首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Current thought is that proliferating cells undergo a shift from oxidative to glycolytic metabolism, where the energy requirements of the rapidly dividing cell are provided by ATP from glycolysis. Drawing on the hexokinase–mitochondrial acceptor theory of insulin action, this article presents evidence suggesting that the increased binding of hexokinase to porin on mitochondria of cancer cells not only accelerates glycolysis by providing hexokinase with better access to ATP, but also stimulates the TCA cycle by providing the mitochondrion with ADP that acts as an acceptor for phosphoryl groups. Furthermore, this acceleration of the TCA cycle stimulates protein synthesis via two mechanisms: first, by increasing ATP production, and second, by provision of certain amino acids required for protein synthesis, since the amino acids glutamate, alanine, and aspartate are either reduction products or partially oxidized products of the intermediates of glycolysis and the TCA cycle. The utilization of oxygen in the course of the TCA cycle turnover is relatively diminished even though TCA cycle intermediates are being consumed. With partial oxidation of TCA cycle intermediates into amino acids, there is necessarily a reduction in formation of CO2 from pyruvate, seen as a relative diminution in utilization of oxygen in relation to carbon utilization. This has been assumed to be an inhibition of oxygen uptake and therefore a diminution of TCA cycle activity. Therefore a switch from oxidative metabolism to glycolytic metabolism has been assumed (the Crabtree effect). By stimulating both ATP production and protein synthesis for the rapidly dividing cell, the binding of hexokinase to mitochondrial porin lies at the core of proliferative energy metabolism. This article further reviews literature on the binding of the isozymes of hexokinase to porin, and on the evolution of insulin, proposing that intracellular insulin-like proteins directly bind hexokinase to mitochondrial porin.  相似文献   

2.
Primary metabolism of a murine hybridoma was probed with (13)C nuclear magnetic resonance (NMR) spectroscopy. Cells cultured in a hollow fiber bioreactor were serially infused with [1-(13)C] glucose, [2-(13)C] glucose, and [3-(13)C] glutamine. In vivo spectroscopy of the culture was used in conjunction with off-line spectroscopy of the medium to determine the intracellular concentration of several metabolic intermediates and to determine fluxes for primary metabolic pathways. Intracellular concentrations of pyruvate and alanine were very high relative to levels observed in normal quiescent mammalian cells. Estimates made from labeling patterns in lactate indicate that 76% of pyruvate is derived directly from glycolysis; some is also derived from the malate shunt, the pyruvate/melate shuttle associated with lipid synthesis and the pentose phosphate pathway. The rate of formation of pyruvate from the pentose phosphate pathway was estimated to be 4% of that from glycolysis; This value is a lower limit and the actual value may be higher. Incorporation of pyruvate into the tricarboxylic acid (TCA) cycle appears to occur through only pyruvate dehydrogenase; no pyruvate carboxylase activity was detected. The malate shunt rate was approximately equal to the rate of glutamine uptake. The rate of incorporation of glucosederived acetyl-CoA into lipids was 4% of the glucose uptake rate. The TCA cycle rate between isocitrate and alpha-ketoglutarate was 110% of the glutamine uptake rate. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
Astrocytes and neurons cultured from mouse cerebellum and cerebral cortex were analyzed with respect to content and synthesis of amino acids as well as export of metabolites to the culture medium and the response to fluorocitrate, an, inhibitor of aconitase. The intracellular levels of amino acids were similar in the two astrocytic populations. The release of citrate, lactate and glutamine, however, was markedly higher from cerebellar than from cortical astrocytes. Neurons contained higher levels of glutamate, aspartate and GABA than astrocytic cultures. Cortical neurons were especially high in GABA and aspartate, and the level of aspartate increased specifically when the extracellular level of glutamine was elevated. Fluorocitrate inhibited the TCA cycle in the astrocytes, but was less effective in cerebellar neurons. Whereas neurons responded to fluorocitrate with an increase in the formation of lactate, reflecting, glycolysis, astrocytes decreased the formation of lactate in the presence of fluorocitrate, indicating that astrocytes to a high degree synthesize pyruvate and hence lactate from TCA cycle intermediates.  相似文献   

