首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioprotection of pea roots against Aphanomyces euteiches by the arbuscular mycorrhizal fungus G. mosseae was demonstrated to depend on a fully established symbiosis. This was related with induction of mycorrrhiza-related chitinolytic enzymes. Possible mechanisms implicated in bioprotection are discussed.  相似文献   

2.
本研究采用温室盆栽试验,利用丛枝菌根(AM)真菌摩西管柄囊霉Funneliformis mosseae进行接种试验,研究了在Cd胁迫下(0、5、15和30mg/kg)接种AM真菌对高羊茅Festuca elata ‘Crossfire II’的生物量、防御酶活性、磷和镉(Cd)含量的影响。结果表明,随着Cd浓度的增加,高羊茅的菌根侵染率和菌根相对依赖性有所增加。接种AM真菌改善了磷从植株根系向地上部的转运,有助于植株在地上部积累更多的磷。此外,AM真菌和Cd胁迫对高羊茅植株抗氧化酶活性都有显著影响,在镉胁迫下,与未接种植株相比,接种AM真菌显著提高了植株的过氧化氢酶活性,而显著降低了植株的丙二醛含量。与未接种植株相比,接种摩西管柄囊霉显著提高了寄主植物对Cd的富集能力,有利于重金属在根部的积累,同时降低了地上部的Cd含量。本研究表明,高羊茅-丛枝菌根共生体在Cd污染土壤的修复中具有潜在应用价值。  相似文献   

3.
We studied the production of xyloglucanase enzymes of pea and lettuce roots in the presence of saprobe and arbuscular mycorrhizal (AM) fungi. The AM fungus Glomus mosseae and the saprobe fungi Fusarium graminearum, Fusarium oxysporum-126, Trichoderma harzianum, Penicillium chrysogenum, Pleurotus ostreatus and Aspergillus niger were used. G. mosseae increased the shoot and root dry weight of pea but not of lettuce. Most of the saprobe fungi increased the level of mycorrhization of pea and lettuce, but only P. chrysogenum and T. harzianum inoculated together with G. mosseae increased the dry weight of pea and lettuce respectively. The AM and saprobe fungi increased the production of xyloglucanases by plant roots. The level of xyloglucanase activities and the number of xyloglucanolytic isozymes in plants inoculated with G. mosseae and most of the saprobe fungi tested were higher than when both microorganisms were inoculated separately. The possible relationship between xylogucanase activities and the ability of AM and saprobe fungi to improve the dry weight and AM root colonization of plants was discussed.  相似文献   

4.
AIMS: This study investigates how autochthonous micro-organisms [bacterium and/or arbuscular mycorrhizal (AM) fungi] affected plant tolerance to Zn contamination. METHODS AND RESULTS: Zinc-adapted and -nonadapted Glomus mosseae strains protected the host plant against the detrimental effect of Zn (600 microg g(-1)). Zn-adapted bacteria increased root growth and N, P nutrition in plants colonized by adapted G. mosseae and decreased the specific absorption rate (SAR) of Cd, Cu, Mo or Fe in plants colonized by Zn-nonadapted G. mosseae. Symbiotic structures (nodule number and extraradical mycelium) were best developed in plants colonized by those Zn-adapted isolates that were the most effective in increasing plant Zn tolerance. The bacterium also increased the quantity and quality (metabolic characteristics) of mycorrhizal colonization, with the highest improvement for arbuscular vitality and activity. Inocula also enhanced soil enzymatic activities (dehydrogenase, beta-glucosidase and phosphatase) and indol acetic acid (IAA) accumulation, particularly in the rhizosphere of plants inoculated with Zn-adapted isolates. CONCLUSIONS: Glomus mosseae strains have a different inherent potential for improving plant growth and nutrition in Zn-contaminated soil. The bacterium increased the potential of mycorrhizal mycelium as inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY: Mycorrhizal performance, particularly that of the autochthonous strain, was increased by the bacterium and both contributed to better plant growth and establishment in Zn-contaminated soils.  相似文献   

