首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Optimal sperm allocation should differ according to the level of polyandry within a population, because the risk of sperm competition depends on the re-mating frequency of females. We compared the number of sperm ejaculated by males into the female reproductive organ between strains with different levels of polyandry in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae) when males were reared in different larval densities in a bean. The results showed that males derived from a population with a higher level of polyandry increased ejaculatory expenditure when they were reared under higher larval densities. We discuss the evolutionary correlation of ejaculatory expenditure to the level of polyandry.  相似文献   

2.
Males of many insects eclose with their entire lifetime sperm supply and have to allocate their ejaculates at mating prudently. In polyandrous species, ejaculates of rival males overlap, creating sperm competition. Recent models suggest that males should increase their ejaculate expenditure when experiencing a high risk of sperm competition. Ejaculate expenditure is also predicted to vary in relation to sperm competition intensity. During high intensity, where several ejaculates compete for fertilization of the female''s eggs, ejaculate expenditure is expected to be reduced. This is because there are diminishing returns of providing more sperm. Additionally, sperm numbers will depend on males'' ability to assess female mating status. We investigate ejaculate allocation in the polyandrous small white butterfly Pieris rapae (Lepidoptera). Males have previously been found to ejaculate more sperm on their second mating when experiencing increased risk of sperm competition. Here we show that males also adjust the number of sperm ejaculated in relation to direct sperm competition. Mated males provide more sperm to females previously mated with mated males (i.e. when competing with many sperm) than to females previously mated to virgin males (competing with few sperm). Virgin males, on the other hand, do not adjust their ejaculate in relation to female mating history, but provide heavier females with more sperm. Although virgin males induce longer non-receptive periods in females than mated males, heavier females remate sooner. Virgin males may be responding to the higher risk of sperm competition by providing more sperm to heavier females. It is clear from this study that males are sensitive to factors affecting sperm competition risk, tailoring their ejaculates as predicted by recent theoretical models.  相似文献   

3.
In polyandrous insect species, males may transfer substances to reduce sperm competition by affecting female sexual receptivity. In this study, we determined the incidence of polyandry in females of Western bean cutworm (WBC), Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), and investigated the influence of both previous female and male mating history on the duration of mating, the female refractory period, and subsequent calling behavior of females under controlled laboratory conditions. The mating status of WBC males influenced mating duration, with copulations involving previously mated males taking longer, possibly related to the time required to produce an ejaculate. The duration of the female refractory period and the onset time of recalling during the scotophase were both affected by female mating history, but not by that of the males. Females had a shorter refractory period and resumed calling activity earlier after their second and third matings than after their first mating. The earlier onset of calling by previously mated females could reduce competition with virgin females and their shorter refractory period could explain the high incidence of polyandry observed in nature.  相似文献   

4.
Sperm competition theory predicts that males should increase their expenditure on the ejaculate with increasing risk of sperm competition, but decrease their expenditure with increasing intensity. There is accumulating evidence for sperm competition theory, based on examinations of testes size and/or the numbers of sperm ejaculated. However, recent studies suggest that ejaculate quality can also be subject to selection by sperm competition. We used experimental manipulations of the risk and intensity of sperm competition in the cricket, Teleogryllus oceanicus. We found that males produced ejaculates with a greater percentage of live sperm when they had encountered a rival male prior to mating. However, when mating with a female that presented a high intensity of sperm competition, males did not respond to risk, but produced ejaculates with a reduced percentage of live sperm. Our data suggest that males exhibit a fine-tuned hierarchy of responses to these cues of sperm competition.  相似文献   

