首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tufA gene, one of two genes in Escherichia coli encoding elongation factor Tu (EF-Tu), was cloned into a ColE1-derived plasmid downstream of the lac promoter-operator. In cells carrying this plasmid, the synthesis of EF-Tu was increased four- to fivefold upon the addition of isopropyl-beta-D-thiogalactopyranoside (an inducer of the lac promoter). This condition led to the synthesis of a novel protein, called pTu, which comigrated with EF-Tu on a sodium dodecyl sulfate-polyacrylamide gel but could be separated on an isoelectric focusing gel, since pTu is slightly more basic than EF-Tu. The synthesis of pTu could also be induced by the synthesis of a hybrid protein containing just the amino-terminal half of the EF-Tu protein. Genetic data suggest that pTu is the product of the tufA and tufB genes. The pTu protein was shown to be related to EF-Tu by gel electrophoresis of tryptic peptides. Pulse-chase experiments suggest that pTu is a precursor of EF-Tu. Interestingly, in a classic membrane fractionation procedure, EF-Tu was found in the cytosolic fraction, whereas pTu was partitioned with the outer membrane.  相似文献   

2.
In vitro methylation of the elongation factor EF-Tu from Escherichia coli   总被引:2,自引:0,他引:2  
H Toledo  C A Jerez 《FEBS letters》1985,193(1):17-21
The in vitro methylation of the elongation factor EF-Tu from Escherichia coli was investigated. The methylation of newly synthesized EF-Tu was obtained using lambda rifd 18 DNA as template and S-adenosyl [methyl-3H]methionine as methyl donor. About 3 mol methyl residues were incorporated for every 10 mol EF-Tu synthesized. Analysis of the nature of the methyl-containing residues by protein hydrolysis followed by paper chromatography showed that both mono- and dimethyllysine were present. The methylation of EF-Tu was also studied separately from its synthesis by using cell-free systems with artificially undermethylated components.  相似文献   

3.
The protein synthesis elongation factor Tu (EF-Tu) was identified in dormant spores of Streptomyces aureofaciens and its content and distribution in vegetative cells and dormant spores were determined. Cell-free homogenates from spores were found to contain a EF-Tu cleaving membrane bound protease. The protease cleaved aggregated EF-Tu much less efficiently than non-aggregated factor in cell homogenates. The relative content of EF-Tu and ribosomes in dormant spores was very similar to that found in exponentially growing vegetative cells.  相似文献   

4.
In Chlamydomonas reinhardii the elongation factor EF-Tu is encoded in the chloroplast DNA. We identified EF-Tu in the electrophoretic product pattern of chloroplast-made proteins and showed that this protein is only synthesized in the first half of the light period in synchronized cells. The newly synthesized EF-Tu contributed little to the almost invariable content of EF-Tu in chloroplasts during the light period of the cell cycle. However, increasing cell volume and the lack of EF-Tu synthesis in the second half of the light period led to a decrease in the concentration of EF-Tu in chloroplasts. At different times in the vegetative cell cycle, the RNA was extracted from whole chloroplasts and from free and thylakoid-bound chloroplast polysomes. The content of mRNA of EF-Tu in chloroplasts and the distribution between stroma and thylakoids were determined. During the light period, the content of the mRNA for EF-Tu varied in parallel to the rate of EF-Tu synthesis. However, in the dark, some mRNA was present even in the absence of EF-Tu synthesis. Most of the mRNA was bound to thylakoids during the whole cell cycle. This suggests that synthesis of EF-Tu is associated with thylakoid membranes.  相似文献   

5.
Protein synthesis elongation factor Tu (EF-Tu) was purified from an extreme thermophilic hydrogen-oxidizing bacterium Calderobacterium hydrogenophilum. The relative molecular mass of EF-Tu. GDP was 51,000. The factor was heat stable and lost only 50% of its activity after heating at 80 degrees C for 5 min. Native and reduced EF-Tu or EF-Tu. GDP contained one SH-reactive group. The elongation factors from C. hydrogenophilum and E. coli were shown to be immunologically identical. From the Southern hybridization analysis seems to suggest that chromosome DNA of C. hydrogenophilum has two tuf genes.  相似文献   

