首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We complemented the Cl- conductance defect in cystic fibrosis lymphocytes by transfection with wild-type cDNA for the cystic fibrosis transmembrane conductance regulator (CFTR). Stable transfectants were selected and subjected to molecular and functional analyses. We detected expression of endogenous CFTR mRNA in several CF and non-CF lymphoid cell lines by PCR. Expression from cDNA in the transfectants was demonstrated by amplifying vector-specific sequences. Both fluorescence and patch-clamp assays showed that transfectants expressing wild-type CFTR acquired properties previously associated with Cl- conductance (GCl) regulation in non-CF lymphocytes: (i) GCl was elevated in the G1 phase of the cell cycle, (ii) cells fixed at G1 increase GCl in response to increased cellular cAMP or Ca2+, (iii) agonist-induced increases in GCl were lost as the cells progressed to the S phase of the cell cycle. The cell cycle and agonist dependent regulation of GCl was not observed in CF lymphocytes transfected with CFTR cDNA containing stop codons in all reading frames at exon 6. Our findings indicate that lymphocytes express functional CFTR since wild-type CFTR corrects the defects in Cl- conductance regulation found in CF lymphocytes. Evaluation of the mechanism of this novel, CFTR-mediated regulation of GCl during cell cycling should provide further insights into the function of CFTR.  相似文献   

2.
Cystic fibrosis (CF) is characterised by impaired epithelial ion transport and is caused by mutations in the cystic fibrosis conductance regulator protein (CFTR), a cAMP/PKA and ATP-regulated chloride channel. We recently demonstrated a cAMP/PKA/calcineurin (CnA)-driven association between annexin 2 (anx 2), its cognate partner –S100A10 and cell surface CFTR. The complex is required for CFTR and outwardly rectifying chloride channel function in epithelia. Since the cAMP/PKA-induced Cl current is absent in CF epithelia, we hypothesized that the anx 2–S100A10/CFTR complex may be defective in CFBE41o cells expressing the commonest F508del-CFTR (ΔF-CFTR) mutation. Here, we demonstrate that, despite the presence of cell surface ΔF-CFTR, cAMP/PKA fails to induce anx 2–S100A10/CFTR complex formation in CFBE41o− cells homozygous for F508del-CFTR. Mechanistically, PKA-dependent serine phosphorylation of CnA, CnA–anx 2 complex formation and CnA-dependent dephosphorylation of anx 2 are all defective in CFBE41o− cells. Immunohistochemical analysis confirms an abnormal cellular distribution of anx 2 in human and CF mouse epithelia.

Thus, we demonstrate that cAMP/PKA/CnA signaling pathway is defective in CF cells and suggest that loss of anx 2–S100A10/CFTR complex formation may contribute to defective cAMP/PKA-dependent CFTR channel function.  相似文献   


3.
4.
5.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in a wide variety of epithelial cells, mutations of which are responsible for the hallmark defective chloride secretion observed in cystic fibrosis (CF). Although CFTR has been implicated in bicarbonate secretion, its ability to directly mediate bicarbonate secretion of any physiological significance has not been shown. We demonstrate here that endometrial epithelial cells possess a CFTR-mediated bicarbonate transport mechanism. Co-culture of sperm with endometrial cells treated with antisense oligonucleotide against CFTR, or with bicarbonate secretion-defective CF epithelial cells, resulted in lower sperm capacitation and egg-fertilizing ability. These results are consistent with a critical role of CFTR in controlling uterine bicarbonate secretion and the fertilizing capacity of sperm, providing a link between defective CFTR and lower female fertility in CF.  相似文献   

6.
7.
Cystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport. Using polarized cultures of homozygous F508del CFPAC-1 cells as a model for the human CF pancreatic ductal epithelium we showed that SeV was an efficient gene transfer agent when applied to the apical membrane. The presence of functional CFTR was confirmed using iodide efflux assay. CFTR expression had no effect on cell growth, monolayer integrity, and mRNA levels for key transporters in the duct cell (pNBC, AE2, NHE2, NHE3, DRA, and PAT-1), but did upregulate the activity of apical Cl-/HCO3- and Na+/H+ exchangers (NHEs). In CFTR-corrected cells, apical Cl-/HCO3- exchange activity was further enhanced by cAMP, a key feature exhibited by normal pancreatic duct cells. The cAMP stimulated Cl-/HCO3- exchange was inhibited by dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2-DIDS), but not by a specific CFTR inhibitor, CFTR(inh)-172. Our data show that SeV vector is a potential CFTR gene transfer agent for human pancreatic duct cells and that expression of CFTR in CF cells is associated with a restoration of Cl- and HCO3- transport at the apical membrane.  相似文献   