4.
The tricarboxylic acid (TCA) cycle is an interface among glycolysis, lipid metabolism, and amino acid metabolism. Increasing interest in cancer metabolism has created a demand for rapid and sensitive methods for quantifying the TCA cycle intermediates and related organic acids. We have developed a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method to quantify the TCA cycle intermediates in a 96-well format after O-benzylhydroxylamine (O-BHA) derivatization under aqueous conditions. This method was validated for quantitation of all common TCA cycle intermediates with good sensitivity, including α-ketoglutarate, malate, fumarate, succinate, 2-hydroxyglutarate, citrate, oxaloacetate, pyruvate, isocitrate, and lactate using a 8-min run time in cancer cells and tissues. The method was used to detect and quantify changes in metabolite levels in cancer cells and tumor tissues treated with a pharmacological inhibitor of nicotinamide phosphoribosyl transferase (NAMPT). This method is rapid, sensitive, and reproducible, and it can be used to assess metabolic changes in cancer cells and tumor samples.  相似文献   

5.
The importance of mitochondrial biosynthesis in stimulus secretion coupling in the insulin-producing beta-cell probably equals that of ATP production. In glucose-induced insulin secretion, the rate of pyruvate carboxylation is very high and correlates more strongly with the glucose concentration the beta-cell is exposed to (and thus with insulin release) than does pyruvate decarboxylation, which produces acetyl-CoA for metabolism in the citric acid cycle to produce ATP. The carboxylation pathway can increase the levels of citric acid cycle intermediates, and this indicates that anaplerosis, the net synthesis of cycle intermediates, is important for insulin secretion. Increased cycle intermediates will alter mitochondrial processes, and, therefore, the synthesized intermediates must be exported from mitochondria to the cytosol (cataplerosis). This further suggests that these intermediates have roles in signaling insulin secretion. Although evidence is quite good that all physiological fuel secretagogues stimulate insulin secretion via anaplerosis, evidence is just emerging about the possible extramitochondrial roles of exported citric acid cycle intermediates. This article speculates on their potential roles as signaling molecules themselves and as exporters of equivalents of NADPH, acetyl-CoA and malonyl-CoA, as well as alpha-ketoglutarate as a substrate for hydroxylases. We also discuss the "succinate mechanism," which hypothesizes that insulin secretagogues produce both NADPH and mevalonate. Finally, we discuss the role of mitochondria in causing oscillations in beta-cell citrate levels. These parallel oscillations in ATP and NAD(P)H. Oscillations in beta-cell plasma membrane electrical potential, ATP/ADP and NAD(P)/NAD(P)H ratios, and glycolytic flux are known to correlate with pulsatile insulin release. Citrate oscillations might synchronize oscillations of individual mitochondria with one another and mitochondrial oscillations with oscillations in glycolysis and, therefore, with flux of pyruvate into mitochondria. Thus citrate oscillations may synchronize mitochondrial ATP production and anaplerosis with other cellular oscillations.  相似文献   

6.
Summary Determinations of the momentary levels of various intermediates related to the activity of the tricarboxylic acid cycle have been made during citric acid production in high-accumulating (manganese deficient) and lowaccumulating (manganese supplemented) mycelia of Aspergillus niger. During the growth period the levels of almost all TCA cycle acids, with the exception of 2-oxo-acids, were unusually high; during the induction phase of citrate accumulation malate, fumarate, and isocitrate decreased, whereas pyruvate, oxalacetate, and citrate increased. The presence of succinate could not be demonstrated. The interrelations of the momentary concentrations of the intermediates mainly demonstrate a lack in activity of 2-oxoglutarate dehydrogenase, representing a block in the TCA cycle concomitant with a strongly operating glycolysis as a prerequisite for citrate accumulation. Inhibition studies with crude enzyme preparations suggest that an inhibition of malate dehydrogenase by citrate and also inhibition of isocitrate dehydrogenase by citrate and 2-oxoglutarate occur during the production phase as additional factors.  相似文献   

