to be a crucial step in the acquisition of acceptable mass spectra. Oocysts of C. parvum and the matrix were mixed and held for at least 45 min to produce reproducible, representative mass spectra. Sporozoites were also excysted from oocysts, purified, and analyzed using MALDI-TOF MS. The mass spectra of the intact oocysts contained many of the same peaks found in the mass spectra of the sporozoites, suggesting that during analysis, the internal constituents, not just the oocyst wall, are ablated by the laser.  相似文献   

8.
Polymeric tannins, extracted from grape berries (Gamay variety), were fractionated according to their mean degree of polymerisation (mDP) on a styrene-divinylbenzene phase eluted with a gradient of methanol:chloroform. Increasing the percentage of methanol led to the solubilisation of higher molecular weight tannins. The mean mDP of each collected fraction was determined by acid-catalysed degradation in the presence of a nucleophilic reagent. The fractionation method produced a linear gradient of mDP varying between 1.84 and 19.34. The fractions were partially characterised by matrix assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). The spectra showed a complex mixture of proanthocyanidins and galloylated proanthocyanidins up to 4000 amu.  相似文献   

9.
Previous studies in our group have shown that the analyte signal in a matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) experiment is strongly influenced by the binding interactions between the target surface and the analyte. Specifically, the analyte signal increases with decreases in surface binding affinity, which has been attributed to more unbound analyte being available for incorporation within the MALDI matrix. In this work, polyethylene glycol (PEG) was chemically grafted onto a polyurethane (PU) film to produce a MALDI target having reduced surface-protein binding affinity, and the effect of this modification on protein MALDI ion signals was investigated. The proteins myoglobin, lysozyme, and albumin were used to evaluate the PEG PU modified target as compared with a PU target and a commercial stainless steel target. It is shown that there are enhancements in the protein MALDI ion signals on the PEG PU modified target and that the limit of detection for these proteins is decreased by a factor of 2 to 6 in comparison with the unmodified PU and the commercial stainless steel targets.  相似文献   

10.
11.
Culicoides biting midges are of great importance as vectors of pathogens and elicitors of allergy. As an alternative for the identification of these tiny insects, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated. Protein mass fingerprints were determined for 4-5 field-caught reference (genetically confirmed) individuals of 12 Culicoides species from Switzerland, C. imicola from France, laboratory-reared C. nubeculosus and a non-biting midge. Reproducibility and accuracy of the database was tested in a validation study by analysing 108 mostly field-caught target Culicoides midges and 3 specimens from a non-target species. A reference database of biomarker mass sets containing between 24 and 38 masses for the different species could be established. Automated database-based identification was achieved for 101 of the 108 specimens. The remaining 7 midges required manual full comparison with the reference spectra yielding correct identification for 6 specimens and an ambiguous result for the seventh individual. Specimens of the non-target species did not yield identification. Protein profiling by MALDI-TOF, which is compatible with morphological and genetic identification of specimens, can be used as an alternative, quick and inexpensive tool to accurately identify Culicoides biting midges collected in the field.  相似文献   

12.
The occurrence of harmful algal blooms (HABs) or red tides is an important and expanding threat to human health, fishery resources, and the tourism industries. Toxic species post an additional treat of intoxication when consumed either in seafood or directly swallowed. Rapid and accurate identification of the HAB species is critical for minimizing or controlling the damage. We report the use of protein/peptide mass fingerprint profiles obtained with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) for the identification of dinoflagellates, common causative agents of HABs. The method is simple, fast and reproducible. The peptide mass fingerprint spectral patterns are unique for different dinoflagellate species and are easily distinguishable by visual inspection. In addition to the whole mass spectra, several specific biomarkers were identified from the mass spectra of different species. These biomarker ions and the mass spectral patterns form an unambiguous basis for species discrimination.  相似文献   