6.
A structural and functional understanding of resistance to the antibiotic kirromycin in Escherichia coli has been sought in order to shed new light on the functioning of the bacterial elongation factor Tu (EF-Tu), in particular its ability to act as a molecular switch. The mutant EF-Tu species G316D, A375T, A375V and Q124K, isolated by M13mp phage-mediated targeted mutagenesis, were studied. In this order the mutant EF-Tu species showed increasing resistance to the antibiotic as measured by poly(U)-directed poly(Phe) synthesis and intrinsic GTPase activities. The K'd values for kirromycin binding to mutant EF-Tu.GTP and EF-Tu.GDP increased in the same order. All mutation sites cluster in the interface of domains 1 and 3 of EF-Tu.GTP, not in that of EF-Tu.GDP. Evidence is presented that kirromycin binds to this interface of wild-type EF-Tu.GTP, thereby jamming the conformational switch of EF-Tu upon GTP hydrolysis. We conclude that the mutations result in two separate mechanisms of resistance to kirromycin. The first inhibits access of the antibiotic to its binding site on EF-Tu.GTP. A second mechanism exists on the ribosome, when mutant EF-Tu species release kirromycin and polypeptide chain elongation continues.  相似文献   

7.
We have studied the properties of a mutant elongation factor Tu, encoded by tufB (EF-TuBo), in which Gly-222 is replaced by Asp. For its purification from the kirromycin-resistant EF-Tu encoded by tufA (EF-TuAr), a method was developed by exploiting the different affinities to kirromycin of the two factors and the competition between kirromycin and elongation factor Ts (EF-Ts) for binding to EF-Tu. The resulting EF-TuBo kirromycin and EF-TuAr EF-Ts complexes are separated by chromatography on diethylaminoethyl-Sephadex A-50. For the first time we have succeeded in obtaining a tufB product in homogeneous form. Compared with wild-type EF-Tu, EF-TuBo displays essentially the same affinity for GDP and GTP, with only the dissociation rate of EF-Tu GTP being slightly faster. Protection of amino-acyl-tRNA (aa-tRNA) against nonenzymatic deacylation by different EF-Tu species indicates that conformational alterations occur in the ternary complex EF-TuBo GTP aa-tRNA. However, the most dramatic modification is found in the EF-TuBo interaction with the ribosome. Its activity in poly(Phe) synthesis as well as in the GTPase activity associated with the interaction of its ternary complex with the ribosome mRNA complex requires higher Mg2+ concentrations than wild-type EF-Tu (Mg2+ optimum at 10-14 vs. 6 mM), even if EF-TuBo can sustain enzymatic binding of aa-tRNA to ribosomes at low Mg2+. The anomalous behavior of EF-TuBo is reflected in a remarkable increase of the fidelity in poly(Phe) synthesis, especially at high Mg2+ concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
J Jonák  K Karas 《FEBS letters》1989,251(1-2):121-124
Modification of B. subtilis EF-Tu by N-tosyl-L-phenylalanyl chloromethane destroyed its ability to promote protein synthesis and resulted in selective dissociation of the two binding activities of the protein for aminoacyl-tRNA. The modified EF-Tu was completely ineffective in the protection of the 3'-terminal CCA structure of tRNA against pancreatic ribonuclease, while remaining almost fully active in the protection of the ester bond between the 3'-terminal adenosine and the amino acid residue in aminoacyl-tRNA.  相似文献   

9.
Elongation factor Ts (EF-Ts) is the guanine-nucleotide exchange factor of elongation factor Tu (EF-Tu), which promotes the binding of aminoacyl-tRNA to the mRNA-programmed ribosome in prokaryotes. The EF-Tu.EF-Ts complex, one of the EF-Tu complexes during protein synthesis, is also a component of RNA-dependent RNA polymerases like the polymerase from coliphage Qbeta. The present study shows that the Escherichia coli mutant GRd.tsf lacking the coiled-coil motif of EF-Ts is completely resistant to phage Qbeta and that Qbeta-polymerase complex formation is not observed. GRd.tsf is the first E. coli mutant ever described that is unable to form a Qbeta-polymerase complex while still maintaining an almost normal growth behavior. The phage resistance correlates with an observed instability of the mutant EF-Tu.EF-Ts complex in the presence of guanine nucleotides. Thus, the mutant EF-Tu.EF-Ts is the first EF-Tu.EF-Ts complex ever described that is completely inactive in the Qbeta-polymerase complex despite its almost full activity in protein synthesis. We propose that the role of EF-Ts in the Qbeta-polymerase complex is to control and trap EF-Tu in a stable conformation with affinity for RNA templates while unable to bind aminoacyl-tRNA.  相似文献   

