首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zakharov SD  Sharma O  Zhalnina MV  Cramer WA 《Biochemistry》2008,47(48):12802-12809
Cellular import of colicin E3 is initiated by high affinity binding of the colicin receptor-binding (R) domain to the vitamin B(12) (BtuB) receptor in the Escherichia coli outer membrane. The BtuB binding site, at the apex of its extended coiled-coil R-domain, is distant from the C-terminal nuclease domain that must be imported for expression of cytotoxicity. Based on genetic analysis and previously determined crystal structures of the R-domain bound to BtuB, and of an N-terminal disordered segment of the translocation (T) domain inserted into the OmpF porin, a translocon model for colicin import has been inferred. Implicit in the model is the requirement for unfolding of the colicin segments inserted into OmpF. FRET analysis was employed to study colicin unfolding upon interaction with BtuB and OmpF. A novel method of Cys-specific dual labeling of a native polypeptide, which allows precise placement of donor and acceptor fluorescent dyes on the same polypeptide chain, was developed. A decrease in FRET efficiency between the translocation and cytotoxic domains of the colicin E3 was observed upon colicin binding in vitro to BtuB or OmpF. The two events were independent and additive. The colicin interactions with BtuB and OmpF have a major electrostatic component. The R-domain Arg399 is responsible for electrostatic interaction with BtuB. It is concluded that free energy for colicin unfolding is provided by binding of the R- domain to BtuB and binding/insertion of the T-domain to/into OmpF.  相似文献   

2.
The endonuclease colicin E2 (ColE2), a bacteriocidal protein, and the associated cognate immunity protein (Im2) are released from producing Escherichia coli cells. ColE2 interaction with the target cell outer membrane BtuB protein and Tol import machinery allows the dissociation of Im2 from its colicin at the outer membrane surface. Here, we use in vivo approaches to show that a small amount of ColE2-Im2 protein complex bound to sensitive cells is susceptible to proteolytic cleavage by the outer membrane protease, OmpT. The presence of BtuB is required for ColE-Im2 cleavage by OmpT. The amount of colicin cleaved by OmpT is greatly enhanced when ColE2 is dissociated from Im2. We further demonstrate that OmpT cleaves the C-terminal DNase domain of the toxin. As expected, strains that over-produce OmpT are less susceptible to infection by ColE2 than by ColE2-Im2. Our findings reveal an additional function for the immunity protein beside protection of producing cells against their own colicin in the cytoplasm. Im2 protects ColE2 against OmpT-mediated proteolytic attack.  相似文献   

3.
Cellular import of colicin E3 is initiated by the Escherichia coli outer membrane cobalamin transporter, BtuB. The 135-residue 100-A coiled-coil receptor-binding domain (R135) of colicin E3 forms a 1:1 complex with BtuB whose structure at a resolution of 2.75 A is reported. Binding of R135 to the BtuB extracellular surface (DeltaG(o) = -12 kcal mol(-1)) is mediated by 27 residues of R135 near the coiled-coil apex. Formation of the R135-BtuB complex results in unfolding of R135 N- and C-terminal ends, inferred to be important for unfolding of the colicin T-domain. Small conformational changes occur in the BtuB cork and barrel domains but are insufficient to form a translocation channel. The absence of a channel and the peripheral binding of R135 imply that BtuB serves to bind the colicin, and that the coiled-coil delivers the colicin to a neighboring outer membrane protein for translocation, thus forming a colicin translocon. The translocator was concluded to be OmpF from the occlusion of OmpF channels by colicin E3.  相似文献   

4.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

5.
The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil BtuB receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB.  相似文献   

6.
Data suggest a two-receptor model for colicin E1 (ColE1) translocation across the outer membrane of Escherichia coli. ColE1 initially binds to the vitamin B(12) receptor BtuB and then translocates through the TolC channel-tunnel, presumably in a mostly unfolded state. Here, we studied the early events in the import of ColE1. Using in vivo approaches, we show that ColE1 is cleaved when added to whole cells. This cleavage requires the presence of the receptor BtuB and the protease OmpT, but not that of TolC. Strains expressing OmpT cleaved ColE1 at K84 and K95 in the N-terminal translocation domain, leading to the removal of the TolQA box, which is essential for ColE1's cytotoxicity. Supported by additional in vivo data, this suggests that a function of OmpT is to degrade colicin at the cell surface and thus protect sensitive E. coli cells from infection by E colicins. A genetic strategy for isolating tolC mutations that confer resistance to ColE1, without affecting other TolC functions, is also described. We provide further in vivo evidence of the multistep interaction between TolC and ColE1 by using cross-linking followed by copurification via histidine-tagged TolC. First, secondary binding of ColE1 to TolC is dependent on primary binding to BtuB. Second, alterations to a residue in the TolC channel interfere with the translocation of ColE1 across the TolC pore rather than with the binding of ColE1 to TolC. In contrast, a substitution at a residue exposed on the cell surface abolishes both binding and translocation of ColE1.  相似文献   

