首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeted gene insertion methodology was used to study the effect of perturbing alpha-aminoadipic acid precursor flux on the overall production rate of beta-lactam biosynthesis in Streptomyces clavuligerus. A high-copy-number plasmid containing the lysine epsilon-aminotransferase gene (lat) was constructed and used to transform S. clavuligerus. The resulting recombinant strain (LHM100) contained an additional complete copy of lat located adjacent to the corresponding wild-type gene in the chromosome. Biological activity and production levels of beta-lactam antibiotics were two to five times greater than in wild-type S. clavuligerus. Although levels of lysine epsilon-aminotransferase were elevated fourfold in LHM100, the level of ACV synthetase, whose gene is located just downstream of lat, remained unchanged. These data strongly support the notion that direct perturbation of alpha-aminoadipic acid precursor flux resulted in increased antibiotic production. This strategy represents a successful application of metabolic engineering based on theoretical predictions of precursor flux in a secondary metabolic pathway.  相似文献   

2.
In actinomycetes that produce beta-lactam antibiotics of the cephem type, lysine epsilon-aminotransferase is the initial enzyme in the conversion of lysine to alpha-aminoadipic acid. We used a two-stage process ("chromosome walking") to screen a lambda library of Streptomyces clavuligerus genomic DNA for fragments that expressed lysine epsilon-aminotransferase activity in S. lividans. Restriction analysis of the cloned DNA confirmed the location of the putative lat gene within the cluster of beta-lactam biosynthesis genes, roughly midway between pcbC, the structural gene for isopenicillin N synthetase, and the putative cefE gene encoding deacetoxycephalosporin C synthetase.  相似文献   

3.
To investigate the temporal and spatial expression patterns of the gene (lat ) encoding lysine epsilon-aminotransferase (LAT) for cephamycin C biosynthesis, a mutant form of green fluorescent protein (mut1GFP) was integrated into the Streptomyces clavuligerus chromosome (strain LH369), resulting in a translational fusion with lat. LAT activity and fluorescence profiles of the recombinant protein paralleled the native LAT enzyme activity profile in wild-type S. clavuligerus, which peaked during exponential growth phase and decreased slowly towards stationary phase. These results indicate that the LAT-Mut1GFP fusion protein retains both LAT and GFP functionality in S. clavuligerus LH369. LH369 produced wild-type levels of cephamycin C in minimal medium culture conditions supplemented with lysine. Time-lapsed confocal microscopy of the S. clavuligerus LH369 strain revealed the temporal and spatial characteristics of lat gene expression and demonstrated that physiological development of S. clavuligerus colonies leading to cephamycin C biosynthesis is limited to the substrate mycelia.  相似文献   

4.
Streptomyces clavuligerus, Streptomyces lipmanii and Nocardia (formerly Streptomyces) lactamdurans are Gram-positive mycelial bacteria that produce medically important beta-lactam antibiotics (penicillins and cephalosporins including cephamycins) that are synthesized through a series of reactions starting from lysine, cysteine and valine. L-lysine epsilon-aminotransferase (LAT) is the initial enzyme in the two-step conversion of L-lysine to L-alpha-aminoadipic acid, a specific precursor of all penicillins and cephalosporins. Whereas S. clavuligerus uses LAT for cephalosporin production, it uses the cadaverine pathway for catabolism when lysine is the nitrogen source for growth. Although the cadaverine path is present in all examined streptomycetes, the LAT pathway appears to exist only in beta-lactam-producing strains. Genetically increasing the level of LAT enhances the production of cephamycin. LAT is the key rate-limiting enzyme in cephalosporin biosynthesis in S. clavuligerus strain NRRL 3585. This review will summarize information on this important enzyme.  相似文献   

