首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) is a rate-limiting enzyme in the hexoamine biosynthetic pathway and plays an important role in type 2 diabetes. We now report the first structures of the isomerase domain of the human GFAT in the presence of cyclic glucose-6-phosphate and linear glucosamine-6-phosphate. The C-terminal tail including the active site displays a rigid conformation, similar to the corresponding Escherichia coli enzyme. The diversity of the CF helix near the active site suggests the helix is a major target for drug design. Our study provides insights into the development of therapeutic drugs for type 2 diabetes.  相似文献   

2.
Glucosamine-6-phosphate synthase (GlmS) channels ammonia from glutamine at the glutaminase site to fructose 6-phosphate (Fru6P) at the synthase site. Escherichia coli GlmS is composed of two C-terminal synthase domains that form the dimer interface and two N-terminal glutaminase domains at its periphery. We report the crystal structures of GlmS alone and in complex with the glucosamine-6-phosphate product at 2.95 Å and 2.9 Å resolution, respectively. Surprisingly, although the whole protein is present in this crystal form, no electron density for the glutaminase domain was observed, indicating its mobility. Comparison of the two structures with that of the previously reported GlmS-Fru6P complex shows that, upon sugar binding, the C-terminal loop, which forms the major part of the channel walls, becomes ordered and covers the synthase site. The ordering of the glutaminase domains likely follows Fru6P binding by the anchoring of Trp74, which acts as the gate of the channel, on the closed C-terminal loop. This is accompanied by a major conformational change of the side chain of Lys503# of the neighboring synthase domain that strengthens the interactions of the synthase domain with the C-terminal loop and completely shields the synthase site. The concomitant conformational change of the Lys503#-Gly505# tripeptide places catalytic His504# in the proper position to open the sugar and buries the linear sugar, which is now in the vicinity of the catalytic groups involved in the sugar isomerization reaction. Together with the previously reported structures of GlmS in complex with Fru6P or glucose 6-phosphate and a glutamine analogue, the new structures reveal the structural changes occurring during the whole catalytic cycle.  相似文献   

3.
Low concentrations of HgCl2 elicited, in Saccharomyces cerevisiae, a transitory increase in the ATP level followed by a decrease of its concentration, until almost disappearance. At 1 microM HgCl2, the increase in ATP lasted for about 30 min, while at 10 microM the increase was only observed in the first 5 min of treatment. The initial burst of ATP was accompanied by a decrease in the level of hexose phosphates, whereas during the decrease of ATP an increase in the inosine and hexose phosphates levels took place. The treatment with HgCl2 inhibited the plasma membrane proton ATPase but not the activities of hexokinase or 6-phosphofructokinase.  相似文献   

4.
The archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN, EC 1.2.1.9) is a highly allosteric enzyme activated by glucose 1-phosphate (Glc1P). Recent kinetic analyses of two GAPN homologs from Sulfolobales show different allosteric behaviors toward the substrate glyceraldehyde-3-phosphate (GAP) and the allosteric effector Glc1P. In GAPN from Sulfolobus tokodaii (Sto-GAPN), Glc1P-induced activation follows an increase in affinity for GAP rather than an increase in maximum velocity, whereas in GAPN from Sulfolobus solfataricus (Sso-GAPN), Glc1P-induced activation follows an increase in maximum velocity rather than in affinity for GAP. To explore the molecular basis of this difference between Sto-GAPN and Sso-GAPN, we generated 14 mutants and 2 chimeras. The analyses of chimeric GAPNs generated from regions of Sto-GAPN and Sso-GAPN indicated that a 57-residue module located in the subunit interface was clearly involved in their allosteric behavior. Among the point mutations in this modular region, the Y139R variant of Sto-GAPN no longer displayed a sigmoidal K-type-like allostery, but instead had apparent V-type allostery similar to that of Sso-GAPN, suggesting that the residue located in the center of the homotetramer critically contributes to the allosteric behavior.  相似文献   

5.
A novel phosphorylase was characterized as new member of glycoside hydrolase family 94 from the cellulolytic bacterium Xanthomonas campestris and the fungus Neurospora crassa. The enzyme catalyzed reversible phosphorolysis of cellobionic acid. We propose 4-O-β-d-glucopyranosyl-d-gluconic acid: phosphate α-d-glucosyltransferase as the systematic name and cellobionic acid phosphorylase as the short names for the novel enzyme. Several cellulolytic fungi of the phylum Ascomycota also possess homologous proteins. We, therefore, suggest that the enzyme plays a crucial role in cellulose degradation where cellobionic acid as oxidized cellulolytic product is converted into α-d-glucose 1-phosphate and d-gluconic acid to enter glycolysis and the pentose phosphate pathway, respectively.  相似文献   

