首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid-rich cell wall is a defining feature of Mycobacterium species. Individual cell wall components affect diverse mycobacterial phenotypes including colony morphology, biofilm formation, antibiotic resistance, and virulence. In this study, we describe a transposon insertion mutant of Mycobacterium smegmatis mc2 155 that exhibits altered colony morphology and defects in biofilm formation. The mutation was localized to the lsr2 gene. First identified as an immunodominant T-cell antigen of Mycobacterium leprae, lsr2 orthologs have been identified in all sequenced mycobacterial genomes, and homologs are found in many actinomycetes. Although its precise function remains unknown, localization experiments indicate that Lsr2 is a cytosolic protein, and cross-linking experiments demonstrate that it exists as a dimer. Characterization of cell wall lipid components reveals that the M. smegmatis lsr2 mutant lacks two previously unidentified apolar lipids. Characterization by mass spectrometry and thin-layer chromatography indicate that these two apolar lipids are novel mycolate-containing compounds, called mycolyl-diacylglycerols (MDAGs), in which a mycolic acid (alpha- or alpha'-mycolate) molecule is esterified to a glycerol. Upon complementation with an intact lsr2 gene, the mutant reverts to the parental phenotypes and MDAG production is restored. This study demonstrates that due to its impact on the biosynthesis of the hydrophobic MDAGs, Lsr2 plays an important role in the colony morphology and biofilm formation of M. smegmatis.  相似文献   

2.
Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc(2)155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc(2)155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc(2)155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc(2)155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria.  相似文献   

3.
Multidrug resistance (MDR) in bacteria has been associated with efflux pumps that export structurally unrelated compounds and decrease cytoplasmic drug accumulation. To investigate MDR in mycobacteria, we studied the Mycobacterium smegmatis mutant mc(2)11, which is resistant to doxorubicin, tetracycline, rhodamine, ethidium bromide and the hydrophilic fluoroquinolones. A genomic library constructed from this mutant was used to select clones conferring resistance to doxorubicin. Surprisingly, the clone selected encodes the efflux pump LfrA, which has been reported to confer resistance to hydrophilic fluoroquinolones, ethidium bromide, rhodamine, and acriflavine. To define the contribution of LfrA to the innate mycobacterial drug resistance and to the MDR phenotype in mc(2)11, the lfrA gene was disrupted in both the mc(2)11 mutant and the mc(2)155 wild-type parent. LfrA disruption of the wild-type strain decreased resistance to ethidium bromide and acriflavine, and increased accumulation of ethidium bromide. However, disruption of lfrA gene results only in a 2-fold decrease in minimal inhibitory concentrations (MICs) for ciprofloxacin, doxorubicin, rhodamine, and accumulation of [(14)C]ciprofloxacin was unchanged. LfrA disruption of the MDR strain mc(2)11 produced a similar phenotype. Thus, LfrA contributes significantly to the intrinsic MICs of M. smegmatis for ethidium bromide and acriflavine, but not for ciprofloxacin, doxorubicin or rhodamine.  相似文献   

4.
Transposon mutagenesis of Mycobacterium smegmatis mc2155 enabled the isolation of a mutant strain (called LGM1) altered in the regulation of piperidine and pyrrolidine utilization. The complete nucleotide sequence of the gene inactivated in mutant LGM1 was determined from the wild-type strain. This gene (pipR) encoded a member of the GntR family of bacterial regulatory proteins. An insertion element (IS1096), previously described for M. smegmatis, was detected downstream of the gene pipR. Three additional open reading frames were found downstream of IS1096. The first open reading frame (pipA) appeared to encode a protein identified as a cytochrome P450 enzyme. This gene is the first member of a new family, CYP151. By a gene replacement experiment, it was demonstrated that the cytochrome P450 pipA gene is required for piperidine and pyrrolidine utilization in M. smegmatis mc2155. Genes homologous to pipA were detected by hybridization in several, previously isolated, morpholine-degrading mycobacterial strains. A gene encoding a putative [3Fe-4S] ferredoxin (orf1) and a truncated gene encoding a putative glutamine synthetase (orf2') were found downstream of pipA.  相似文献   