5.
To analyse the effect of arbuscular mycorrhizal (AM) colonization on tomato gene expression, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) patterns of crude extracts, soluble and membrane proteins of tomato roots, either mycorrhizal and the AM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe or non-mycorrhizal, have been compared. In the three fractions analysed, AM colonization induced up-regulation with down-regulation of the synthesis of polypeptides already present in tomato roots and induction of some new polypeptides. Separation of root extracts into soluble and membrane fractions allowed us to identify two soluble, and five membrane-bound, newly induced polypeptides in AM roots. Comparison of the protein patterns of AM roots with those of the external mycelium of G. mosseae showed that one of the newly induced polypeptides might correspond to a fungal polypeptide. By using this experimental approach, we have been able to detect 44 polypeptides that are differentially displayed in tomato roots as a consequence of the establishment of the AM symbiosis.  相似文献   

6.
于永光  赵斌 《微生物学报》2008,27(2):209-216
设计在不同pH水平(4.3、5.1、5.8、6.8)下两种VA菌根真菌Glomus mosseae和Gigaspora margarita对紫云英Astragalus sinicus进行单接种、混合接种及无接种对照的盆栽实验。对紫云英地上和地下部分生物量、根部侵染率、SDH和ALP酶活进行了检测。实验结果表明:紫云英的生长效应与VA菌根真菌的侵染率及两种酶活成明显相关性。土壤pH升高,单接种Glomus mosseae和混合接种的侵染率也随之升高,而单接种Gigaspora margarita的侵染率呈现  相似文献   

7.
于永光  赵斌 《菌物学报》2008,27(2):209-216
设计在不同pH水平(4.3、5.1、5.8、6.8)下两种VA菌根真菌Glomus mosseae和Gigaspora margarita对紫云英Astragalus sinicus进行单接种、混合接种及无接种对照的盆栽实验.对紫云英地上和地下部分生物量、根部侵染率、SDH和ALP酶活进行了检测.实验结果表明:紫云英的生长效应与VA菌根真菌的侵染率及两种酶活成明显相关性.土壤pH升高,单接种Glomus mosseae和混合接种的侵染率也随之升高,而单接种Gigaspora margarita的侵染率呈现出先上升后下降的趋势.本实验设计了特异性扩增Glomus mosseae和Gigaspora margarita的引物gml和gigl,在混合接种实验中,nested PCR扩增结果显示:在低pH水平下(4.3-5.1)大多数根段为Gigaspora margarita所侵染,在高pH水平下(5.8-6.8)Glomusmosseae表现出较强的竞争力,但并没有检测到两种VA真菌存在于同一条侵染根段;对比单接种实验,在低pH水平下,Glomus mosseae显著抑制了Gigaspora margarita的侵染,而在高pH水平下Gigasporamargarita明显促进Glomus mosseae的侵染.  相似文献   

8.
9.
Sbrana C  Giovannetti M 《Mycorrhiza》2005,15(7):539-545
In this work, we report the occurrence of chemotropism in the arbuscular mycorrhizal (AM) fungus Glomus mosseae. Fungal hyphae were able to respond to host-derived signals by reorienting their growth towards roots and to perceive chemotropic signals at a distance of at least 910 microm from roots. In order to reach the source of chemotropic signals, hyphal tips crossed interposed membranes emerging within 1 mm from roots, eventually establishing mycorrhizal symbiosis. The specificity of chemotropic growth was evidenced by hyphal growth reorientation and membrane penetration occurring only in experimental systems set up with host plants. Since pre-symbiotic growth is a critical stage in the life cycle of obligate AM fungal symbionts, chemotropic guidance may represent an important mechanism functional to host root location, appressorium formation and symbiosis establishment.  相似文献   

