首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Anion channels are thought to participate in signal transduction and turgor regulation in higher plant cells. The regulation of hypocotyl cell elongation is a situation in which these channels could play important roles because it involves ionic fluxes that are implicated in turgor control and orchestrated by various signals. We have used a pharmacological approach to reveal the contribution of anion channels in the regulation of the development of hypocotyls by auxins. Auxins induce an inhibition of elongation, a disintegration of the cortical cell layers, and the formation of adventitious roots on Arabidopsis thaliana hypocotyls grown in the dark. Anion-channel blockers such as anthracene-9-carboxylic acid, 4,4'-diisothiocyanatostilbene-2-2'-disulfonic acid, 4-acetamido-4'-isothiocyanato-stilbene-2-2'-disulfonic acid, and R(+)-methylindazone; indanyloxyacteic acid-94, which produce little or no stimulation of hypocotyl elongation by themselves, are able to counteract the inhibition and the disintegration induced by auxins with various efficiencies. This interference appears to be specific for auxins and does not occur when hypocotyl elongation is inhibited by other growth regulators such as ethylene or cytokinins. The putative involvement of anion channels in auxin signal transduction is discussed.  相似文献   

3.
4.
Elongation growth and a several other phenomena in plant development are controlled by the plant hormone auxin. A number of recent discoveries shed light on one of the classical problems of plant physiology: the perception of the auxin signal. Two types of auxin receptors are currently known: the AFB/TIR family of F box proteins and ABP1. ABP1 appears to control membrane transport processes (H+ secretion, osmotic adjustment) while the TIR/AFBs have a role in auxin-induced gene expression. Models are proposed to explain how membrane transport (e.g., K+ and H+ fluxes) can act as a cross-linker for the control of more complex auxin responses such as the classical stimulation of cell elongation.  相似文献   

5.
Style and stigma elongation and stigma unfolding, and the roles of plant hormones in these processes in Gaillardia grandiflora Van Houtte were investigated. Style and stigma elongation in vivo began just after anthesis, and style elongation was accompanied by epidermal cell elongation (greatest near the stigma) and a fresh weight increase, but not by cell division or a dry weight increase. The stigma unfolded after the style and stigma elongated. Style-stigma units excised from young disc flowers of this composite were measured as they responded to plant growth regulators applied singly, as well as in sequential and simultaneous combinations, in vitro. Style elongation was promoted by auxin, was inhibited by gibberellins and ethylene, and was unaffected by other growth regulators. Stigma elongation followed a similar pattern of response. Endogenous auxin levels and ethylene production showed parallel variation and endogenous gibberellin levels showed inverse variation with style and stigma elongation. Stigma unfolding was more sensitive to auxin applications and was promoted by applied ethylene. Ethylene production showed parallel variation and endogenous auxin levels showed inverse variation with stigma unfolding. AVG and Co2+ applications decreased auxin-induced style elongation and fusicoccin promoted all of the growth responses of style-stigma units in vitro. A gibberellin-auxin-ethylene-acid growth interaction mode of control is proposed for these three growth processes.  相似文献   

6.
Ethylene directs auxin to control root cell expansion   总被引:2,自引:0,他引:2  
Root morphogenesis is controlled by the regulation of cell division and expansion. We isolated an allele of the eto1 ethylene overproducer as a suppressor of the auxin-resistant mutant ibr5, prompting an examination of crosstalk between the phytohormones auxin and ethylene in control of root epidermal cell elongation and root hair elongation. We examined the interaction of eto1 with mutants that have reduced auxin response or transport and found that ethylene overproduction partially restored auxin responsiveness to these mutants. In addition, we found that the effects of endogenous ethylene on root cell expansion in eto1 seedlings were partially impeded by dampening auxin signaling, and were fully suppressed by blocking auxin influx. These data provide insight into the interaction between these two key plant hormones, and suggest that endogenous ethylene directs auxin to control root cell expansion.  相似文献   

7.
8.
The growth hormone auxin is a key regulator of plant cell division and elongation. Since plants lack muscles, processes involved in growth and movements rely on turgor formation, and thus on the transport of solutes and water. Modern electrophysiological techniques and molecular genetics have shed new light on the regulation of plant ion transporters in response to auxin. Guard cells, hypocotyls and coleoptiles have advanced to major model systems in studying auxin action. This review will therefore focus on the molecular mechanism by which auxin modulates ion transport and cell expansion in these model cell types.  相似文献   

9.
Plant growth is achieved predominantly by cellular elongation, which is thought to be controlled on several levels by apoplastic auxin. Auxin export into the apoplast is achieved by plasma membrane efflux catalysts of the PIN‐FORMED (PIN) and ATP‐binding cassette protein subfamily B/phosphor‐glycoprotein (ABCB/PGP) classes; the latter were shown to depend on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Here by using a transgenic approach in combination with phenotypical, biochemical and cell biological analyses we demonstrate the importance of a putative C‐terminal in‐plane membrane anchor of TWD1 in the regulation of ABCB‐mediated auxin transport. In contrast with dwarfed twd1 loss‐of‐function alleles, TWD1 gain‐of‐function lines that lack a putative in‐plane membrane anchor (HA–TWD1‐Ct) show hypermorphic plant architecture, characterized by enhanced stem length and leaf surface but reduced shoot branching. Greater hypocotyl length is the result of enhanced cell elongation that correlates with reduced polar auxin transport capacity for HA–TWD1‐Ct. As a consequence, HA–TWD1‐Ct displays higher hypocotyl auxin accumulation, which is shown to result in elevated auxin‐induced cell elongation rates. Our data highlight the importance of C‐terminal membrane anchoring for TWD1 action, which is required for specific regulation of ABCB‐mediated auxin transport. These data support a model in which TWD1 controls lateral ABCB1‐mediated export into the apoplast, which is required for auxin‐mediated cell elongation.  相似文献   