10.
The activity of elongation factor Tu (EF-Tu) from Escherichiacoli in eucaryotic protein synthesis systems was investigated. EF-Tu was found to inhibit polyphenylalanine synthesis when incubated with Artemia 80S ribosomes, purified rabbit reticulocyte elongation factor Tu (eEF-Tu) and partially purified reticulocyte translocase enzyme, eEF-G. The inhibition could be overcome by supplying the system with additional eEF-Tu. EF-Tu also inhibited protein synthesis in rabbit reticulocyte lysates. Data presented in this report indicate that inhibition by EF-Tu results from the accumulation of ternary complexes of the protein factor, GTP and aminoacyl-tRNA which do not interact with the ribosomal A-site of 80S ribosomes under physiological conditions.  相似文献   

11.
Elongation factor EF-Tu (Mr approximately equal to 50 000) and elongation factor EF-G (Mr approximately equal to 78 000) were isolated from Bacillus stearothermophilus in a homogeneous form. The ability of EF-Tu to participate in protein synthesis is rapidly inactivated by N-tosyl-L-phenyl-alanylchloromethane (Tos-PheCH2Cl). EF-Tu X GTP is more susceptible to the inhibition by Tos-PheCH2Cl than is EF-Tu X GDP. Tos-PheCH2Cl forms a covalent equimolar complex with the factor by reacting with a cysteine residue in its molecule. The labelling of EF-Tu by the reagent irreversibly destroys its ability to bind aminoacyl-tRNA, which in turn protects the protein from this inactivation. This indicates that the modification of EF-Tu by Tos-PheCH2Cl occurs at the aminoacyl-tRNA binding site of the protein. To identify and characterize the site of aminoacyl-tRNA binding in EF-Tu, the factor was labelled with [14C]Tos-PheCH2Cl, digested with trypsin, the resulting peptides were separated by high-performance liquid chromatography and the sequence of the radioactive peptide was determined. The peptide has identical structure with an Escherichia coli EF-Tu tryptic peptide comprising the residues 75-89 and the Tos-PheCH2Cl-reactive cysteine at position 81 [Jonák, J., Petersen, T. E., Clark, B. F. C. and Rychlík, I. (1982) FEBS Lett. 150, 485-488]. Experiments on photo-oxidation of EF-Tu by visible light in the presence of rose bengal dye showed that there are apparently two histidine residues in elongation factor Tu from B. stearothermophilus which are essential for the interaction with aminoacyl-tRNA. This is clearly reminiscent of a similar situation in E. coli EF-Tu [Jonák, J., Petersen, T. E., Meloun, B. and Rychlík, I. (1984) Eur. J. Biochem. 144, 295-303]. Our results provide further evidence for the conserved nature of the site of aminoacyl-tRNA binding in elongation factor EF-Tu and show that Tos-PheCH2Cl reagent might be a favourable tool for the identification of the site in the structure of prokaryotic EF-Tus.  相似文献   

12.
Elongation factor (EF) Tu Thr-25 is a key residue binding the essential magnesium complexed to nucleotide. We have characterized mutations at this position to the related Ser and to Ala, which abolishes the bond to Mg2+, and a double mutation, H22Y/T25S. Nucleotide interaction was moderately destabilized in EF-Tu(T25S) but strongly in EF-Tu(T25A) and EF-Tu(H22Y/T25S). Binding Phe-tRNAPhe to poly(U).ribosome needed a higher magnesium concentration for the latter two mutants but was comparable at 10 mM MgCl2. Whereas EF-Tu(T25S) synthesized poly(Phe), as effectively as wild type, the rate was reduced to 50% for EF-Tu(H22Y/T25S) and was, surprisingly, still 10% for EF-Tu(T25A). In contrast, protection of Phe-tRNAPhe against spontaneous hydrolysis by the latter two mutants was very low. The intrinsic GTPase in EF-Tu(H22Y/T25S) and (T25A) was reduced, and the different responses to ribosomes and kirromycin suggest that stimulation by these two agents follows different mechanisms. Of the mutants, only EF-Tu(T25A) forms a more stable complex with EF-Ts than wild type. This implies that stabilization of the EF-Tu.EF-Ts complex is related to the inability to bind Mg2+, rather than to a decreased nucleotide affinity. These results are discussed in the light of the three-dimensional structure. They emphasize the importance of the Thr-25-Mg2+ bond, although its absence is compatible with protein synthesis and thus with an active overall conformation of EF-Tu.  相似文献   