8.
9.
Cystic fibrosis (CF), an inherited disease characterized by defective epithelial Cl- transport, damages lungs via chronic inflammation and oxidative stress. Glutathione, a major antioxidant in the epithelial lung lining fluid, is decreased in the apical fluid of CF airway epithelia due to reduced glutathione efflux (Gao L, Kim KJ, Yankaskas JR, and Forman HJ. Am J Physiol Lung Cell Mol Physiol 277: L113-L118, 1999). The present study examined the question of whether restoration of chloride transport would also restore glutathione secretion. We found that a Cl- channel-forming peptide (N-K4-M2GlyR) and a K+ channel activator (chlorzoxazone) increased Cl- secretion, measured as bumetanide-sensitive short-circuit current, and glutathione efflux, measured by high-performance liquid chromatography, in a human CF airway epithelial cell line (CFT1). Addition of the peptide alone increased glutathione secretion (181 +/- 8% of the control value), whereas chlorzoxazone alone did not significantly affect glutathione efflux; however, chlorzoxazone potentiated the effect of the peptide on glutathione release (359 +/- 16% of the control value). These studies demonstrate that glutathione efflux is associated with apical chloride secretion, not with the CF transmembrane conductance regulator per se, and the defect of glutathione efflux in CF can be overcome pharmacologically.  相似文献   

10.
Recent evidence strongly suggests that the cystic fibrosis gene product (CFTR) is a Cl- channel. Its properties, however, differ from those of a 30-50 pS outwardly rectifying channel previously implicated as defective in cystic fibrosis. It is still uncertain whether the pleiotropic effects of the CF defect, such as increased airway Na+ absorption and mucus sulfation, are secondary to reduced Cl- conductance, or reflect additional functions of CFTR.  相似文献   

11.
Shen B  Li X  Wang F  Yao X  Yang D 《PloS one》2012,7(4):e34694
Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl(-)) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl(-) transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl(-) channels to mediate Cl(-) transport across lipid bilayer membranes is capable of restoring Cl(-) permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl(-) channel dysfunction.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP sensitive Cl- channel that is defective in cystic fibrosis (CF). The most frequent mutation, namely deltaF508-CFTR, accounts for 66% of CF. Here we show that cAMP-activation of CFTR occurs via at least two distinct pathways: activation of CFTR molecules already present in the plasma membrane and protein kinase A (PKA)-mediated vesicular transport of new CFTR molecules to the plasma membrane and functional insertion into the membrane. We investigated the mechanisms that are responsible for these activation pathways using the Xenopus laevis oocytes expression system. We expressed CFTR and recorded continuously membrane current (Im), conductance (Gm) and capacitance (Cm), which is a direct measure of membrane surface area. Expression of CFTR alone did not change the plasma membrane surface area. However, activation of CFTR with cAMP increased Im, Gm and Cm while deltaF508-CFTR-expressing oocytes showed no response on cAMP. Inhibition of protein kinase A or buffering intracellular Ca2+ abolished the cAMP-induced increase in Cm while increases of Im and Gm were still present. ATP or the xanthine derivative 8-cyclopentyl-1,3-dipropylxanthine (CPX) did not further activate CFTR. Insertion of pre-formed CFTR into the plasma membrane could be prevented by compounds that interfere with intracellular transport mechanisms such as primaquine, brefeldin A, nocodazole. From these data we conclude that cAMP activates CFTR by at least two distinct pathways: activation of CFTR already present in the plasma membrane and exocytotic delivery of new CFTR molecules to the oocyte membrane and functional insertion into it.  相似文献   

13.
The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Whereas a key role of cAMP-dependent phosphorylation in CFTR-channel gating has been firmly established, more recent studies have provided clear evidence for the existence of a second level of cAMP regulation, i.e. the exocytotic recruitment of CFFR to the plasma membrane and its endocytotic retrieval. Regulated trafficking of the CFTR Cl- channel has sofar been demonstrated only in a subset of CFTR-expressing cell types. However, with the introduction of more sensitive methods to measure CFTR cycling and submembrane localization, it might turn out to be a more general phenomenon that could contribute importantly to both the regulation of CFTR-mediated chloride transport itself and to the regulation of other transporters and CFTR-modulated cellular functions. This review aims to summarize the present state of knowledge regarding polarized and regulated CFTR trafficking and endosomal recycling in epithelial cells, to discuss present gaps in our understanding of these processes at the cellular and molecular level, and to consider its possible implications for cystic fibrosis.  相似文献   