5.
A gene (lat) encoding lysine 6-aminotransferase was found upstream of the pcbAB (encoding alpha-aminoadipylcysteinyl-valine synthetase) and pcbC (encoding isopenicillin N synthase) genes in the cluster of early cephamycin biosynthetic genes in Nocardia lactamdurans. The lat gene was separated by a small intergenic region of 64 bp from the 5' end of the pcbAB gene. The lat gene contained an open reading frame of 1,353 nucleotides (71.4% G + C) encoding a protein of 450 amino acids with a deduced molecular mass of 48,811 Da. Expression of DNA fragments carrying the lat gene in Streptomyces lividans led to a high lysine 6-aminotransferase activity which was absent from untransformed S. lividans. The enzyme was partially purified from S. lividans(pULBS8) and showed a molecular mass of 52,800 Da as calculated by Sephadex gel filtration and polyacrylamide gel electrophoresis. DNA sequences which hybridized strongly with the lat gene of N. lactamdurans were found in four cephamycin-producing Streptomyces species but not in four other actinomycetes which are not known to produce beta-lactams, suggesting that the gene is specific for beta-lactam biosynthesis and is not involved in general lysine catabolism. The protein encoded by the lat gene showed similarity to ornithine-5-aminotransferases and N-acetylornithine-5-aminotransferases and contained a pyridoxal phosphate-binding consensus amino acid sequence around Lys-300 of the protein. The evolutionary implications of the lat gene as a true beta-lactam biosynthetic gene are discussed.  相似文献   

6.
The isopenicillin N synthetase (IPNS) gene from Streptomyces clavuligerus was isolated from an Escherichia coli plasmid library of S. clavuligerus genomic DNA fragments using a 44-mer mixed oligodeoxynucleotide probe. The nucleotide sequence of a 3-kb region of the cloned fragment from the plasmid, pBL1, was determined and analysis of the sequence showed an open reading frame that could encode a protein of 329 amino acids with an Mr of 36,917. When the S. clavuligerus DNA from pBL1 was introduced into an IPNS-deficient mutant of S. clavuligerus on the Streptomyces vector pIJ941, the recombinant plasmid was able to complement the mutation and restore IPNS activity. The protein coding region of the S. clavuligerus IPNS gene shows about 63% and 62% similarity to the Cephalosporium acremonium and Penicillium chrysogenum IPNS nucleotide sequences, respectively, and the predicted amino acid sequence of the encoded protein showed about 56% similarity to both fungal sequences.  相似文献   

7.
The putative regulatory CcaR protein, which is encoded in the beta-lactam supercluster of Streptomyces clavuligerus, has been partially purified by ammonium sulfate precipitation and heparin affinity chromatography. In addition, it was expressed in Escherichia coli, purified as a His-tagged recombinant protein (rCcaR), and used to raise anti-rCcaR antibodies. The partially purified CcaR protein from S. clavuligerus was able to bind DNA fragments containing the promoter regions of the ccaR gene itself and the bidirectional cefD-cmcI promoter region. In contrast, CcaR did not bind to DNA fragments with the promoter regions of other genes of the cephamycin-clavulanic acid supercluster including lat, blp, claR, car-cyp, and the unlinked argR gene. The DNA shifts obtained with CcaR were prevented by anti-rCcaR immunoglobulin G (IgG) antibodies but not by anti-rabbit IgG antibodies. ccaR and the bidirectional cefD-cmcI promoter region were fused to the xylE reporter gene and expressed in Streptomyces lividans and S. clavuligerus. These constructs produced low catechol dioxygenase activity in the absence of CcaR; activity was increased 1.7- to 4.6-fold in cultures expressing CcaR. Amplification of the ccaR promoter region lacking its coding sequence in a high-copy-number plasmid in S. clavuligerus ATCC 27064 resulted in a reduced production of cephamycin C and clavulanic acid, by 12 to 20% and 40 to 60%, respectively, due to titration of the CcaR regulator. These findings confirm that CcaR is a positively acting autoregulatory protein able to bind to its own promoter as well as to the cefD-cmcI bidirectional promoter region.  相似文献   