7.
The crystal structure of the complex of the BtuB receptor and the 135-residue coiled-coil receptor-binding R-domain of colicin E3 (E3R135) suggested a novel mechanism for import of colicin proteins across the outer membrane. It was proposed that one function of the R-domain, which extends along the outer membrane surface, is to recruit an additional outer membrane protein(s) to form a translocon for passage colicin activity domain. A 3.5-A crystal structure of the complex of E2R135 and BtuB (E2R135-BtuB) was obtained, which revealed E2R135 bound to BtuB in an oblique orientation identical to that previously found for E3R135. The only significant difference between the two structures was that the bound coiled-coil R-domain of colicin E2, compared with that of colicin E3, was extended by two and five residues at the N and C termini, respectively. There was no detectable displacement of the BtuB plug domain in either structure, implying that colicin is not imported through the outer membrane by BtuB alone. It was concluded that the oblique orientation of the R-domain of the nuclease E colicins has a function in the recruitment of another member(s) of an outer membrane translocon. Screening of porin knock-out mutants showed that either OmpF or OmpC can function in such a translocon. Arg(452) at the R/C-domain interface in colicin E2 was found have an essential role at a putative site of protease cleavage, which would liberate the C-terminal activity domain for passage through the outer membrane translocon.  相似文献   

8.
Zakharov SD  Zhalnina MV  Sharma O  Cramer WA 《Biochemistry》2006,45(34):10199-10207
The crystal structure previously obtained for the complex of BtuB and the receptor binding domain of colicin E3 forms a basis for further analysis of the mechanism of colicin import through the bacterial outer membrane. Together with genetic analysis and studies on colicin occlusion of OmpF channels, this implied a colicin translocon consisting of BtuB and OmpF that would transfer the C-terminal cytotoxic domain (C96) of colicin E3 through the Escherichia coli outer membrane. This model does not, however, explain how the colicin attains the unfolded conformation necessary for transfer. Such a conformation change would require removal of the immunity (Imm) protein, which is bound tightly in a complex with the folded colicin E3. In the present study, it was possible to obtain reversible removal of Imm in vitro in a single column chromatography step without colicin denaturation. This resulted in a mostly unordered secondary structure of the cytotoxic domain and a large decrease in stability, which was also found in the receptor binding domain. These structure changes were documented by near- and far-UV circular dichroism and intrinsic tryptophan fluorescence. Reconstitution of Imm in a complex with C96 or colicin E3 restored the native structure. C96 depleted of Imm, in contrast to the native complex with Imm, efficiently occluded OmpF channels, implying that the presence of tightly bound Imm prevents its unfolding and utilization of the OmpF porin for subsequent import of the cytotoxic domain.  相似文献   

9.
Bacteria deploy weapons to kill their neighbours during competition for resources and to aid survival within microbiomes. Colicins were the first such antibacterial system identified, yet how these bacteriocins cross the outer membrane (OM) of Escherichia coli is unknown. Here, by solving the structures of translocation intermediates via cryo‐EM and by imaging toxin import, we uncover the mechanism by which the Tol‐dependent nuclease colicin E9 (ColE9) crosses the bacterial OM. We show that threading of ColE9’s disordered N‐terminal domain through two pores of the trimeric porin OmpF causes the colicin to disengage from its primary receptor, BtuB, and reorganises the translocon either side of the membrane. Subsequent import of ColE9 through the lumen of a single OmpF subunit is driven by the proton‐motive force, which is delivered by the TolQ‐TolR‐TolA‐TolB assembly. Our study answers longstanding questions, such as why OmpF is a better translocator than OmpC, and reconciles the mechanisms by which both Tol‐ and Ton‐dependent bacteriocins cross the bacterial outer membrane.  相似文献   

10.
The outer membrane (OM) vitamin B(12) receptor, BtuB, is the primary receptor for E group colicin adsorption to Escherichia coli. Cell death by this family of toxins requires the OM porin OmpF but its role remains elusive. We show that OmpF enhances the ability of purified BtuB to protect bacteria against the endonuclease colicin E9, demonstrating either that the two OM proteins form the functional receptor or that OmpF is recruited for subsequent translocation of the bacteriocin. While stable binary colicin E9-BtuB complexes could be readily shown in vitro, OmpF-containing complexes could not be detected, implying that OmpF association with the BtuB-colicin complex, while necessary, must be weak and/or transient in nature.  相似文献   