7.
The fermentation carried out by the biofuel producer Clostridium acetobutylicum is characterized by two distinct phases. Acidogenesis occurs during exponential growth and involves the rapid production of acids (acetate and butyrate). Solventogenesis initiates as cell growth slows down and involves the production of solvents (butanol, acetone, and ethanol). Using metabolomics, isotope tracers, and quantitative flux modeling, we have mapped the metabolic changes associated with the acidogenic-solventogenic transition. We observed a remarkably ordered series of metabolite concentration changes, involving almost all of the 114 measured metabolites, as the fermentation progresses from acidogenesis to solventogenesis. The intracellular levels of highly abundant amino acids and upper glycolytic intermediates decrease sharply during this transition. NAD(P)H and nucleotide triphosphates levels also decrease during solventogenesis, while low-energy nucleotides accumulate. These changes in metabolite concentrations are accompanied by large changes in intracellular metabolic fluxes. During solventogenesis, carbon flux into amino acids, as well as flux from pyruvate (the last metabolite in glycolysis) into oxaloacetate, decreases by more than 10-fold. This redirects carbon into acetyl coenzyme A, which cascades into solventogenesis. In addition, the electron-consuming reductive tricarboxylic acid (TCA) cycle is shutdown, while the electron-producing oxidative (clockwise) right side of the TCA cycle remains active. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources (carbon and reducing power) from biomass production into solvent production.  相似文献   

8.
9.
Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of ‘Honeycrisp’ apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO2 assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to “consume” the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.  相似文献   

10.
In the present work dynamic changes of free intracellular amino acid pools during autonomous oscillations of Saccharomyces cerevisiae were quantified in glucose-limited continuous cultivations. At a dilution rate of D = 0.22 h(-1) cyclic changes with a period of 120 min were found for many variables such as carbon dioxide production rate, dissolved oxygen, pH, biomass content, and various metabolite concentrations. On the basis of the observed dynamic patterns, free intracellular amino acids were classified to show oscillatory, stationary, or chaotic behavior. Amino acid pools such as serine, alanine, valine, leucine, or lysine were subjected to clear oscillations with a frequency of 120 min, identical to that of other described cultivation variables, indicating that there is a direct correlation between the periodic changes of amino acid concentrations and the metabolic oscillations on the cellular level. The oscillations of these amino acids were unequally phase-delayed and had different amplitudes of oscillation. Accordingly, they exhibited different patterns in phase plane plots vs. intracellular trehalose. Despite the complex and marked metabolic changes during oscillation, selected intracellular amino acids such as histidine, threonine, isoleucine, or arginine remained about constant. Concentrations of glutamate and glutamine showed a chaotic behavior. However, the ratio of glutamate to glutamine concentration was found to be oscillatory, with a period of 60 min and a corresponding figure eight-shaped pattern in a plot vs. trehalose concentration. Considering the described diversity, it can be concluded that the observed periodic changes are neither just the consequence of low or high rates of protein biosynthesis/degradation nor correlated to changing cell volumes during oscillation. The ratio between doubling time (189 min) and period of oscillation of intracellular amino acids (120 min) was 1:6. The fact that there is a close relationship between doubling time and period of oscillation underlines that the described autonomous oscillations are cell-cycle-associated.  相似文献   