5.
Temperature-sensitive mutant 2-20/32 of Mycobacterium smegmatis mc(2)155 was isolated and genetically complemented with a Mycobacterium tuberculosis H37Rv DNA fragment that contained a single open reading frame. This open reading frame is designated Rv3265c in the M. tuberculosis H37Rv genome. Rv3265c shows homology to the Escherichia coli gene wbbL, which encodes a dTDP-Rha:alpha-D-GlcNAc-pyrophosphate polyprenol, alpha-3-L-rhamnosyltransferase. In E. coli this enzyme is involved in O-antigen synthesis, but in mycobacteria it is required for the rhamnosyl-containing linker unit responsible for the attachment of the cell wall polymer mycolyl-arabinogalactan to the peptidoglycan. The M. tuberculosis wbbL homologue, encoded by Rv3265c, was shown to be capable of restoring an E. coli K12 strain containing an insertionally inactivated wbbL to O-antigen positive. Likewise, the E. coli wbbL gene allowed 2-20/32 to grow at higher non-permissive temperatures. The rhamnosyltransferase activity of M. tuberculosis WbbL was demonstrated in 2-20/32 as was the loss of this transferase activity in 2-20/32 at elevated temperatures. The wbbL of the temperature-sensitive mutant contained a single-base change that converted what was a proline in mc(2)155 to a serine residue. Exposure of 2-20/32 to higher non-permissive temperatures resulted in bacteria that could not be recovered at the lower permissive temperatures.  相似文献   

6.
A mutant, T7, highly sensitive to oxidative stress as caused by diamide was isolated from a Mycobacterium smegmatis mc(2)155 transposon mutant library. While wild-type M. smegmatis is able to grow well on solid media supplemented with 10 mM diamide, T7 is only able to grow on solid media containing up to 1 mM diamide. This mutant is also sensitive to other thiol modifying agents such as iodoacetamide and chlorodinitrobenzene. By sequencing the genomic DNA flanking the transposon, T7 was found to be mutated in the region upstream of the homolog of M. tuberculosis Rv0274 open reading frame. Sequence analysis revealed that Rv0274 is a member of a superfamily of metalloenzymes comprising enzymes such as extradiol dioxygenases, glyoxalases, and fosfomycin resistant glutathione transferases. Cloning and epichromosomal expression of M. tuberculosis Rv0274 in the mutant resulted in complementation of the sensitivity to diamide.  相似文献   

7.
In a previous work, we demonstrated that the Mycobacterium tuberculosis Rv2358-furB operon is induced by zinc. In this study, the orthologous genes from Mycobacterium smegmatis mc(2)155 were inactivated and mutants analyzed. Rv2358 protein was purified and found to bind upstream of the Rv2358 gene. Binding was inhibited by Zn(2+) ions.  相似文献   

8.
9.
10.
The role of salicylic acid in iron metabolism was examined in two wild-type strains (mc(2)155 and NCIMB 8548) and three mutant strains (mc(2)1292 [lacking exochelin], SM3 [lacking iron-dependent repressor protein IdeR] and S99 [a salicylate-requiring auxotroph derived in this study]) of Mycobacterium smegmatis. Synthesis of salicylate in SM3 was derepressed even in the presence of iron, as was synthesis of the siderophores exochelin, mycobactin, and carboxymycobactin. S99 was dependent on salicylate for growth and failed to grow with the three ferrisiderophores, suggesting that salicylate fulfills an additional function(s) other than being a precursor of mycobactin and carboxymycobactin. Salicylic acid at 100 microgram/ml repressed the formation of a 29-kDa cell envelope protein (putative exochelin receptor protein) in S99 grown both iron deficiently and iron sufficiently. In contrast, synthesis of this protein was affected only under iron-limited conditions in the parent strain, mc(2)155, and remained unaltered in SM3, suggesting an interaction between the IdeR protein and salicylate. Thus, salicylate may also function as a signal molecule for recognition of cellular iron status. Growth of all strains and mutants with p-aminosalicylate (PAS) at 100 microgram/ml increased salicylate accumulation between three- and eightfold under both iron-limited and iron-sufficient growth conditions and decreased mycobactin accumulation by 40 to 80% but increased carboxymycobactin accumulation by 50 to 55%. Thus, although PAS inhibited salicylate conversion to mycobactin, presumptively by blocking salicylate AMP kinase, PAS also interferes with the additional functions of salicylate, as its effect was heightened in S99 when the salicylate concentration was minimal.  相似文献   