13.
Flea identification is a significant issue because some species are considered as important vectors of several human pathogens that have emerged or re‐emerged recently, such as Bartonella henselae (Rhizobiales: Bartonellaceae) and Rickettsia felis (Rickettsiales: Rickettsiaceae). Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has been evaluated in recent years for the identification of multicellular organisms, including arthropods. A preliminary study corroborated the usefulness of this technique for the rapid identification of fleas, creating a preliminary database containing the spectra of five species of flea. However, longterm flea preservation in ethanol did not appear to be an adequate method of storage in the context of specimen identification by MALDI‐TOF MS profiling. The goal of the present work was to assess the performance of MALDI‐TOF MS in the identification of seven flea species [Ctenocephalides felis (Siphonaptera: Pulicidae), Ctenocephalides canis, Pulex irritans (Siphonaptera: Pulicidae), Archaeopsylla erinacei (Siphonaptera: Pulicidae), Leptopsylla taschenbergi (Siphonaptera: Ceratophyllidae), Stenoponia tripectinata (Siphonaptera: Stenoponiidae) and Nosopsyllus fasciatus (Siphonaptera: Ceratophyllidae)] collected in the field and stored in ethanol for different periods of time. The results confirmed that MALDI‐TOF MS can be used for the identification of wild fleas stored in ethanol. Furthermore, this technique was able to discriminate not only different flea genera, but also the two congeneric species C. felis and C. canis.  相似文献   

14.
Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.  相似文献   

15.
Xiong S  Ding Q  Zhao Z  Chen W  Wang G  Liu S 《Proteomics》2003,3(3):265-272
High detection sensitivity and resolution are two critical parameters for recording good peptide mass fingerprints (PMF) of low abundance proteins. This paper reports a mass spectrometry (MS) sample preparation technique that could improve sensitivity and resolution. By coating the MS steel target with a thin layer of pentadecafluorooctamido propyltrimethoxysilane, which was both polar and nonpolar solvent repellent, the transferred sample droplets on its surface were significantly smaller. As a result, the analyte of the peptide mixture became more concentrated and homogeneous, which helped to improve the sensitivity. The advantages of a modified MS target were documented by mass spectra improvement of attomole level standard peptides and silver-stained proteins from polyacrylamide gels. The mass signal of angiotensin II at 100 attomole was difficult to record on the conventional support, whereas it was easily detected on the modified one. The PMF of cytochrome C was also better recorded on the modified support, in terms of both signal-to-noise ratio and the number of detected peptides. When silver-stained proteins from two-dimensional electrophoresis gels were analyzed, in most cases more satisfactory peptide mass spectra were obtained from the modified support. Searching protein databases with more mass data from the improved PMFs, several unknown proteins were successfully identified.  相似文献   

16.
Phosphoamino acid modifications on substrate proteins are critical components of protein kinase signaling pathways. Thus, diverse methodologies have been developed and applied to identify the sites of phosphorylated amino acids within proteins. Despite significant progress in the field, even the determination of phosphorylated residues in a given highly purified protein is not a matter of routine and can be difficult and time-consuming. Here we present a practicable approach that integrates into a liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry (LC–MALDI MS) workflow and allows localization and quantification of phosphorylated peptides on the MALDI target plate prior to MS analysis. Tryptic digests of radiolabeled proteins are fractionated by reversed-phase LC directly onto disposable MALDI target plates, followed by autoradiographic imaging. Visualization of the radiolabel enables focused analysis of selected spots, thereby accelerating the process of phosphorylation site mapping by decreasing the number of spectra to be acquired. Moreover, absolute quantification of the phosphorylated peptides is permitted by the use of appropriate standards. Finally, the manual sample handling is minimal, and consequently the risk of adsorptive sample loss is very low. Application of the procedure allowed the targeted identification of six novel autophosphorylation sites of AMP-activated protein kinase (AMPK) and displayed additional unknown phosphorylated peptide species not amenable to detection by MS. Furthermore, autoradiography revealed topologically inhomogeneous distribution of phosphorylated peptides within individual spots. However, accurate analysis of defined areas within single spots suggests that, rather than such quantitative differences, mainly the manner of matrix crystallization significantly affects ionization of phosphopeptides.  相似文献   