11.
The adaptive evolution of Saccharomyces cerevisiae to repeated vacuum fermentations was investigated by metabolomic analysis using gas chromatography coupled to time-of-flight mass spectrometry. The first round (VFI, 30 cycles) and second round (VFII, 10 cycles) of repeated fermentations could be clearly distinguished by principal components analysis on intracellular metabolites, indicating that significant difference of metabolic states occurred between them. Further investigation revealed that higher levels of glycerol, trehalose, myo-inositol and glutamate might be involved in response to vacuum stress during initial cycles, while the decreases in their levels indicated that yeast cells adapted to vacuum condition as the fermentation progressed. Furthermore, lower levels of glycerol, myo-inositol, trehalose and glutamate during VFII indicated that the adapted yeast represented better vacuum tolerance. Additionally, glycolysis and TCA cycle intermediates were enhanced whereas glycerol biosynthesis was depressed by vacuum. The decreases of most amino acids might be related to increases in intermediates of glycolysis and TCA cycle as VFI progressed. These findings provided new insights into underlying mechanisms in adaptive evolution of yeast under vacuum condition.  相似文献   

12.
The predominance of restored substrates in the bone system and liver of cats under chronic parodontosis evidence for intensification of reproduction properties of NAD-pairs and causes inhibition of glycolysis and activation of gluconeogenesis. A high content of alpha-ketoglutarate and isocitrate in tissues in a result of lipogenesis inhibition. Under the lower rate of glycolysis, activation of proteolysis and transamination reactions amino acids are the major contributors to pyruvate. Under the acute course of the disease with the development of the inflammatory process the quantity of pyruvate grows sharply in the parodont tissue, as well as oxidative properties of NAD-pairs intensify and lipogenesis accelerates. This is confirmed by a decrease in the alpha-ketoglutarate and isocitrate content in the tissues.  相似文献   

13.
The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4 + assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu.  相似文献   

14.
Several observations suggest that patients with fulminant hepatic failure may suffer from disturbances in cerebral metabolism that can be related to elevated levels of arterial ammonia. One effect of ammonia is the inhibition of the rate limiting TCA cycle enzyme alpha-ketoglutarate dehydrogenase (alphaKGDH) and possibly also pyruvate dehydrogenase, but this has been regarded to be of no quantitative importance. However, recent studies justify a revision of this point of view. Based on published data, the following sequence of events is proposed. Inhibition of alphaKGDH both enhances the detoxification of ammonia by formation of glutamine from alpha-ketoglutarate and reduces the rate of NADH and oxidative ATP production in astrocytic mitochondria. In the astrocytic cytosol this will lead to formation of lactate even in the presence of sufficient oxygen supply. Since the aspartate-malate shuttle is compromised, there is a risk of depletion of mitochondrial NADH and ATP unless compensatory mechanisms are recruited. One likely compensatory mechanism is the use of amino acids for energy production. Branched chain amino acids, like isoleucine and valine can supply carbon skeletons that bypass the alphaKGDH inhibition and maintain TCA cycle activity. Large-scale consumption of certain amino acids can only be maintained by cerebral proteolysis, as has been observed in these patients. This hypothesis provides a link between hyperammonemia, ammonia detoxification by glutamine production, cerebral lactate production, and cerebral catabolic proteolysis in patients with FHF.  相似文献   

15.
Fluxes of central carbon metabolism [glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA cycle), biomass formation] were determined for several Bacillus megaterium strains (DSM319, WH320, WH323, MS941) in C- and N-limited chemostat cultures by 13C labelling experiments. The labelling patterns of proteinogenic amino acids were analysed by GC/MS and therefrom flux ratios at important nodes within the metabolic network could be calculated. On the basis of a stoichiometric metabolic model flux distributions were estimated for the different B. megaterium strains used at various cultivation conditions. Generally all strains exhibited similar metabolic flux distributions, however, several significant changes were found in (1) the glucose flux entering the PPP via the oxidative branch, (2) the reversibilities within the PPP, (3) the relative fluxes of pyruvate and acetyl-CoA fed to the TCA cycle, (4) the fluxes around the pyruvate node involving a futile cycle.  相似文献   