8.
9.
Two DNA fragments, 3 kbp and 7.8kbp, which encode the type C1 botulinum neurotoxin gene, were obtained from toxigenic bacteriophage DNA by treatment with a restriction enzyme. They were cloned into the plasmid vectors for nucleotide sequence determination. The nucleotide sequence contained a single open reading frame coding for 1,291 amino acids corresponding to a polypeptide with a molecular weight of 149,000. The amino acid sequence of the C1 toxin has a few regions highly homologous with tetanus toxin.  相似文献   

10.
从棒状链霉菌中克隆1.8kb的lat基因片段,构建了基因置换质粒pXAL1和pXAL2。运用接合转移方法把中断载体导入棒状链霉菌中进行lat的中断,得到1株接合转移子AmrThios,命名为XAL863。通过Southern杂交分析及赖氨酸转氨酶活性测定,证明此菌株的lat基因被中断。通过发酵培养,HPLC方法检测棒酸含量,发现棒酸产量明显提高,约为原产量的1.8倍。  相似文献   

11.
Linkage between structural and regulatory genes implies that a direct correlation should exist between the spatio-temporal distribution of their expression. Green fluorescent protein (GFP) and cyan fluorescent protein (CFP) were used as reporters to analyze simultaneously expression of lysine-epsilon-aminotransferase (LAT) and its corresponding genetic regulator, CcaR. The isogenic strain containing lat::gfp and ccaR::cfp in the chromosome produced cephamycin C at levels similar to wild type Streptomyces clavuligerus. Confocal laser scanning microscopy revealed that expression of both LAT and CcaR in liquid culture was temporally dynamic and spatially heterogeneous in S. clavuligerus mycelia. During the early culture stage only a part of the mycelia began to express LAT and CcaR at low levels. As the culture aged, expression levels and the population of mycelia expressing LAT and CcaR increased and were followed late in the growth cycle by a reduction of the mycelia population expressing LAT and CcaR. The approach provides a precise simultaneous temporal-spatial expression profile and corroborates the regulatory linkage between ccaR and lat in S. clavuligerus.  相似文献   

12.
With the rapid generation of genetic information from the Streptomyces coelicolor genome project, deciphering the relevant gene products is critical for understanding the genetics of this model streptomycete. A putative malate synthase gene (aceB) from S. coelicolor A3(2) was identified by homology-based analysis, cloned by polymerase chain reaction, and fully sequenced on both strands. The putative malate synthase from S. coelicolor has an amino acid identity of 77% with the malate synthase of S. clavuligerus, and possesses an open reading frame which codes for a protein of 540 amino acids. In order to establish the identity of this gene, the putative aceB clones were subcloned into the expression vector pET24a, and heterologously expressed in Escherichia coli BL21(DE3). Soluble cell-free extracts containing the recombinant putative malate synthase exhibited a specific activity of 1623 (nmol.mg-1.min-1), which is an increment of 92-fold compared to the non-recombinant control. Thus, the gene product was confirmed to be a malate synthase. Interestingly, the specific activity of S. coelicolor malate synthase was found to be almost 8-fold higher than the specific activity of S. clavuligerus malate synthase under similar expression conditions. Furthermore, the genomic organisation of the three Streptomyces aceB genes cloned thus far is different from that of other bacterial malate synthases, and warrants further investigation.  相似文献   

13.
Cephalosporin production by Streptomyces clavuligerus was reduced sharply by 60 mM phosphate added to a chemically-defined medium. All the four synthetases in the pathway examined, i.e., ACV synthetase, cyclase, epimerase and expandase, were repressed by phosphate, with ACV synthetase being the main repression target and expandase the next. ACV synthetase activity was inhibited by phosphate to a lesser extent than expandase and cyclase, and this inhibition could be reversed by adding Fe2+. Fe2+ itself was inhibitory to ACV synthetase action.  相似文献   