11.
The alternate sigma factor, sigB, is known to play a crucial role in maintaining the stationary phase in mycobacteria. In this communication, we have studied the proteomics of Mycobacterium smegmatis mc(2)155 and its two derivatives, one of which has a disrupted sigB gene and the other, PMVSigB, which contains a multicopy plasmid containing sigB. We have identified by two-dimensional gel analyses, several proteins that are over-expressed in PMVSigB compared to mc(2)155. These proteins are either stress proteins or participate actively in different metabolic pathways of the organisms. On the other hand, when sigB deleted mycobacteria were grown until the stationary phase and its two-dimensional protein profile was compared to that of mc(2)155, few DNA binding proteins were found to be up-regulated. We have shown recently that upon over-expressing sigB, the cell surface glycopeptidolipids of M. smegmatis are hyperglycosylated, a situation similar to what was observed for nutritionally starved bacteria. Gene expression profile through quantitative PCR presented here identified a Rhamnosyltransferase responsible for this hyperglycosylation.  相似文献   

12.
13.
Integration of the pCG79 temperature-sensitive plasmid carrying Tn611 was used to generate libraries of mutants with blocked sterol-transforming ability of the sterol-utilizing strains Mycobacterium smegmatis mc(2)155 and Mycobacterium phlei M51-Ept. Of the 10,000 insertional mutants screened from each library, 4 strains with altered activity of the sterol-degrading enzymes were identified. A blocked 4-androstene-3,17-dione-producing M. phlei mutant transformed sitosterol to 23,24-dinorcholane derivatives that are useful starting materials for corticosteroid syntheses. A recombinant plasmid, pFJ92, was constructed from the genomic DNA of one of the insertional mutants of M. smegmatis, 10A12, which was blocked in 3-ketosteroid 9alpha-hydroxylation and carrying the transposon insertion and flanking DNA sequences, and used to isolate a chromosomal fragment encoding the 9alpha-hydroxylase. The open reading frame encodes the 383-amino-acid terminal oxygenase of 3-ketosteroid 9alpha-hydroxylase in M. smegmatis mc(2)155 and has domains typically conserved in class IA terminal oxygenases. Escherichia coli containing the gene could hydroxylate the steroid ring at the 9alpha position.  相似文献   

14.
Five rough colony mutants of Mycobacterium smegmatis mc2155 were produced by transposon mutagenesis. The mutants were unable to synthesize glycopeptidolipids that are normally abundant in the cell wall of wild-type M. smegmatis. The glycopeptidolipids have a lipopeptide core comprising a fatty acid amide linked to a tetrapeptide that is modified with O-methylated rhamnose and O-acylated 6-deoxy talose. Compositional analysis of lipids extracted from the mutants indicated that the defect in glycopeptidolipid synthesis occurred in the assembly of the lipopeptide core. No other defects or compensatory changes in cell wall structure were detected in the mutants. All five mutants had transposon insertions in a gene encoding an enzyme belonging to the peptide synthetase family. Targeted disruption of the gene in the wild-type strain gave a phenotype identical to that of the five transposon mutants. The M. smegmatis peptide synthetase gene is predicted to encode four modules that each contain domains for cofactor binding and for amino acid recognition and adenylation. Three modules also have amino acid racemase domains. These data suggest that the common lipopeptide core of these important cell wall glycolipids is synthesized by a peptide synthetase.  相似文献   

15.
Lipoarabinomannan (LAM) is a high molecular weight, heterogenous lipoglycan present in abundant quantities in Mycobacterium tuberculosis and many other actinomycetes. In M. tuberculosis, the non-reducing arabinan termini of the LAM are capped with alpha1-->2 mannose residues; in some other species, the arabinan of LAM is not capped or is capped with inositol phosphate. The nature and extent of this capping plays an important role in disease pathogenesis. MT1671 in M. tuberculosis CDC1551 was identified as a glycosyltransferase that could be involved in LAM capping. To determine the function of this protein a mutant strain of M. tuberculosis CDC1551 was studied, in which MT1671 was disrupted by transposition. SDS-PAGE analysis showed that the LAM of the mutant strain migrated more rapidly than that of the wild type and did not react with concanavalin A as did wild-type LAM. Structural analysis using NMR, gas chromatography/mass spectrometry, endoarabinanase digestion, Dionex high pH anion exchange chromatography, and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry demonstrated that the LAM of the mutant strain was devoid of mannose capping. Since an ortholog of MT1671 is not present in Mycobacterium smegmatis mc(2)155, a recombinant strain was constructed that expressed this protein. Analysis revealed that the LAM of the recombinant strain was larger than that of the wild type, had gained concanavalin A reactivity, and that the arabinan termini were capped with a single mannose residue. Thus, MT1671 is the mannosyltransferase involved in deposition of the first of the mannose residues on the non-reducing arabinan termini and the basis of much of the interaction between the tubercle bacillus and the host cell.  相似文献   