5.
The Darwin–Bateman paradigm recognizes competition among males for access to multiple mates as the main driver of sexual selection. Increasingly, however, females are also being found to benefit from multiple mating so that polyandry can generate competition among females for access to multiple males, and impose sexual selection on female traits that influence their mating success. Polyandry can reduce a male''s ability to monopolize females, and thus weaken male focused sexual selection. Perhaps the most important effect of polyandry on males arises because of sperm competition and cryptic female choice. Polyandry favours increased male ejaculate expenditure that can affect sexual selection on males by reducing their potential reproductive rate. Moreover, sexual selection after mating can ameliorate or exaggerate sexual selection before mating. Currently, estimates of sexual selection intensity rely heavily on measures of male mating success, but polyandry now raises serious questions over the validity of such approaches. Future work must take into account both pre- and post-copulatory episodes of selection. A change in focus from the products of sexual selection expected in males, to less obvious traits in females, such as sensory perception, is likely to reveal a greater role of sexual selection in female evolution.  相似文献   

6.
Sperm competition theory predicts that males should allocate sperm according to the number of competing ejaculates. Prudent allocation of sperm in response to different levels of sperm competition has been found across a number of taxa; however, some studies suggest that males may not always allocate sperm as expected. Here we examine sperm allocation in the Australian field cricket Teleogryllus oceanicus, using female mating status (virgin, singly mated, or multiply mated) to manipulate male perception of sperm competition risk and intensity. Consistent with theory, we found that male crickets adjust their ejaculates in response to female mating status. However, rather than altering the absolute numbers of sperm transferred to a female, males altered the quality of their sperm. Males ejaculated sperm of low viability (proportion of live vs. dead sperm) when mating with virgins, increased sperm viability when mating with singly mated females, but reduced sperm viability when mating with multiply mated females. Our results show that variation in ejaculate quality can be an important aspect of strategic ejaculation by males and suggest caution in the interpretation of studies in which males do not appear to allocate sperm according to theory.  相似文献   

7.
Reproductive males face a trade‐off between expenditure on precopulatory male–male competition—increasing the number of females that they secure as mates—and sperm competition—increasing their fertilization success with those females. Previous sperm allocation models have focused on scramble competition in which males compete by searching for mates and the number of matings rises linearly with precopulatory expenditure. However, recent studies have emphasized contest competition involving precopulatory expenditure on armaments, where winning contests may be highly dependent on marginal increases in relative armament level. Here, we develop a general model of sperm allocation that allows us to examine the effect of all forms of precopulatory competition on sperm allocation patterns. The model predicts that sperm allocation decreases if either the “mate‐competition loading,”a, or the number of males competing for each mating, M, increases. Other predictions remain unchanged from previous models: (i) expenditure per ejaculate should increase and then decrease, and (ii) total postcopulatory expenditure should increase, as the level of sperm competition increases. A negative correlation between a and M is biologically plausible, and may buffer deviations from the previous models. There is some support for our predictions from comparative analyses across dung beetle species and frog populations.  相似文献   

8.
Multiple mating or group spawning leads to post‐copulatory sexual selection, which generally favours ejaculates that are more competitive under sperm competition. In four meta‐analyses we quantify the evidence that sperm competition (SC) favours greater sperm number using data from studies of strategic ejaculation. Differential investment into each ejaculate emerges at the individual level if males exhibit phenotypic plasticity in ejaculate properties in response to the likely risk and/or intensity of sperm competition after a given mating. Over the last twenty years, a series of theoretical models have been developed that predict how ejaculate size will be strategically adjusted in relation to: (a) the number of immediate rival males, with a distinction made between 0 versus 1 rival (‘risk’ of SC) and 1 versus several rivals (‘intensity’ of SC); (b) female mating status (virgin or previously mated); and (c) female phenotypic quality (e.g. female size or condition). Some well‐known studies have reported large adjustments in ejaculate size depending on the relevant social context and this has led to widespread acceptance of the claim that strategic sperm allocation occurs in response to each of these factors. It is necessary, however, to test each claim separately because it is easy to overlook studies with weak or negative findings. Compiling information on the variation in outcomes among species is potentially informative about the relevance of these assumptions in different taxa or mating systems. We found strong evidence that, on average, males transfer larger ejaculates to higher quality females. The effect of female mating status was less straightforward and depended on how ejaculate size was measured (i.e. use of proxy or direct measure). There is strong evidence that ejaculate size increased when males were exposed to a single rival, which is often described as a response to the risk of SC. There is, however, no evidence for the general prediction that ejaculate size decreases as the number of rivals increases from one to several males (i.e. in response to a higher intensity of SC which lowers the rate of return per sperm released). Our results highlight how meta‐analysis can reveal unintentional biases in narrative literature reviews. We note that several assumptions of theoretical models can alter an outcome's predicted direction in a given species (e.g. the effect of female mating status depends on whether there is first‐ or last‐male sperm priority). Many studies do not provide this background information and fail to make strong a priori predictions about the expected response of ejaculate size to manipulation of the mating context. Researchers should be explicit about which model they are testing to ensure that future meta‐analyses can better partition studies into different categories, or control for continuous moderator variables.  相似文献   