16.
The synthesis of pyruvate carboxylase (PC) was studied by using quantitative immunoblot analysis with an antibody raised against PC purified from Rhodobacter capsulatus and was found to vary 20-fold depending on the growth conditions. The PC content was high in cells grown on pyruvate or on carbon substrates metabolized via pyruvate (lactate, D-malate, glucose, or fructose) and low in cells grown on tricarboxylic acid (TCA) cycle intermediates or substrates metabolized without intermediate formation of pyruvate (acetate or glutamate). Under dark aerobic growth conditions with lactate as a carbon source, the PC content was approximately twofold higher than that found under light anaerobic growth conditions. The results of incubation experiments demonstrate that PC synthesis is induced by pyruvate and repressed by TCA cycle intermediates, with negative control dominating over positive control. The content of PC in R. capsulatus cells was also directly related to the growth rate in continuous cultures. The analysis of intracellular levels of pyruvate and TCA cycle intermediates in cells grown under different conditions demonstrated that the content of PC is directly proportional to the ratio between pyruvate and C4 dicarboxylates. These results suggest that the regulation of PC synthesis by oxygen and its direct correlation with growth rate may reflect effects on the balance of intracellular pyruvate and C4 dicarboxylates. Thus, this important enzyme is potentially regulated both allosterically and at the level of synthesis.  相似文献   

17.
The precursors of the amino acid yeast pool are intermediates of either the glycolytic or the tricarboxilic acid pathway (TCA). Accordingly, the influence of the metabolism (fermentative or respiratory) on the internal amino acid pool of the yeast Saccharmyces cerevisiae was established by measuring the intracellular amino acid concentration of the "grande" strain IF1256 and its "petite" mutant either in steady-state or when shifting from fermentative to respiratory conditions. Under steady-state conditions, when the cells only respire, there is a decrease in nearly all the amino acids whose precursors are intermediates of the glycolytic pathway. When the metabolism is exclusively fermentative, the opposite change takes place. This effect is not observed in those amino acids whose precursors come from the TCA cycle. However, in continuous culture and at dilution rates lower than 0.06 h(-1), there is an enormous increase in the concentration of all the amino acids in both strains, whatever their precursor, whereas, in batch cultures, both strains undergo variations in the concentration of most amino acids, when entering stationary growth phase. Results therefore indicate that, the fact that the cells ferment or respire effectively affect their amino acid pool according to their precursors coming from the glycolytic or the TCA pathway, but other parameters, such as growth rate or exponential versus stationary phase, have a much stronger effect on yeast amino acid concentration.  相似文献   