11.
ColE9 is a plasmid-encoded protein antibiotic produced by Escherichia coli and closely related species that kills E. coli cells expressing the BtuB receptor. The 15-kDa cytotoxic DNase domain of colicin E9 preferentially nicks double-stranded DNA at thymine bases and shares a common active-site structural motif with a variety of other nucleases, including the H-N-H homing endonucleases and the apoptotic CAD proteins of eukaryotes. Studies of the mechanism by which the DNase domain of ColE9 reaches the cytoplasm of E. coli cells are limited by the lack of a rapid, sensitive assay for the DNA damage that results. Here, we report the development of an SOS promoter-lux fusion reporter system for monitoring DNA damage in colicin-treated cells and illustrate the value of this reporter system in experiments that probe the mechanism and time required for the DNase domain of colicin E9 to reach the cytoplasm.  相似文献   

12.
Colicins A, E1, E2 and E3 belong to the BtuB group of colicins. The NH2-terminal region of colicin A is required for translocation, and defects in this region cannot be overcome by osmotic shock of sensitive cells. In addition to BtuB, colicin A requires OmpF for efficient uptake by sensitive cells. The roles of BtuB and OmpF in translocation and binding to the receptor of the colicins A, E1, E2 and E3 were compared. The results suggest that for colicin A OmpF is used both as a receptor and for translocation across the outer membrane. In contrast, for colicin E1, OmpF is used neither as a receptor nor for translocation. For colicins E2 and E3, the situation is intermediate: only BtuB is used as a receptor but both BtuB and OmpF are involved in the translocation step.  相似文献   

13.
The ColE7 operon is an SOS response regulon, which encodes bacteriocin ColE7 to kill susceptible Escherichia coli and its related enterobacteria under conditions of stress. We have observed for the first time that polyamines confer limited resistance against ColE7 on E. coli cells. Thus, this study aims to investigate the role of polyamines in modulating the protective effect of the E. coli cells against colicin. In the experiments, we surprisingly found that endogenous polyamines are also essential for ColE7 production, and the rate of polyamine synthesis is directly related to the SOS response. Our experimental results further indicated that exogenous polyamines suppress the expression of TolA, BtuB, OmpF, and OmpC proteins that are responsible for ColE7 uptake. Moreover, two-dimensional gel electrophoresis revealed that the production of two periplasmic proteins, PotD and OppA, is increased in E. coli cells under ColE7 exposure. Based on these observations, we propose that endogenous polyamines may play a dual role in the ColE7 system. Polyamines may participate in initiating the expression of the SOS response of the ColE7 operon and simultaneously down-regulate proteins that are essential for colicin uptake, thus conferring a survival advantage on colicin-producing E. coli under stress conditions in the natural environment.  相似文献   

14.
The interaction of colicins with target cells is a paradigm for protein import. To enter cells, bactericidal colicins parasitize Escherichia coli outer membrane receptors whose physiological purpose is the import of essential metabolites. Colicins E1 and E3 initially bind to the BtuB receptor, whose beta-barrel pore is occluded by an N-terminal globular "plug". The x-ray structure of a complex of BtuB with the coiled-coil BtuB-binding domain of colicin E3 did not reveal displacement of the BtuB plug that would allow passage of the colicin (Kurisu, G., S. D. Zakharov, M. V. Zhalnina, S. Bano, V. Y. Eroukova, T. I. Rokitskaya, Y. N. Antonenko, M. C. Wiener, and W. A. Cramer. 2003. Nat. Struct. Biol. 10:948-954). This correlates with the inability of BtuB to form ion channels in planar bilayers, shown in this work, suggesting that an additional outer membrane protein(s) is required for colicin import across the outer membrane. The identity and interaction properties of this OMP were analyzed in planar bilayer experiments.OmpF and TolC channels in planar bilayers were occluded by colicins E3 and E1, respectively, from the trans-side of the membrane. Occlusion was dependent upon a cis-negative transmembrane potential. A positive potential reversibly opened OmpF and TolC channels. Colicin N, which uses only OmpF for entry, occludes OmpF in planar bilayers with the same orientation constraints as colicins E1 and E3. The OmpF recognition sites of colicins E3 and N, and the TolC recognition site of colicin E1, were found to reside in the N-terminal translocation domains. These data are considered in the context of a two-receptor translocon model for colicin entry into cells.  相似文献   