10.
The effect of arbuscular mycorrhizas on fructan accumulation was studied in barley ( Hordeum vulgare ) infected with Glomus mosseae . Treatments with and without fertilizer were included in order to distinguish between mere fertilizer effects and the effects of the symbiosis, and plants were harvested at two different time points, 35 and 50 d after planting. Fructan was the major storage carboyhdrate in both leaves and roots. The amounts of fructan were markedly altered in the mycorrhizal plants. In roots of non-fertilized mycorrhizal plants, fructan pools were significantly greater than in the corresponding non-mycorrhizal plants. By contrast, fertilization caused a general decrease in amounts of fructan in roots. The increase of fructan in mycorrhizal roots was correlated with a decrease of invertase activity. In leaves, fructan pools decreased or remained unchanged upon mycorrhizal infection; fertilization had a similar effect. However, when individual leaves of a plant were compared, intriguing effects of the mycorrhizal symbiosis could be observed. Whereas in non-mycorrhizal plants, the youngest leaves had the highest fructan contents and the oldest leaves the lowest (as previously reported), this gradient was markedly altered in mycorrhizal plants, indicating systemic effects of mycorrhiza on assimilate partitioning in shoots.  相似文献   

11.
AM 真菌影响三叶草根系抗氧化酶活性的系统效应   总被引:1,自引:0,他引:1  
本文对三叶草接种AM 真菌根内球囊霉, 用盆栽试验和分根试验测定根系的菌根侵染率和抗氧化酶活性, 研究AM 真菌对根系抗氧化酶活性的影响以及该影响的系统性。结果表明, 盆栽试验中接种根内球囊霉显著提高了根系中SOD、POD、CAT 的活性, 表明AM 真菌可以促进根系的抗氧化酶活性; 分根试验中一半根系接种了根内球囊霉的植株, 其另一半未接种的根系SOD、POD 活性也增加, 表明AM 真菌对根系抗氧化酶系统的促进具有系统效应。由于抗氧化酶系统是植物产生抗逆性的生理生化基础, 可以推测, AM 真菌对根系抗氧化酶活性的系统性提高有助于保护根系整体, 而非仅仅保护受侵染根段。  相似文献   

12.
VA菌根真菌与植物相互选择性的研究   总被引:13,自引:3,他引:13  
采用土培试验了灭菌条件下同一菌种对不同植物和不同菌咱对同一植物的接种效应。试验结果表明,供试植物都能与VA菌根真菌形成共生体系,接种VA菌根真菌促进了植物的生长,植株干物质量显著是否 同VA菌根真菌与宿主植物形成共生体的能力及对植物的接种疚差异明显,由此可见,选择优势菌咱和宿主植物组合,对于VA菌根真菌的广泛应用及农业生产具有重要的实践作用。  相似文献   

13.
14.
Effects of arbuscular mycorrhizal (AM) symbiosis on health ofLinum usitatissimum infected by fungal pathogens were investigated exemplarily. Physiological and biochemical analyses were done to explain the mechanisms underlying the AM effects. AM plants showed increased resistance against the wilt pathogen (Fusarium oxysporum f. sp.lini), the level of this effects depended on the plant cultivars which all showed the same level of root colonization by arbuscular mycorrhizal fungi (AMF). In contrary to that, AM plants were highly susceptible against the shoot pathogenOidium lini, but they suffered less than non-AM plants in terms of shoot fresh weight, CO2 assimilation and content of sucrose in shoot apex. This indicates that AM not only activates resistance mechanisms but also can induce tolerance against pathogens. The concentration of phytohormones such as auxin- and gibberellin-like substances were increased in shoots of AM plants. In roots the ethylene production was increased, too. Furthermore the content and composition of free sterols were highly altered in leaves of AM plants. Root infection by AMF caused an increased respiratory activity and a reduced degree of DNA methylation, but both modifications only occurred in infected root parts indicating an increasing gene activity. The presented results suggest that nearly all parts of a plant are influenced by AM but not in the same manner. In the case of mildewed linseed the effect of AM on plant health was impressing, it indicates that AM has an ability to induce tolerance.  相似文献   

15.
Pennisetum pedicellatum plants were inoculated with Glomus mosseae, G. aggregatum and Gigaspora margarita. There were both quantitative and qualitative changes in the protein pattern of inoculated plants. Gi. margarita induced increase in protein in the plants. Acid phosphatase, alkaline phosphatase, superoxide dismutase and chitinase activities were high at the beginning of infection, but declined as the infection advanced. Gi. margarita was an efficient fungus in enhancing enzyme activity and proteins in roots compared with G. mosseae and G. aggregatum. Protein profile revealed the presence of 12 peaks in mycorrhizal plants compared with 8 in nonmycorrhizal plants.  相似文献   