18.
A global kinetic study of the central metabolism of Vero cells cultivated in a serum‐free medium is proposed in the present work. Central metabolism including glycolysis, glutaminolysis, and tricarboxylic acid cycle (TCA) was demonstrated to be saturated by high flow rates of consumption of the two major substrates, glucose, and glutamine. Saturation was reavealed by an accumulation of metabolic intermediates and amino acids, by a high production of lactate needed to balance the redox pathway, and by a low participation of the carbon flow to the TCA cycle supply. Different culture conditions were set up to reduce the central metabolism saturation and to better balance the metabolic flow rates between lactate production and energetic pathways. From these culture conditions, substitutions of glutamine by other carbon sources, which have lower transport rates such as asparagine, or pyruvate in order to shunt the glycolysis pathway, were successful to better balance the central metabolism. As a result, an increase of the cell growth with a concomitant decrease of cell death and a better distribution of the carbon flow between TCA cycle and lactate production occurred. We also demonstrated that glutamine was a major carbon source to supply the TCA cycle in Vero cells and that a reduction of lactate production did not necessary improve the efficiency of the Vero cell metabolism. Thus, to adapt the formulation of the medium to the Vero cell needs, it is important to provide carbon substrates inducing a regulated supply of carbon in the TCA cycle either through the glycolysis or through other pathways such as glutaminolysis. Finally, this study allowed to better understand the Vero cell behavior in serum‐free medium which is a valuable help for the implementation of this cell line in serum‐free industrial production processes. Biotechnol. Bioeng. 2010;107: 143–153. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Oscillations in citric acid cycle intermediates have never been previously reported in any type of cell. Here we show that adding pyruvate to isolated mitochondria from liver, pancreatic islets, and INS-1 insulinoma cells or adding glucose to intact INS-1 cells causes sustained oscillations in citrate levels. Other citric acid cycle intermediates measured either did not oscillate or possibly oscillated with a low amplitude. In INS-1 mitochondria citrate oscillations are in phase with NAD(P) oscillations, and in intact INS-1 cells citrate oscillations parallel oscillations in ATP, suggesting that these processes are co-regulated. Oscillations have been extensively studied in the pancreatic beta cell where oscillations in glycolysis, NAD(P)/NAD(P)H and ATP/ADP ratios, plasma membrane electrical activity, calcium levels, and insulin secretion have been well documented. Because the mitochondrion is the major site of ATP synthesis and NADH oxidation and the only site of citrate synthesis, mitochondria need to be synchronized for these factors to oscillate. In suspensions of mitochondria from various organs, most of the citrate is exported from the mitochondria. In addition, citrate inhibits its own synthesis. We propose that this enables citrate itself to act as one of the cellular messengers that synchronizes mitochondria. Furthermore, because citrate is a potent inhibitor of the glycolytic enzyme phosphofructokinase, the pacemaker of glycolytic oscillations, citrate may act as a metabolic link between mitochondria and glycolysis. Citrate oscillations may coordinate oscillations in mitochondrial energy production and anaplerosis with glycolytic oscillations, which in the beta cell are known to parallel oscillations in insulin secretion.  相似文献   

20.
The lipoamide dehydrogenase (LPD) encoded by lpdA gene is a component of the pyruvate dehydrogenase complex (PDHc), alpha-ketoglutarate dehydrogenase (AKGDH) and the glycine cleavage multi-enzyme (GCV) systems. In the present study, cell growth characteristics, enzyme activities and intracellular metabolite concentrations were compared between the parent strain Escherichia coli BW25113 and its lpdA knockout mutant in batch and continuous cultures. The lpdA knockout mutant produced significantly more pyruvate and L-glutamate under aerobiosis. Some D-lactate and succinate also accumulated in the culture broth. Based on the investigation of enzyme activities and intracellular metabolite concentrations, acetyl-CoA was considered to be formed by the combined reactions through pyruvate oxidase (PoxB), acetyl-CoA synthetase (Acs) and acetate kinase (Ack)-phosphoacetyltransferase (Pta) in the lpdA mutant. The effect of the lpdA gene knockout on the intracellular metabolic flux distributions was investigated based on 1H-13C NMR spectra and GC-MS signals obtained from 13C-labeling experiment using the mixture of [U-13C] glucose, [1-13C] glucose, and naturally labeled glucose. Flux analysis of the lpdA mutant indicated that the Entner-Doudoroff (ED) pathway and the glyoxylate shunt were activated. The fluxes through glycolysis and oxidative pentose phosphate (PP) pathway (except for the flux through glucose-6-phosphate dehydrogenase) were slightly downregulated. The TCA cycle was also downregulated in the mutant strain. On the other hand, the fluxes through the anaplerotic reactions of PEP carboxylase, PEP carboxykinase and malic enzyme were upregulated, which were consistent with the results of enzyme activities. Furthermore, the influence of the poxB gene knockout on the growth of E. coli was also studied because of its similar function to PDHc which connects the glycolysis to the TCA cycle. Under aerobiosis, a comparison of lpdA mutant and poxB mutant indicated that PDHc is the main enzyme which catalyzes the reaction from pyruvate to acetyl-CoA in the parent strain, while PoxB plays a very important role in the PDHc-deficient strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号