9.
The question why females in many species mate with several males (polyandry) has engaged the interest of evolutionary biologists for many years, and many studies have been conducted on the nature of the benefits that the females gain from polyandry. To understand the variation of female mating rates among species and populations it is indispensable to test the prediction that females of more polyandrous populations experience larger fitness benefit than those of less polyandrous populations. We compared the fitness components of two strains of the adzuki bean beetle Callosobruchus chinensis that have genetically different female mating rates. We measured the number of hatched eggs of once-copulated females and twice-copulated females in each strain. The statistical interaction for the number of hatched eggs between the number of matings and strains was determined. The increase in the number of hatched eggs is larger for the lower mating-rate strain than for the higher mating rate strain. This means that females of the lower mating-rate strain would have larger fitness gain from polyandry than those of the higher mating-rate strain. The actual mating rates of females did not reflect female interests in adzuki bean beetles, suggesting they are affected by sexual conflict.  相似文献   

10.
P2, the proportion of offspring sired by the second male to mate, is an indicator of the outcome of postcopulatory sexual selection, which occurs through sperm competition and/or cryptic female choice. We determined the appropriate dose of gamma radiation for sterilization of adult males and, using the sterile male technique, measured P2 in the adzuki bean beetle, Callosobruchus chinensis. Adult males of C. chinensis were almost completely sterilized when irradiated at 80 Gy. Thus, we obtained sterile males through irradiation at this dose. Neither the probability of female first mating nor the probability of female remating was affected by whether females were paired with normal or sterile males. The P2 calculated from the hatching success of eggs laid by females that mated both with normal and sterile males did not differ between reciprocal mating sequences, indicating that the sterilization has no effect on sperm fertilizing ability. The P2 was estimated at 0.25. This study shows that female remating in C. chinensis means the coexistence of sperm from two males and thus the occurrence of postcopulatory sexual selection within the female reproductive tract, resulting in first-male sperm precedence.  相似文献   

11.
The evolution of female multiple mating, or polyandry, is difficult to comprehend and thus has been the subject of a large number of studies. However, there is only a little evidence for genetic variation in polyandry, although the evolution of a trait via selection requires genetic variation that enables the trait to respond to selection. We carried out artificial selection for increased and decreased female propensity to remate as a measure of polyandry to investigate whether this trait has a genetic component that can respond to selection in the adzuki bean beetle, Callosobruchus chinensis. Artificial selection produced responses in both directions and divergence between the selection lines in the female propensity to remate. Although the experimental design adopted in this study selected jointly for female receptivity to remating, which is a trait of females, and male ability to inhibit female remating—both of which are associated with female propensity to remate—the observed response to selection was attributable only to the female receptivity to remating. This study indicates that the female receptivity to remating has significant additive genetic variation and can evolve according to whether remating is advantageous or disadvantageous to females in C. chinensis.  相似文献   

12.
Male bushcrickets transfer a spermatophore at mating that consists of a sperm-containing ampulla and a sperm-free mass, the spermatophylax, that is consumed by the female during insemination. The costs of spermatophore production for males and benefits of consumption for females result in reversals in courtship roles in nutrient limited populations that increase both the risk and intensity of sperm competition. Here we show that under conditions characteristic of courtship role reversal, male expenditure on the spermatophore is dependent on female size. When mating with small females, males increase the amount of spermatophylax material and sperm, as expected from the increased sperm competition risk associated with courtship role reversal. However, males reduce the amount of spermatophylax material and sperm transferred to larger females. Since larger females have a higher mating success when competing for nurturant males, the intensity of sperm competition covaries with female size. Reduced ejaculate expenditure under increased sperm competition intensity is in accord with theoretical expectation.  相似文献   