16.
Previous studies have described that arbuscular mycorrhizal fungi (AMF) can reduce the deleterious effect of Verticillium dahliae Kleb. on pepper growth and yield. In mycorrhizal plants, the bioprotection against soil-borne pathogens can result from the preactivation of defence responses that include some structural modifications and the accumulation of Pathogenesis-Related (PR) proteins. Our first objective was to study if V. dahliae induced defence mechanisms in roots before infected pepper developed visible symptoms of disease. The second aim was to determine if AMF induced defence-related enzymatic activities in pepper roots before or after pathogen’s attack. Results showed that the colonization of pepper roots by Glomus deserticola (Trappe, Bloss and Menge) induced the appearance of new isoforms of acidic chitinases, superoxide dismutase (SOD) and, at early stages, peroxidases. In contrast, V. dahliae neither stimulated the phenylpropanoid pathway nor elicited hydrolytic activities in infected pepper roots. Only in mycorrhizal plants, the inoculation with V. dahliae slightly increased both phenylalanine ammonia-lyase (PAL) and peroxidase activities two weeks later. Mycorrhizal-specific induction of new isoforms of acidic chitinases and SOD together with enhanced peroxidase and PAL activities 2 weeks after pathogen inoculation could be involved in the biocontrol of Verticillium-induced wilt in pepper by AMF.  相似文献   

17.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

18.
Spores of Gl mosseae and Gig gigantea germinated on minimal medium produced extraradical mycelium. Gl. mosseae infected roots of S. officinarum in in vitro condition were inoculated in M medium with in vitro cultured roots of Sorghum vulgare (test roots). From the infected root of S. officinarum, the mycelium developed and it infected the test roots. The roots developed new mycelia and further the mycelia produced a few hyaline spores. In MS medium combined with soil extract, root exudate, thiamine HCl and inositol combination, spore germination and germ tube growth were higher when compared with other media.  相似文献   

19.
The effects of soil inoculation with arbuscular mycorrhizal (AM) fungi and a mycorrhiza helper bacterium (MHB) were investigated on mulberry and papaya plants already established in the field. Ten-year-old mulberry plants (var. M5) were inoculated with Glomus fasciculatum and 1.5-year-old papaya plants (var. Solo) were inoculated with a mixed culture of G. mosseae and G. caledonium with or without Bacillus coagulans at two levels of P fertilizer. Growth, P uptake, yield and AM colonization levels were monitored. Leaf yield in mulberry and fruit yield in papaya were minimal in uninoculated plants given 50% recommended P. However, crop yields of both mulberry and papaya inoculated with AM fungi alone or together with the bacterium and given 50% recommended P were statistically on a par with that of uninoculated plants given 100% recommended P. As inoculation of B. coagulans increased mycorrhiza levels in AM fungal-inoculated plants, this may be included in the class of MHB. Thus, mulberry and papaya already established in the field may respond to AM inoculation and MHB may increase symbiosis development by efficient AM fungi.  相似文献   

20.
本研究系统分析了大豆(品种:‘鲁豆4’)接种AM真菌Glomus fasciculatum和胞囊线虫(SCN,Heterodera glycines)4号生理小种后各处理菌根和线虫侵染率、几丁质酶和苯丙氨酸解氨酶(PAL)活性及几丁质酶基因Chib1和苯丙氨酸解氨酶基因PAL5转录物的动态变化。结果表明,接种SCN对AM真菌的侵染率没有产生显著影响,但先接种AM真菌后接种SCN的大豆根内线虫侵染率明显低于只接种SCN的处理。另外,先接种AM真菌后接种SCN的大豆根内几丁质酶和PAL活性显著提高,活性高峰出现在接种线虫后的第3天。值得注意的是,先接种AM真菌后接种SCN的大豆根内两种基因Chib1和PAL5转录物高峰也出现在接种SCN后的第3天,即AM真菌侵染率快速上升而SCN侵染率快速下降时期。所以Chib1和PAL5基因的表达可能是AM真菌诱导的抗大豆胞囊线虫病害防御反应的一种表现。因此推测Chib1和PAL5直接参与了AM真菌诱导大豆抗胞囊线虫病害的防御反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号