16.
rimI基因编码的核糖体蛋白丙氨酸乙酰转移酶(ribosomal-protein-alanine acetyltransferase,RimI)为结核分枝杆菌GCN5相关N-乙酰转移酶家族成员,其在结核分枝杆菌中的生物学功能尚不十分清楚。为探索RimI的生物学特性及其对结核分枝杆菌致病性的影响,本研究以耻垢分枝杆菌为模式菌,构建过表达结核分枝杆菌rimI基因的重组菌株Msm∷pMV261-rimI。分别培养 Msm∷pMV261-rimI菌株和对照Msm∷pMV261菌株,分析两者生长速率、菌落形态和生物膜形成的差异,以及耐受低氧、低pH值、H2O2、二硫苏糖醇(dithiothreitol,DTT)和0.05%~1%十二烷基硫酸钠(sodium dodecyl sulfate,SDS)等逆环境的能力;并将两种菌株分别接种于鼠巨噬细胞RAW264.7,观察两者在巨噬细胞内的存活能力。结果表明,相较于对照菌株,过表达rimI的菌株在生长前中期速率降低,生物膜早期成膜变缓,但不影响生物膜的后期成熟。同时,过表达rimI的菌株抵抗低氧、低pH值、H2O2等逆环境的能力增强,在巨噬细胞内的存活能力增强。结果提示,rimI基因对分枝杆菌的生物膜形成、抗逆性及细胞内生存具有重要作用,可能与结核分枝杆菌的毒力密切相关。  相似文献   

17.
The absence of glycopeptidolipids (GPLs) abolishes the ability of mycobacteria both to slide over the surface of motility plates and to form biofilms on polyvinyl chloride. In a screen for biofilm-defective mutants of Mycobacterium smegmatis mc(2)155, a new mutant was obtained that resulted in partial inhibition of both processes and also showed an intermediate rough colony morphology. The mariner transposon insertion mapped to a GPL biosynthesis gene (atf1) which encodes a putative acetyltranferase involved in the transfer of acetyl groups to the glycopeptide core. Physical characterization of the GPLs from the atf1 mutant demonstrated that they were not acetylated.  相似文献   

18.
以ILTV基因组为模板 ,利用PCR特异扩增出gB基因 ,定向克隆到中间质粒载体pY_α ,构建了中间质粒pY_α_gB。然后以中间质粒pY_α_gB为模板 ,扩增出含有人结核分枝杆菌启动子hsp70基因和堪萨斯分枝杆菌α信号肽基因的hsp_α_gB片段 ,回收补平后与穿梭表达载体pRR3平端连接 ,从而构建大肠杆菌_分枝杆菌穿梭表达质粒pR_α_gB。再将其电转化至耻垢分枝杆菌M .smegmatismc2 15 5 ,ELISA检测表明重组菌株M .smegmatismc2 15 5 (pR_α_gB)的表达产物具有很好的反应原性。Westernblot检测说明gB基因在分枝杆菌中获得了表达并具有良好的免疫原性。鸡胚中和试验结果表明该重组菌株可以中和 1个剂量EID50 的ILTV强毒 ,能够保护SPF鸡胚抵抗强毒攻击  相似文献   

19.
The modification of metabolic pathways to allow for a dormant lifestyle appears to be an important feature for the survival of pathogenic bacteria within their host. One regulatory mechanism for persistent Mycobacterium tuberculosis infections is the stringent response. In this study, we analyze the stringent response of a nonpathogenic, saprophytic mycobacterial species, Mycobacterium smegmatis. The use of M. smegmatis as a tool for studying the mycobacterial stringent response was demonstrated by measuring the expression of two M. tuberculosis genes, hspX and eis, in M. smegmatis in the presence and absence of rel(Msm). The stringent response plays a role in M. smegmatis cellular and colony formation that is suggestive of changes in the bacterial cell wall structure.  相似文献   

20.
Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the omega subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc(2)155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号