17.
Matrix‐assisted laser desorption/ionization time‐of‐flight intact cell mass spectrometry (MALDI‐TOF ICMS) is coming of age for the identification and characterization of fungi. The procedure has been used extensively with bacteria. UV‐absorbing matrices function as energy mediators that transfer the absorbed photoenergy from an irradiation source to the surrounding sample molecules, resulting in minimum fragmentation. A surprisingly high number of fungal groups have been studied: (i) the terverticillate penicillia, (ii) aflatoxigenic, black and other aspergilli, (iii) Fusarium, (iv) Trichoderma, (iv) wood rotting fungi (e.g. Serpula lacrymans) and (v) dermatophytes. The technique has been suggested for optimizing quality control of fungal Chinese medicines (e.g. Cordyceps). MALDI‐TOF ICMS offers advantages over PCR. The method is now used in taxonomic assessments (e.g. Trichoderma) as distinct from only strain characterization. Low and high molecular mass natural products (e.g. peptaibols) can be analysed. The procedure is rapid and requires minimal pretreatment. However, issues of reproducibility need to be addressed further in terms of strains of species tested and between run variability. More studies into the capabilities of MALDI‐TOF ICMS to identify fungi are required.  相似文献   

18.
A method to detect and quantify curcumin and two curcuminoid metabolites in biological matrices, including mouse serum and mouse lung cell cultures, was developed. Standard curves between 0.04 and 10.00 nmol curcumin were prepared in serum, giving correlation coefficients of 0.94-0.99. Alcoholic extraction, concentration, and addition of dilute hydrochloric acid to stabilize the curcumin were essential to the reproducibility of the protocol. Untreated and curcumin-treated mouse lung fibrotic and nonfibrotic cell cultures were analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry utilizing this method. Curcumin uptake was calculated to be 7.0-11.6% for the saline-treated cells and 7.4-11.9% for the bleomycin-treated cultures. Curcumin was not detected in untreated cells. Two additional peaks (m/z=399 and 429) were observed in the curcumin-treated cells. These may be curcumin-derived products resulting from HCl treatment of the tissue samples.  相似文献   

19.
Novel prognostic biomarkers are imperatively needed to help direct treatment decisions by typing subgroups of node-negative breast cancer patients. The current study has used a proteomic approach of SELDI-TOF-MS screening to identify differentially cytosolic expressed proteins with a prognostic impact in 30 node-negative breast cancer patients with no relapse versus 30 patients with metastatic relapse. The data analysis took into account 73 peaks, among which 2 proved, by means of univariate Cox regression, to have a good cumulative prognostic-informative power. Repeated random sampling (n = 500) was performed to ensure the reliability of the peaks. Optimized thresholds were then computed to use both peaks as risk factors and, adding them to the St. Gallen ones, improve the prognostic classification of node-negative breast cancer patients. Identification of ubiquitin and ferritin light chain (FLC), corresponding to the two peaks of interest, was obtained using ProteinChip LDI-Qq-TOF-MS. Differential expression of the two proteins was further confirmed by Western blotting analyses and immunohistochemistry. SELDI-TOF-MS protein profiling clearly showed that a high level of cytosolic ubiquitin and/or a low level of FLC were associated with a good prognosis in breast cancer.  相似文献   

20.
As recently shown, different physiologically relevant lipid classes can easily be analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI–TOF MS). In the present study the first application of MALDI–TOF for the quantitative analysis of diacylglycerols is described. It is shown that the use of a suitable reference sample enables the quantification of diacylglycerols up to the picomolar range. The best reproducibility of quantitative results for diacylglycerols was obtained using a matrix of 2,5-dihydroxybenzoic acid in ethylacetate and incorporation of an internal standard of the same lipid class. A moderate laser power was used, resulting in a very low extent of fragmentation, allowing a quantification by using solely the highest signal arising from sodium adduct formation of diacylglycerols. A linear correlation between peak intensity and lipid concentration over one order of magnitude was found. The applicability of this new technique for the analysis of other lipids like phosphatidylcholines is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号