15.
DNase colicins E2 and E7, both of which appropriate the BtuB/Tol translocation machinery to cross the outer membrane, undergo a processing step as they enter the cytoplasm. This endoproteolytic cleavage is essential for their killing action. A processed form of the same size, 18.5 kDa, which corresponds to the C-terminal catalytic domain, was detected in the cytoplasm of bacteria treated with either of the two DNase colicins. The inner-membrane protease FtsH is necessary for the processing that allows the translocation of the colicin DNase domain into the cytoplasm. The processing occurs near residue D420, at the same position as the FtsH-dependent cleavage in RNase colicins E3 and D. The cleavage site is located 30 amino acids upstream of the DNase domain. In contrast, the previously reported periplasm-dependent colicin cleavage, located at R452 in colicin E2, was shown to be generated by the outer-membrane protease OmpT and we show that this cleavage is not physiologically relevant for colicin import. Residue R452, whose mutated derivatives led to toxicity defect, was shown to have no role in colicin processing and translocation, but it plays a key role in the catalytic activity, as previously reported for other DNase colicins. Membrane associated forms of colicins E2 and E7 were detected on target cells as proteinase K resistant peptides, which include both the receptor-binding and DNase domains. A similar, but much less proteinase K-resistant form was also detected with RNase colicin E3. These colicin forms are not relevant for colicin import, but their detection on the cell surface indicates that whole nuclease-colicin molecules are found in a stable association with the outer-membrane receptor BtuB of the target cells.  相似文献   

16.
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself.  相似文献   

17.
James R  Penfold CN  Moore GR  Kleanthous C 《Biochimie》2002,84(5-6):381-389
The process by which the endonuclease domain of colicin E9 is translocated across the outer membrane, the periplasmic space and the cytoplasmic membrane to reach the cytoplasm of E. coli cells, resulting in DNA degradation and cell death, is a unique event in prokaryotic biology. Although considerable information is known about the role of the BtuB outer membrane receptor, as well as the mostly periplasmic Tol proteins that are essential for the translocation process, the precise nature of the interactions between colicin E9 and these proteins remains to be elucidated. In this review, we consider our current understanding of the key events in this process, concentrating on recent findings concerning receptor-binding, translocation and the mechanism of cytotoxicity.  相似文献   

18.
Translocation of colicin across the membrane of sensitive cells has been studied extensively. However, processing of the toxicity domain of colicin during translocation has been the subject of much controversy. To investigate the final translocation product of colicin across the membrane of Escherichia coli, an endogenously expressed His-tagged Im7 protein was constructed to detect any translocation product containing the DNase domain traversed the inner membrane into cytoplasm of the E. coli cells. As a result, a final processed DNase domain of ColE7 was identified in the intracellular space of the cells treated with Col-Im complex. In the presence of periplasmic extracts, in vitro processing of DNase domain of ColE7 was also observed. These results suggest that the processing of ColE7 has occurred for translocation of the DNase-type colicin across the membrane and the process is probably taking place in the periplasmic space of the membrane.  相似文献   

19.
The primary structures of the immunity (Imm) and lysis (Lys) proteins, and the C-terminal 205 amino acid residues of colicin E8 were deduced from nucleotide sequencing of the 1,265 bp ClaI-PvuI DNA fragment of plasmid ColE8-J. The gene order is col-imm-lys confirming previous genetic data. A comparison of the colicin E8 peptide sequence with the available colicin E2-P9 sequence shows an identical receptor-binding domain but 20 amino acid replacements and a clustering of synonymous codon usage in the nuclease-active region. Sequence homology of the two colicins indicates that they are descended from a common ancestral gene and that colicin E8, like colicin E2, may also function as a DNA endonuclease. The native ColE8 imm (resident copy) is 258 bp long and is predicted to encode an acidic protein of 9,604 mol. wt. The six amino acid replacements between the resident imm and the previously reported non-resident copy of the ColE8 imm ([E8 imm]) found in the ribonuclease-producing ColE3-CA38 plasmid offer an explanation for the incomplete protection conferred by [E8 Imm] to exogenously added colicin E8. Except for one nucleotide and amino acid change in the putative signal peptide sequence, the ColE8 lys structure is identical to that present in ColE2-P9 and ColE3-CA38.  相似文献   

20.
Background: Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition.Results: The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 Å resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel α/β fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (α11–loop12–α21; where 1 represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23–α31–loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7.Conclusions: The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号