14.
The cystic fibrosis (CF) phenotype is characterized by a regulatory defect in Cl- permeability in epithelia. A gene (250,000 base pairs) that is associated with this autosomal genetic disorder has been identified. To determine the cellular function of the recently cloned gene product, the cystic fibrosis transmembrane conductance regulator (CFTR), we have produced antibody against a synthetic peptide deduced from the CFTR cDNA sequence corresponding to positions 505-511. This site includes phenylalanine 508, the deletion of which is the most commonly expressed mutation in CF. We sought to determine whether the anti-CFTR505-511 peptide antibody could modulate the activation of the volume-sensitive, Ca(2+)-dependent, as well as the cAMP-dependent Cl- conductances present in the Cl(-)-secreting human colonic T84 cell line. Affinity-purified anti-CFTR505-511 antibody was introduced into the cytoplasm of individual T84 cells and its function studied using the whole-cell patch-clamp technique. Although cAMP-dependent Cl- current activation was inhibited in cells perfused with the anti-CFTR505-511 peptide antibody, Ca(2+)-dependent anion current activation remained unaffected. Chloride current activation, which accompanies cellular swelling, was partially attenuated in anti-CFTR505-511 antibody-loaded cells as compared with control cells perfused with either saline or irrelevant antibody. These results further support a role for CFTR in anion transport in epithelial cells and suggest its possible involvement in a number of anion transport pathways in chloride secretory epithelia.  相似文献   

15.
Production of hypochlorous acid (HOCl) in neutrophils, a critical oxidant involved in bacterial killing, requires chloride anions. Because the primary defect of cystic fibrosis (CF) is the loss of chloride transport function of the CF transmembrane conductance regulator (CFTR), we hypothesized that CF neutrophils may be deficient in chlorination of bacterial components due to a limited chloride supply to the phagolysosomal compartment. Multiple approaches, including RT-PCR, immunofluorescence staining, and immunoblotting, were used to demonstrate that CFTR is expressed in resting neutrophils at the mRNA and protein levels. Probing fractions of resting neutrophils isolated by Percoll gradient fractionation and free flow electrophoresis for CFTR revealed its presence exclusively in secretory vesicles. The CFTR chloride channel was also detected in phagolysosomes, a special organelle formed after phagocytosis. Interestingly, HL-60 cells, a human promyelocytic leukemia cell line, upregulated CFTR expresssion when induced to differentiate into neutrophils with DMSO, strongly suggesting its potential role in mature neutrophil function. Analyses by gas chromatography and mass spectrometry (GC-MS) revealed that neutrophils from CF patients had a defect in their ability to chlorinate bacterial proteins from Pseudomonas aeruginosa metabolically prelabeled with [(13)C]-l-tyrosine, unveiling defective intraphagolysosomal HOCl production. In contrast, both normal and CF neutrophils exhibited normal extracellular production of HOCl when stimulated with phorbol ester, indicating that CF neutrophils had the normal ability to produce this oxidant in the extracellular medium. This report provides evidence which suggests that CFTR channel expression in neutrophils and its dysfunction affect neutrophil chlorination of phagocytosed bacteria.  相似文献   

16.
Cystic fibrosis (CF) is caused by the functional expression defect of the CF transmembrane conductance regulator (CFTR) chloride channel at the apical plasma membrane. Impaired bacterial clearance and hyperactive innate immune response are hallmarks of the CF lung disease, yet the existence of and mechanism accounting for the innate immune defect that occurs before infection remain controversial. Inducible expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuated the proinflammatory cytokines interleukin-6 (IL-6), IL-8, and CXCL1/2 in two human respiratory epithelial models under air–liquid but not liquid–liquid interface culture. Expression of wild-type but not the inactive G551D-CFTR indicates that secretion of the chemoattractant IL-8 is inversely proportional to CFTR channel activity in cftr∆F508/∆F508 immortalized and primary human bronchial epithelia. Similarly, direct but not P2Y receptor–mediated activation of TMEM16A attenuates IL-8 secretion in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport at the apical membrane may contribute to the excessive and persistent lung inflammation in CF and perhaps in other respiratory diseases associated with documented down-regulation of CFTR (e.g., chronic obstructive pulmonary disease). Direct pharmacological activation of TMEM16A offers a potential therapeutic strategy to reduce the inflammation of CF airway epithelia.  相似文献   