13.
Aging in all organisms is inevitable. Male age can have profound effects on mating success and female reproduction, yet relatively little is known on the effects of male age on different components of the ejaculate. Furthermore, in mass‐reared insects used for the Sterile Insect Technique, there are often behavioral differences between mass‐reared and wild males, while differences in the ejaculate have been less studied. The ejaculate in insects is composed mainly of sperm and accessory gland proteins. Here, we studied how male age and strain affected (i) protein quantity of testes and accessory glands, (ii) the biological activity of accessory gland products injected into females, (iii) sperm viability, and (iv) sperm quantity stored by females in wild and mass‐reared Anastrepha ludens (Diptera: Tephritidae). We found lower protein content in testes of old wild males and lower sperm viability in females mated with old wild males. Females stored more sperm when mated to young wild males than with young mass‐reared males. Accessory gland injections of old or young males did not inhibit female remating. Knowledge of how male age affects different ejaculate components will aid our understanding on investment of the ejaculate and possible postcopulatory consequences on female behavior.  相似文献   

14.
Many studies demonstrate that ejaculate size may be influenced by male condition, female quality and the risk or intensity of sperm competition. In the present study, the effect of male and female conditions, male mating history and female mating status on ejaculate sperm numbers in the polyandrous moth Helicoverpa armigera is examined. A large variation in ejaculate size is found and, although female body size and male age influence ejaculate size, female age and copula duration do not. Both male and female mating histories have significant effects on ejaculate sperm numbers. Males reduce ejaculate expenditure in successive matings but deliver significantly more apyrene and eupyrene sperm to nonvirgin than to virgin females.  相似文献   

15.
Using a novel methodology, natural ejaculate volumes of 14 male rainbow trout Oncorhynchus mykiss were compared when males were housed with one female (absence of a rival male) or with another male and one female (rival male present). Contrary to theoretical predictions, male ejaculate expenditure was not influenced by the presence of a rival male. Male gape duration was positively correlated with the volume of sperm ejaculated. Release of sperm by the male always preceded release of eggs by the female. Analysis of the timing and duration of ejaculation suggests that males may rely on the timing and proximity of gamete release to enhance fertilization success. These results are discussed in the context of sperm competition theory.  相似文献   

16.
Reproductive interference is any interspecific sexual interaction that adversely affects female fitness through indiscriminate reproductive activities. It can be a driving force of resource partitioning in conjunction with resource competition. We previously showed that the bean beetle Callosobruchus maculatus is superior in larval resource competition, but vulnerable in reproductive interference, compared with its congener C. chinensis. We hypothesized that these two species might use two resources differently if one of the resources modified the intensity of reproductive interference or resource competition. We observed that C. maculatus females often enter gaps between beans to avoid mating attempts of heterospecific males, and hypothesized that removing bean gaps would strengthen reproductive interference. Therefore, we provided normal beans with gaps and split beans without gaps to females of the two species housed with conspecific or heterospecific males or no males and compared the number of eggs on each bean type among treatments. Callosobruchus maculatus females housed with heterospecific males were more likely to oviposit on normal beans than C. chinensis females. As a result, more C. chinensis adults hatched from split beans and more C. maculatus hatched from normal beans when females and males of both species were housed together. Thus, oviposition resource partitioning resulted from the combination of female avoidance of reproductive interference and resource competition.  相似文献   