6.
The glmS ribozyme is a catalytic RNA that self-cleaves at its 5'-end in the presence of glucosamine 6-phosphate (GlcN6P). We present structures of the glmS ribozyme from Thermoanaerobacter tengcongensis that are bound with the cofactor GlcN6P or the inhibitor glucose 6-phosphate (Glc6P) at 1.7 A and 2.2 A resolution, respectively. The two structures are indistinguishable in the conformations of the small molecules and of the RNA. GlcN6P binding becomes apparent crystallographically when the pH is raised to 8.5, where the ribozyme conformation is identical with that observed previously at pH 5.5. A key structural feature of this ribozyme is a short duplex (P2.2) that is formed between sequences just 3' of the cleavage site and within the core domain, and which introduces a pseudoknot into the active site. Mutagenesis indicates that P2.2 is required for activity in cis-acting and trans-acting forms of the ribozyme. P2.2 formation in a trans-acting ribozyme was exploited to demonstrate that N1 of the guanine at position 1 contributes to GlcN6P binding by interacting with the phosphate of the cofactor. At neutral pH, RNAs with adenine, 2-aminopurine, dimethyladenine or purine substitutions at position 1 cleave faster with glucosamine than with GlcN6P. This altered cofactor preference provides biochemical support for the orientation of the cofactor within the active site. Our results establish two features of the glmS ribozyme that are important for its activity: a sequence within the core domain that selects and positions the cleavage-site sequence, and a nucleobase at position 1 that helps position GlcN6P.  相似文献   

7.
Since the 1970s, with Heinrich as a pioneer in the field, numerous kinetic models of erythrocyte glycolysis have been constructed. A functional comparison of eight of these models indicates that the production of ATP and GSH in the red blood cell is largely controlled by the demand reactions. The rate characteristics for the supply and demand blocks indicate a good homeostatic control of ATP and GSH concentrations at different work loads for the pathway, while the production rates of ATP and GSH can be adjusted as needed by the demand reactions.  相似文献   

8.
9.
Redox state of pyridine nucleotides of the endoplasmic reticulum (ER) lumen was determined in different nutritional conditions. NADPH-dependent cortisone reduction and NADP+-dependent cortisol oxidation were measured in rat liver microsomes, by utilizing the luminal 11β-hydroxysteroid dehydrogenase type 1 activity. Cortisone reduction decreased, while cortisol oxidation increased during onward starvation, showing that the luminal NADPH/NADP+ ratio was substantially decreased. Cortisone or metyrapone addition caused a smaller decrease in NADPH fluorescence in microsomes from starved rats. The results demonstrate that nutrient supply is mirrored by the redox state of ER luminal pyridine nucleotides.  相似文献   

10.
A model of carbohydrate metabolism during differentiation in Dictyostelium discoideum has been used to investigate which enzyme kinetic mechanism(s) might be operative for glycogen phosphorylase in vivo. The model, which has been described previously, is capable of simulating experimentally observed changes in metabolite concentrations and fluxes during differentiation under both the standard starvation condition and in the presence of glucose (25 mM). The concentrations of saccharide end products of differentiation under these 2 conditions differ substantially.Glycogen phosphorylase is described in the model by a rapid equilibrium random bi bi mechanism and the effect of substituting 4 other kinetic mechanisms was examined. Each of these mechanisms in the model allows simulations compatible with the saccharide accumulation patterns found during differentiation in the absence of glucose. However, in the presence of glucose, only a reversible mechanism (random or ordered) is compatible with the experimental data. It is concluded that glycogen degradation in vivo is controlled by an enzyme catalyzing a reversible reaction, the rate of which is inversely related to the glucose-1-P concentration.  相似文献   

11.
Adult F. hepatica were obtained from sheep which had received a single dose of rafoxanide at the therapeutic dose rate (7·5 mg/kg body weight). Flukes were recovered 12 and 24 h after the sheep were treated. No flukes were present after 4 days. Plasma levels of the drug were high after 24 h and remained so at 4 days. Flukes were being expelled from the liver 24 h after treatment. Glycogen levels within the flukes were diminished in the 24 h treated group, as were concentrations of ATP. These effects were not apparent in the 12 h treated group. Fluctuations in glucose, G6P, F6P and pyruvate pools were observed in both groups. The effects of rafoxanide were irreversible after 24 h exposure to the drug. Flukes from the treated sheep were incubated for 6 and 24 h in a simple maintenance medium with added glucose. They showed progressive deterioration in energy status. The results are considered in the context of the mode of action of rafoxanide.  相似文献   