17.
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane glycoprotein that forms Cl- channels. Previous work has shown that when some CF-associated mutants of CFTR are expressed in heterologous cells, their glycosylation is incomplete. That observation led to the hypothesis that such mutants are not delivered to the plasma membrane where they can mediate Cl- transport. Testing this hypothesis requires localization of CFTR in nonrecombinant cells and a specific determination of whether CFTR is in the apical membrane of normal and CF epithelia. To test the hypothesis, we used primary cultures of airway epithelia grown on permeable supports because they polarize and express the CF defect in apical Cl- permeability. Moreover, their dysfunction contributes to disease. We developed a semiquantitative assay, using nonpermeabilized epithelia, an antibody directed against an extracellular epitope of CFTR, and large (1 microns) fluorescent beads which bound to secondary antibodies. We observed specific binding to airway epithelia from non-CF subjects, indicating that CFTR is located in the apical membrane. In contrast, there was no specific binding to the apical membrane of CF airway epithelia. These data were supported by qualitative studies using confocal microscopy: the most prominent immunostaining was in the apical region of non-CF cells and in cytoplasmic regions of CF cells. The results indicate that CFTR is either missing from the apical membrane of these CF cells or it is present at a much reduced level. The data support the proposed defective delivery of some CF-associated mutants to the plasma membrane and explain the lack of apical Cl- permeability in most CF airway epithelia.  相似文献   

18.
The gene defective in cystic fibrosis has recently been shown to code for a membrane protein designated the "cystic fibrosis transmembrane conductance regulator" (CFTR) protein. While it has been shown that detectable levels of the mRNA for the normal CFTR protein are present in epithelial cells from different tissues, factors which regulate CFTR expression have not been identified. A clonal cell line originating from a human colon adenocarcinoma (HT29-18) differentiates to multiple epithelial cell types when deprived of glucose in the culture medium. In these studies, mRNA isolated from these cells was examined by hybridization to a 1.45-kilobase cDNA probe which encodes transmembrane portions of the CFTR protein between exons 13 and 19. Cellular differentiation of HT29-18 causes a 9-18-fold increase in CFTR mRNA abundance versus the mRNA for the structural proteins actin and tubulin. Cellular differentiation also causes a 5-fold increase in second messenger-regulated Cl- transport which is sensitive to a Cl- channel blocker (diphenylamine 2-carboxylate). Subclones of HT29-18 which are committed to differentiate to either a mucin-secreting (HT29-18-N2) or an "enterocyte-like" (HT29-18-C1) phenotype have also been examined. In both subclones, elevated levels of CFTR mRNA are observed when compared with undifferentiated HT29-18 cells. However, during cellular differentiation, the regulation of CFTR mRNA abundance and membrane enzyme expression by the subclones is different from HT29-18. The results show that elevated CFTR mRNA occurs in multiple differentiated intestinal epithelial cell types, despite a phenotype-specific regulation of membrane protein expression. This suggests that CFTR expression plays a role in the differentiated functions of multiple epithelial phenotypes and that both cellular differentiation and cellular phenotypes are factors which regulate CFTR expression.  相似文献   

19.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a channel and regulator protein that is crucially involved in transepithelial ion transport. In the exocrine pancreas, the CFTR-mediated secretion of an electrolyte-rich fluid is a major but as yet incompletely understood function. We show here that the peptide guanylin is a specific activator of CFTR function in the human pancreas implicating regulation of pancreatic electrolyte secretion. Guanylin and its affiliated signaling and effector proteins including guanylate cyclase C, cGMP-dependent protein kinase II, CFTR, and the epithelial Cl-/HCO3- exchanger, anion exchanger 2, are highly expressed in the human pancreas. Guanylin is localized specifically to the typical centroacinar cells and proximal duct cells which, based on its additional presence in the pancreatic juice, is obviously released luminally into the pancreatic ducts. The guanylin receptor and the respective functional downstream proteins are all confined to the apical membrane of the duct cells implicating an as yet unknown route of luminal regulatory pathway of electrolyte secretion in the ductal system. Functional studies in two different human pancreatic duct cell lines expressing the CFTR Cl- channel that is functionally intact in CAPAN-1 cells but defective (delta F508) in CFPAC-1 cells clearly identify guanylin as a specific regulator of pancreatic CFTR channel function. Whole-cell patch-clamp recordings in CAPAN-1 cells revealed that forskolin induces an increase of Cl- conductance mediated by cAMP. In contrast, guanylin increased Cl- conductance in the same cells via cGMP but not cAMP; the respective membrane current was largely blockable by the sulfonylurea glibenclamide. In CFPAC-1 cells, however, neither guanylin nor forskolin produced a current activation. Based on the present findings we conclude that guanylin is an intrinsic pancreatic regulator of Cl- current activation in pancreatic duct cells via cGMP and CFTR. Remarkably, in the pancreas guanylin may exert its function through an intriguing luminocrine mode via the pancreatic juice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号