14.
15.
Protease A and protease B are extracellular proteins which are secreted by Streptomyces griseus. The genes encoding protease A (sprA) and protease B (sprB) were isolated from an S. griseus genomic library by using a synthetic oligonucleotide probe. Fragments containing sprA and sprB were characterized by hybridization and demonstration of proteolytic activity in Streptomyces lividans. Each DNA sequence contains a large open reading frame with the coding region of the mature protease situated at its carboxy terminus. The amino terminus of each reading frame appears to encode a 38-amino-acid signal peptide followed by a 76- or 78-amino-acid polypeptide, a propeptide, which is joined to the mature protease. Strong homology between the coding regions of the protease genes suggests that sprA and sprB originated by gene duplication.  相似文献   

16.
17.
Abstract The cosmid cloning vector pHC79 has been used to clone fragments of chromosomal DNA from the Streptomyces: S. clavuligerus, S. jumonjinensis and S. katsurahamanus . These strains all produce both the β-lactam antibiotic, cephamycin and the β-lactamase inhibitor, clavulanic acid. Although structurally related these two β-lactams are known to be derived from different biosynthetic precursors. Hybridisation studies and restriction mapping have shown that the gene clusters encoding the two biosynthetic pathways are chromosomally adjacent in these strains, thus creating a 'super-cluster' of genes involved in both the production and enhancement of activity of a β-lactam antibiotic.  相似文献   

18.
19.
The citrate utilization determinant from a large 200-kilobase (kb) naturally occurring plasmid was previously cloned into the PstI site of plasmid vector pBR325 creating the Cit+ tetracycline resistance plasmid pWR61 (15 kb). Tn5 insertion mutagenesis analysis of plasmid pWR61 limited the segment responsible for citrate utilization to a 4.8-kb region bordered by EcoRI and PstI restriction nuclease sites. The 4.8-kb fragment was cloned into phage M13, and the DNA sequence was determined by the dideoxyribonucleotide method. Within this sequence was a 1,296-base-pair open reading frame with a preceding ribosomal binding site. The 431-amino-acid polypeptide that could be translated from this open reading frame would be highly hydrophobic. A second long open reading frame with the potential of encoding a 379-amino-acid polypeptide preceded the larger open reading frame. Portions of the 4.8-kb fragment were further subcloned with restriction endonucleases BglII and BamHI, reducing the minimum size needed for a citrate-positive phenotype to a 1.9-kb BamHI-BglII fragment (which includes the coding region for the 431-amino-acid polypeptide, but only the distal 2/3 of the reading frame for the 379-amino-acid polypeptide). Citrate utilization results from a citrate transport activity encoded by the plasmid. With the 4.8-kb fragment (as with larger fragments) the citrate transport activity was inducible by growth on citrate. On transfer from glucose, succinate, malate, or glycerol medium to citrate medium, the Cit+ Escherichia coli strains showed a delay of 36 to 48 h before growth.  相似文献   

20.
delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase, the multienzyme catalyzing the formation of ACV from the constituent amino acids and ATP in the presence of Mg2+ and dithioerythritol, was purified about 2700-fold from Streptomyces clavuligerus. The molecular mass of the native enzyme as determined by gel filtration chromatography is 560 kDa, while that determined by denaturing gel electrophoresis is 500 kDa. The enzyme is able to catalyze pyrophosphate exchange in dependence on L-cysteine and L-valine, but no L-alpha-aminoadipic-acid-dependent ATP/PPi exchange could be detected. Other L-cysteine- and L-valine-activating enzymes present in crude extracts were identified as aminoacyl-tRNA synthetases which could be separated from ACV synthetase. The molecular mass of these enzymes is 140 kDa for L-valine ligase and 50 kDa for L-cysteine ligase. The dissociation constants have been estimated, assuming three independent activation sites, to be 1.25 mM and 1.5 mM for cysteine and ATP, and 2.4 mM and 0.25 mM for valine and ATP, respectively. The enzyme forms a thioester with alpha-aminoadipic acid and with valine in a molar ratio of 0.6:1 (amino acid/enzyme). Thus, the bacterial ACV synthetase is a multifunctional peptide synthetase, differing from fungal ACV synthetases in its mechanism of activation of the non-protein amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号