12.
13.
When oleoyl phosphate and ADP were incubated with heart submitochondrial particles in the presence of glucose-hexokinase trap according to a reported procedure [Griffiths, D.E. (1976) Biochem. J. 160: 809–812], a 10% yield of glucose-6-phosphate was detected by chemical analysis. Although lower concentration of oleoyl phosphate improved the yield to 80–85%, the mode of formation of glucose-6-phosphate was not clear under the experimental condition used to improve the yield. In order to test decisively whether the phosphoryl group of oleoyl phosphate was transferred to ADP to form ATP which was estimated in the form of glucose-6-phosphate, [32P]oleoyl phosphate was synthesized. The use of isotopically labelled oleoyl phosphate showed only about 5% yield of [32P]glucose-6-phosphate by paper chromatographic analysis, whereas chemical analysis of the same system gave 80% yield of glucose-6-phosphate. Such an observation demonstrated that glucose-6-phosphate estimated by chemical assay is not the result of phosphorylation of ADP with oleoyl phosphate catalyzed by the submitochondrial particles.  相似文献   

14.
Phosphomannomutase (PMM) catalyses the conversion of mannose-6-phosphate to mannose-1-phosphate, an essential step in mannose activation and the biosynthesis of glycoconjugates in all eukaryotes. Deletion of PMM from Leishmania mexicana results in loss of virulence, suggesting that PMM is a promising drug target for the development of anti-leishmanial inhibitors. We report the crystallization and structure determination to 2.1 A of L. mexicana PMM alone and in complex with glucose-1,6-bisphosphate to 2.9 A. PMM is a member of the haloacid dehalogenase (HAD) family, but has a novel dimeric structure and a distinct cap domain of unique topology. Although the structure is novel within the HAD family, the leishmanial enzyme shows a high degree of similarity with its human isoforms. We have generated L. major PMM knockouts, which are avirulent. We expressed the human pmm2 gene in the Leishmania PMM knockout, but despite the similarity between Leishmania and human PMM, expression of the human gene did not restore virulence. Similarities in the structure of the parasite enzyme and its human isoforms suggest that the development of parasite-selective inhibitors will not be an easy task.  相似文献   

15.
A cDNA encoding a novel cytochrome P450 1A2 (CYP1A2) was cloned from the liver of an adult female Japanese monkey. The CYP1A2 protein was expressed in yeast cells and its enzymatic properties were compared with those of marmoset CYP1A2 using ethoxyresorufin (ER) and phenacetin (PN) as substrates. The nucleotide sequence of Japanese monkey CYP1A2 revealed 94.7, 99.5 and 93.5% identities to those of human, cynomolgus monkey and marmoset monkey CYP1A2, respectively. Multiple amino acid sequence alignment of Japanese monkey CYP1A2 with CYP1A2 of humans, cynomolgus monkeys and marmosets showed that Japanese monkey CYP1A2 had 92.4, 99.0 and 91.9% identities to the human, cynomolgus monkey and marmoset enzymes, respectively. Kinetic studies demonstrated that the enzymatic properties as ER and PN O-deethylases were considerably different between the Japanese monkey and the marmoset CYP1A2. Furthermore, both of these reactions in liver microsomal fractions from the Japanese monkey and marmoset showed biphasic kinetics. On the basis of the kinetic parameters, it is suggested that Japanese monkey CYP1A2 is a high-K(m) enzyme in both ER and PN O-deethylations, whereas marmoset CYP1A2 is a high-K(m) and low-K(m) enzyme in ER and PN O-deethylations, respectively. alpha-Naphthoflavone, an inhibitor of human CYP1A1 and CYP1A2, did not completely inhibit the liver microsomal oxidations of ER and PN even at the highest concentration (50muM), supporting the notion that CYP1A2 enzymes are not the sole ER or PN O-deethylase in Japanese monkey and marmoset liver microsomes. Inhibitory effects of furafylline, an inhibitor of human CYP1A2, on ER O-deethylation by recombinant CYP1A2 enzymes were much lower than those of alpha-naphthoflavone, but marmoset CYP1A2 was more sensitive to furafylline than Japanese monkey CYP1A2. These results indicate that the properties of Japanese monkey CYP1A2 are considerably different from those of marmoset CYP1A2.  相似文献   