17.
Multiple mating in females is widespread among insects in spite of the risk of predation, disease acquisition and/or physical injury that may occur. One common consequence of female polyandry is competition among sperm from two or more males within the female to fertilize the ova. This competition is an evolutionary driving force that determines a series of adaptations in both males and females. In this work, we examine some behavioral, morphological and physiological characteristics of males and females of two Heteropteran species that are related to their monoandrous/polyandrous mating behavior. Females of Macrolophus pygmaeus (Het. Miridae), the monoandrous species, were coy about accepting a male partner, spent a short time in copula, and received only a small volume of ejaculate. Even so, with only one mating event, they received enough sperm to fertilize most of their ova (21 days after mating all females were still fertile). In contrast, females of Nesidiocoris tenuis (Het. Miridae), the polyandrous species, readily accepted any mating partner, spent a long time in copula and received a large volume of ejaculate. However, these latter females soon ran out of sperm and needed to mate periodically in order to maintain a sufficient sperm supply to fertilize their eggs. As predicted, based on current theory (Simmons, 2001b), an increased investment in spermatogenesis was detected in N. tenuis with relation to M. pygmaeus. The males of the polyandrous species had larger accessory reproductive glands, seminal vesicles, testes and sperm cells than those of the monoandrous species.  相似文献   

18.
Females of many taxa often copulate with multiple males and incite sperm competition. On the premise that males of high genetic quality are more successful in sperm competition, it has been suggested that females may benefit from polyandry by accruing 'good genes' for their offspring. Laboratory studies have shown that multiple mating can increase female fitness through enhanced embryo viability, and have exposed how polyandry influences the evolution of the ejaculate. However, such studies often do not allow for both female mate choice and male-male competition to operate simultaneously. Here, I took house mice (Mus domesticus) from selection lines that had been evolving with (polygamous) and without (monogamous) sperm competition for 16 generations and, by placing them in free-ranging enclosures for 11 weeks, forced them to compete for access to resources and mates. Parentage analyses revealed that female reproductive success was not influenced by selection history, but there was a significant paternity bias towards males from the polygamous selection lines. Therefore, I show that female house mice benefit from polyandry by producing sons that achieve increased fitness in a semi-natural environment.  相似文献   

19.
Individuals of many species copulate with multiple mates (polygamy). Multiple mating by females (polyandry) promotes sperm competition, which has broad implications for the evolution of the ejaculate. Multigenerational studies of polygamous insects have shown that the removal of sexual selection has profound fitness consequences for females, and can lead to an evolutionary divergence in ejaculate traits. However, the evolutionary implications of polygamous mating across successive generations have not before been demonstrated in a vertebrate. By manipulating the mating system we were able to reinstate postcopulatory sexual selection in a house mouse population that had a long history of enforced monogamy. Following eight generations of selection, we performed sperm quality assays on males from both the polygamous and monogamous selection lines. We applied a principal component analysis to summarize the variation among 12 correlated sperm traits, and found that males evolving under sperm competition had significantly larger scores on the first axis of variation, reflecting greater numbers of epididymal sperm and increased sperm motility, compared to males from lines under relaxed selection. Moreover, we found a correlated response in the size of litters born to females in lines subject to sperm competition. Thus, we present significant evidence that sperm competition has profound fitness consequences for both male and female house mice.  相似文献   

20.
Benefits of multiple mating to females may come from the acquisition of water in male ejaculates. This hypothesis seems plausible in species in which males provide females with large ejaculates and has been tested with the prediction that females mate more frequently when an external source of water is unavailable. My study observed that females deprived of water were more likely to remate than females given water in the adzuki bean beetle, Callosobruchus chinensis. This result suggests that females may absorb the water in male ejaculates and thus change their remating receptivity according to the need for additional water. However, compared with related species, the ejaculate size is smaller, so ejaculatory hydration benefits are expected to be small in this species. There were no significant differences in lifetime fecundity and longevity between females that were allowed to receive one ejaculate from remating and females that were not allowed to do so when water was unavailable. This provides no evidence that receiving an additional ejaculate enhances female fitness. Thus, obtaining water from male ejaculates may partly compensate the costs of remating to females, although it alone would be insufficient to explain polyandry in C. chinensis. Increased mating frequency in water‐deprived females would not necessarily support the hypothesis that females remate for ejaculatory hydration benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号