13.
14.
In Salmonella typhimurium and Escherichia coli, elongation factor Tu (EF-Tu) is methylated as shown by its incorporation of labeled methyl residues from [methyl-3H]methionine. Analysis of the nature of the methyl-containing residues by protein hydrolysis, followed by paper chromatography and high voltage electrophoresis showed that both mono- and dimethyllysine are present. Eighty per cent of the EF-Tu molecules are methylated if methylation occurs at a unique lysine residue. The EF-Tu fraction which is not methylated is still able to accept methyl groups, as shown by methylation of approximately 10% of the EF-Tu after addition of chloramphenicol (D-(-)-threo-2,2-dichloro-N-[beta-hydroxy-alpha-(hydroxymethyl)-o-nitrophenethyl] acetamide) to inhibit further protein synthesis. There is no evidence of turnover of the methyl residues. We attempted to separate the methylated from the nonmethylated form of EF-Tu by isoelectric focusing on polyacrylamide gel, but were unable to do so.  相似文献   

15.
Specific alterations of the elongation factor Tu (EF-Tu) polypeptide chain have been identified in a number of mutant species of this elongation factor. In two species, Ala-375, located on domain II, was found by amino acid analysis to be replaced by Thr and Val, respectively. These replacements substantially lower the affinity of EF-Tu.GDP for the antibiotic kirromycin. Since kirromycin can be cross-linked to Lys-357, also located on domain II but structurally very far from Ala-375, these data suggest that the replacements alter the relative position of domains I and II. The Ala-375 replacements also lower the dissociation rates of the binary complexes EF-Tu.GTP and the binding constants for EF-Tu.GTP and Phe-tRNA. It is conceivable that these effects are also mediated by movements of domains I and II relative to each other. Replacement of Gly-222 by Asp has been found in another mutant by DNA sequence analysis of the cloned tufB gene, coding for this mutant EF-Tu. Gly-222 is part of a structural domain, characteristic for a variety of nucleotide binding enzymes. Its replacement by Asp does not abolish the ability of EF-Tu to sustain protein synthesis. It increases the dissociation rate of EF-Tu.GTP by approximately 30%. In the presence of kirromycin this mutant species of EF-Tu.GDP does not bind to the ribosome, in contrast to its wild-type counterpart. A possible explanation is now open for experimental verification.  相似文献   

16.
Protein synthesis elongation factor Tu has been purified from an extreme thermophilic hydrogen oxidizing bacterium Calderobacterium hydrogenophilum. The molecular mass of EF-Tu. GDP is 51,000. The factor is heat stable and loses only 50% of its activity after heating for 5 min at 80 degrees C. Under mild conditions trypsin cleaved EF-Tu. GDP to four main fragments. Only one fragment of Mr = 20,000 had a mobility similar to the trypsin fragment "B" of Escherichia coli EF-Tu. Other peptide fragments of E. coli and C. hydrogenophilum EF-Tu differed in size, but native preparations of both factors are immunologically similar.  相似文献   