16.
Studies of thiamine diphosphate-dependent enzymes appear to have commenced in 1937, with the isolation of the coenzyme of yeast pyruvate decarboxylase, which was demonstrated to be a diphosphoric ester of thiamine. For quite a long time, these studies were largely focused on enzymes decarboxylating α-keto acids, such as pyruvate decarboxylase and pyruvate dehydrogenase complexes. Transketolase, discovered independently by Racker and Horecker in 1953 (and named by Racker) [1], did not receive much attention until 1992, when crystal X-ray structure analysis of the enzyme from Saccharomyces cerevisiae was performed [2]. These data, together with the results of site-directed mutagenesis, made it possible to understand in detail the mechanism of thiamine diphosphate-dependent catalysis. Some progress was also made in studies of the functional properties of transketolase. The last review on transketolase, which was fairly complete, appeared in 1998 [3]. Therefore, the publication of this paper should not seem premature.  相似文献   

17.
18.
When EscherichiacoliCP78(rel+) growing on glucose was starved for isoleucine by the addition of valine, the intracellular levels of fructose 6-phosphate, fructose 1,6-bisphosphate and dihydroxyacetone phosphate were abruptly decreased to one-half, but those of glucose 6-phosphate and ATP remained constant. In contrast, this was not the case with CP79(rel?). Chloramphenicol released the response observed in CP78. These results suggest that the glycolytic activity is also under the stringent control. Since only glucosephosphate isomerase[EC 5.3.1.9] was significantly inhibited by guanosine 5′-diphosphate 3′-diphosphate among several glycolytic enzymes tested, the enzyme might be responsible for the decrease observed in CP78.  相似文献   

19.
The actions of tamoxifen, a selective estrogen receptor modulator used in chemotherapy and chemo-prevention of breast cancer, on glycolysis and gluconeogenesis were investigated in the isolated perfused rat liver. Tamoxifen inhibited gluconeogenesis from both lactate and fructose at very low concentrations (e.g., 5 μM). The opposite, i.e., stimulation, was found for glycolysis from both endogenous glycogen and fructose. Oxygen uptake was unaffected, inhibited or stimulated, depending on the conditions. Stimulation occurred in both microsomes and mitochondria. Tamoxifen did not affect the most important key-enzymes of gluconeogenesis, namely, phosphoenolpyruvate carboxykinase, pyruvate carboxylase, fructose 1,6-bisphosphatase and glucose 6-phosphatase. Confirming previous observations, however, tamoxifen inhibited very strongly NADH- and succinate-oxidase of freeze–thawing disrupted mitochondria. Tamoxifen promoted the release of both lactate dehydrogenase (mainly cytosolic) and fumarase (mainly mitochondrial) into the perfusate. Tamoxifen (200 μM) clearly diminished the ATP content and increased the ADP content of livers in the presence of lactate with a diminution of the ATP/ADP ratio from 1.67 to 0.79. The main causes for gluconeogenesis inhibition are probably: (a) inhibition of energy metabolism; (b) deviation of intermediates (malate and glucose 6-phosphate) for the production of NADPH required in hydroxylation and demethylation reactions; (c) deviation of glucosyl units toward glucuronidation reactions; (d) secondary inhibitory action of nitric oxide, whose production is stimulated by tamoxifen; (e) impairment of the cellular structure, especially the membrane structure. Stimulation of glycolysis is probably a compensatory phenomenon for the diminished mitochondrial ATP production. The multiple actions of tamoxifen at relatively low concentrations can represent a continuous burden to the overall hepatic functions during long treatment periods.  相似文献   

20.
The catalytic mechanism of 6-phosphogluconate dehydrogenase requires the inversion of a Lys/Glu couple from its natural ionization state. The pKa of these residues in free and substrate bound enzymes has been determined measuring by ITC the proton release/uptake induced by substrate binding at different pH values. Wt 6-phosphogluconate dehydrogenase from Trypanosoma brucei and two active site enzyme mutants, K185H and E192Q were investigated. Substrate binding was accompanied by proton release and was dependent on the ionization of a group with pKa 7.07 which was absent in the E192Q mutant. Kinetic data highlighted two pKa, 7.17 and 9.64, in the enzyme–substrate complex, the latter being absent in the E192Q mutant, suggesting that the substrate binding shifts Glu192 pKa from 7.07 to 9.64. A comparison of wt and E192Q mutant appears to show that the substrate binding shifts Lys185 pKa from 9.9 to 7.17. By comparing differences in proton release and the binding enthalpy of wt and mutant enzymes, the enthalpic cost of the change in the protonation state of Lys185 and Glu192 was estimated at ≈ 6.1 kcal/mol. The change in protonation state of Lys185 and Glu192 has little effect on Gibbs free energy, 240–325 cal/mol. However proton balance evidences the dissociation of other group(s) that can be collectively described by a single pKa shift from 9.1 to 7.54. This further change in ionization state of the enzyme causes an increase of free energy with a total cost of 1.2–2.3 kcal/mol to set the enzyme into a catalytically competent form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号