10.
11.
Like animals, plants have evolved into complex organisms. Developmental cohesion between tissues and cells is possible due to signaling molecules (messengers) like hormones. The first hormone discovered in plants was auxin. This phytohormone was first noticed because of its involvement in the response to directional light. Nowadays, auxin has been established as a central key player in the regulation of plant growth and development and in responses to environmental changes. At the cellular level, auxin controls division, elongation, and differentiation as well as the polarity of the cell. Auxin, to integrate so many different signals, needs to be regulated at many different levels. A tight regulation of auxin synthesis, activity, degradation as well as transport has been demonstrated. Another possibility to modulate auxin signaling is to modify the capacity of response of the cells by expressing differentially the signaling components. In this review, we provide an overview of the present knowledge in auxin biology, with emphasis on root development.  相似文献   

12.
T淋巴细胞上的离子通道   总被引:4,自引:0,他引:4  
Xiao L  Fu HY  Song DM  Fan SG 《生理科学进展》2003,34(2):105-110
近年的研究证明,淋巴细胞上的离子通道,在免疫功能调节中具有重要的作用。T淋巴细胞上主要有三类离子通道,即Ca2 、K 和C1-通道。Ca2 通过T淋巴细胞膜上的Ca2 通道(CRAC)进入细胞内,可作为第二信使激活T淋巴细胞。通过K 通道的K 外流是T淋巴细胞膜电位形成的基础。由于膜电位水平可以影响钙离子的内流,因此,K 通道可以间接调节T淋巴细胞的活化和功能。T淋巴细胞上的Cl-通道是新近发现的一种离子通道,可能与细胞的体积调节有关。本文扼要总结了T淋巴细胞上离子通道的新近进展。  相似文献   

13.
14.
15.
Zhao H  Hertel R  Ishikawa H  Evans ML 《Planta》2002,216(2):293-301
The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.  相似文献   

16.
Dutta R  Robinson KR 《Plant physiology》2004,135(3):1398-1406
Pollen tube growth requires a Ca2+ gradient, with elevated levels of cytosolic Ca2+ at the growing tip. This gradient's magnitude oscillates with growth oscillation but is always maintained. Ca2+ influx into the growing tip is necessary, and its magnitude also oscillates with growth. It has been widely assumed that stretch-activated Ca2+ channels underlie this influx, but such channels have never been reported in either pollen grains or pollen tubes. We have identified and characterized stretch-activated Ca2+ channels from Lilium longiflorum pollen grain and tube tip protoplasts. The channels were localized to a small region of the grain protoplasts associated with the site of tube germination. In addition, we find a stretch-activated K+ channel as well as a spontaneous K+ channel distributed over the entire grain surface, but neither was present at the germination site or at the tip. Neither stretch-activated channel was detected in the grain protoplasts unless the grains were left in germination medium for at least 1 h before protoplast preparation. The stretch-activated channels were inhibited by a spider venom that is known to block stretch-activated channels in animal cells, but the spontaneous channel was unaffected by the venom. The venom also stopped pollen tube germination and elongation and blocked Ca2+ entry into the growing tip, suggesting that channel function is necessary for growth.  相似文献   

17.
The influence of a longitudinal (tonic) gravitational force and of auxin on the pattern of growth and cell polarity has been studied on intact roots of wheat seedlings. A klinostat technique was used for controlling gravitation. Growth in length was evaluated as cell division activity, rate of cell elongation (μ/h) and duration of elongation (h). Exogenous auxin (1-NAA) increases the rate of cell elongation in all concentrations tested (10−8 — 3 × 10−7m ) and shortens the time of elongation with increasing concentration. It promotes rate of cell elongation in roots as it does in shoots. It also accentuates the polar insertion of root hairs and their growth. The tonic effect of gravitation resembles that of an increase in auxin both in light and darkness. The results are discussed in relation to plagiotropic growth of roots, root growth promotions by auxin, and the difference between root and shoot growth.  相似文献   

18.
19.
Control of leaf expansion by auxin is not well understood. Evidence from short-term exogenous applications and from treatment of excised tissues suggests auxin positively influences growth. Manipulations of endogenous leaf auxin content, however, suggest that long-term auxin suppresses leaf expansion. This study attempts to clarify the growth effects of auxin on unifoliate (primary) leaves of the common bean ( Phaseolus vulgaris ) by reexamining the response to auxin treatment of both excised leaf strips and attached leaves. Leaf strips, incubated in culture conditions that promoted steady elongation for up to 48 h, treated with 10 μ M α-naphthalene acetic acid (NAA) responded with an initial surge of elongation growth complete within 10 h, followed by insensitivity. A range of NAA concentrations from 0.1 to 300 μ M induced increased strip elongation after 24 and 48 h. Increased elongation and epinastic curvature of leaf strips was found specific to active auxins. Expanding attached unifoliates treated once with aqueous auxin NAA at 1.0 m M showed both an initial surge in growth lasting 4–6 h followed by growth inhibition sustained at least as long as 24 h post-treatment. Auxin-induced inhibition of leaf expansion was associated with smaller epidermal cell area. Together, the results suggest increasing leaf auxin first increases growth and then slows growth through inhibition of cell expansion. Excised leaf strips retain only the initial increased growth response to auxin and not the subsequent growth inhibition, either as a consequence of wounding or as a consequence of isolation from the plant.  相似文献   

20.
When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号