17.
Anborgh PH  Okamura S  Parmeggiani A 《Biochemistry》2004,43(49):15550-15556
The antibiotic pulvomycin is an inhibitor of protein synthesis that prevents the formation of the ternary complex between elongation factor (EF-) Tu.GTP and aminoacyl-tRNA. In this report, novel aspects of its action on EF-Tu are described. Pulvomycin markedly affects the equilibrium and kinetics of the EF-Tu-nucleotide interaction, particularly of the EF-Tu.GTP complex. The binding affinity of EF-Tu for GTP is increased 1000 times, mainly as the consequence of a dramatic decrease in the dissociation rate of this complex. In contrast, the affinity for GDP is decreased 10-fold due to a marked increase in the dissociation rate of EF-Tu.GDP (25-fold) that mimics the action of EF-Ts, the GDP/GTP exchange factor of EF-Tu. The effects of pulvomycin and EF-Ts can coexist and are simply additive, supporting the conclusion that these two ligands interact with different sites of EF-Tu. This is further confirmed on native PAGE by the ability of EF-Tu to bind the EF-Ts and the antibiotic simultaneously. Pulvomycin enhances the intrinsic EF-Tu GTPase activity, like kirromycin, though to a much more modest extent. As with kirromycin, this stimulation depends on the concentration and nature of the monovalent cations, Li(+) being the most effective one, followed by Na(+), K(+), and NH(4)(+). In the presence of pulvomycin (in contrast to kirromycin), aa-tRNA and/or ribosomes do not enhance the GTPase activity of EF-Tu. The property of pulvomycin to modify selectively the conformation(s) of EF-Tu is also supported by its effect on heat- and urea-dependent denaturation, and tryptic digestion of the protein. Specific differences and similarities between the action of pulvomycin and the other EF-Tu-specific antibiotics are described and discussed.  相似文献   

18.
J P Abrahams  J J Acampo  B Kraal  L Bosch 《Biochimie》1991,73(7-8):1089-1092
The turnover of EF-Tu.GTP on poly-U programmed ribosomes was measured both in the presence and in the absence of N-acetylated Phe-tRNA(Phe) at the P-site. The reaction was uncoupled from protein synthesis by omitting Phe-tRNA(Phe) at the A-site. In this reaction, the ribosome can be considered as an enzyme catalysing the transition of EF-Tu.GTP to EF-Tu.GTP. A constant EF-Tu.GTP concentration is maintained by regenerating GDP to GTP at the expense of phosphoenolpyruvate by pyruvate kinase. The rate constants are determined using a procedure which corrects for the reduction in specific activity of GTP due to regeneration of the nucleotide. Ribosomes with an occupied P-site are more efficient in stimulating the GTPase of EF-Tu.GTP than ribosomes with an empty P-site. The data suggest that this is mainly caused by an increased affinity of EF-Tu.GTP for ribosomes with a filled P-site rather than by an enhanced reactivity of the GTPase centre.  相似文献   

19.
A protein existing mainly in the supernatant fraction of Escherichia coli was found to be methylated by accepting the methyl moiety originating from methionine. The protein was identified as peptide synthesis elongation factor Tu (EF-Tu) by the following criteria. 1) The methylatable protein separated at the same position as purified EF-Tu on two-dimensional gel electrophoresis. 2) The methylatable protein interacted with antiserum specific for EF-Tu. Amino acid analysis of the methyl-labeled protein suggested that the site of methylation was an epsilon-amino group of lysine.  相似文献   

20.
Animal mitochondrial protein synthesis factors elongation factor (EF) Tu and EF-Ts have been purified as an EF-Tu.Ts complex from crude extracts of bovine liver mitochondria. The mitochondrial complex has been purified 10,000-fold to near homogeneity by a combination of chromatographic procedures including high performance liquid chromatography. The mitochondrial EF-Tu.Ts complex is very stable and cannot be dissociated even in the presence of high concentrations of guanine nucleotides. No guanine nucleotide binding to this complex can be observed in the standard nitrocellulose filter binding assay. Mitochondrial EF-Ts activity can be detected by its ability to facilitate guanine nucleotide exchange with Escherichia coli EF-Tu. The EF-Tumt exhibits similar levels of activity on isolated mammalian mitochondrial and E. coli ribosomes, but displays minimal activity on Euglena gracilis chloroplast 70 S ribosomes and has no detectable activity on wheat germ cytoplasmic ribosomes. In contrast to the bacterial EF-Tu and the EF-Tu from the chloroplast of E. gracilis, the ability of the mitochondrial factor to catalyze polymerization is not inhibited by the antibiotic kirromycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号