首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoribosylamine (PRA) is an intermediate in the biosynthetic pathway that is common to thiamine and purines. Glutamine phosphoribosyl pyrophosphate (PRPP) amidotransferase is the product of the purF gene in Salmonella enterica and catalyzes the synthesis of PRA from PRPP and glutamine. Strains lacking PurF require exogenous addition of purines for growth. However, under some growth conditions or with specific secondary mutations these strains grow in the absence of exogenous thiamine. Mutant alleles of hisA, which encodes 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino) methylideneamino] imidazole-4-carboxamide (ProFAR) isomerase, allowed PurF-independent PRA formation. The alleles of hisA that suppressed the requirement for exogenous thiamine resulted in proteins with reduced enzymatic activity. Data presented here showed that decreased activity of HisA altered metabolite pools and allowed PRA formation from ProFAR. Possible mechanisms of this conversion were proposed. The results herein emphasize the plasticity of the metabolic network and specifically highlight the potential for chemical syntheses to contribute to network robustness.  相似文献   

2.
Glutamine 5-phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase (amidophosphoribosyltransferase), [EC 2.4.2.14] was purified 1,600-fold from rat liver. The preparation gave two protein bands on acrylamide gel electrophoresis, of which only the main band showed enzyme activity. The molecular weight of the enzyme was estimated to be 215,000, 200,000, and 195,000 by Sephadex G-150 gel filtration, polyacrylamide gel electrophoresis, and sucrose density grandient ultracentrifugation, respectively. The apparent Km values for glutamine and PRPP were 1.24 mM and 0.57 mM, respectively. The concentration-activity curve for PRPP changed from a hyperbolic to a sigmoidal form on addition of AMP or GMP, and this inhibition by AMP was prevented by increasing the PRPP concentration. In the presence of high concentrations of inorganic phosphate, the catalytic activity was decreased and the sensitivity to AMP inhibition was slightly increased. The molecular size of liver amidotransferase was not changed by the addition of PRPP, AMP, or 2-mercaptoethanol. The purified rat liver enzyme has a broad pH-range of activity between 6.5 and 8.5.  相似文献   

3.
In Salmonella enterica, the biosynthetic pathways for the generation of purines and the essential cofactor thiamine pyrophosphate branch after sharing five enzymatic steps. Phosphoribosyl amine (PRA) is the first intermediate in the common portion of the pathway and is generated from phosphoribosylpyrophosphate and glutamine by the PurF enzyme (phosphoribosylpyrophosphate amidotransferase). A null mutation in yjgF allows PurF-independent PRA formation by an unknown mechanism. The tryptophan biosynthetic enzyme complex anthranilate synthase-phosphoribosyltransferase, composed of the TrpD and TrpE proteins, was shown to be essential for PRA formation in strains lacking both yjgF and purF. The activity generating PRA in a yjgF mutant background has features that distinguish it from the TrpDE-mediated PRA formation shown previously for this enzyme in strains with an active copy of yjgF. The data presented here are consistent with a model in which the absence of YjgF uncovers a new catalytic activity of TrpDE.  相似文献   

4.
The trpD gene specifies a polypeptide which has both glutamine amidotransferase and phosphoribosyl anthranilate (PRA) transferase activities. Deletions fusing segments of trpD to the gene preceding it in the operon, trpE, were selected in strains carrying various trpD point mutations. The selection procedure required both that a deletion enter trpE and that it restore the PRA transferase activity which the parent trpD point mutant lacked. Deletion mutants were found which had PRA transferase activity although the first third of trpD was deleted. The existence of the mutants proves that a terminal segment of trpD is sufficient to specify a polypeptide having PRA transferase activity. The location of the deletion end points on the genetic map of trpD defines the extent of the trpD segment required for PRA transferase activity. This segment did not overlap the initial region of trpD required to specify the glutamine amidotransferase function of the trpD polypeptide. These results support the hypothesis (M. Grieshaber and R. Bauerle, 1972; H. Zalkin and L. H. Hwang, 1971) that the bifunctional trpD polypeptide might have evolved by fusion of a gene specifying a glutamine amidotransferase with a gene directing PRA transferase synthesis.  相似文献   

5.
Crystal structures of glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase from Escherichia coli have been determined to 2.0-A resolution in the absence of ligands, and to 2.5-A resolution with the feedback inhibitor AMP bound to the PRPP catalytic site. Glutamine PRPP amidotransferase (GPATase) employs separate catalytic domains to abstract nitrogen from the amide of glutamine and to transfer nitrogen to the acceptor substrate PRPP. The unliganded and AMP-bound structures, which are essentially identical, are interpreted as the inhibited form of the enzyme because the two active sites are disconnected and the PRPP active site is solvent exposed. The structures were compared with a previously reported 3.0-A structure of the homologous Bacillus subtilis enzyme (Smith JL et al., 1994, Science 264:1427-1433). The comparison indicates a pattern of conservation of peptide structures involved with catalysis and variability in enzyme regulatory functions. Control of glutaminase activity, communication between the active sites, and regulation by feedback inhibitors are addressed differently by E. coli and B. subtilis GPATases. The E. coli enzyme is a prototype for the metal-free GPATases, whereas the B. subtilis enzyme represents the metal-containing enzymes. The structure of the E. coli enzyme suggests that a common ancestor of the two enzyme subfamilies may have included an Fe-S cluster.  相似文献   

6.
S Chen  J W Burgner  J M Krahn  J L Smith  H Zalkin 《Biochemistry》1999,38(36):11659-11669
Single tryptophan residues were incorporated into each of three peptide segments that play key roles in the structural transition of ligand-free, inactive glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase to the active enzyme-substrate complex. Intrinsic tryptophan fluorescence and fluorescence quenching were used to monitor changes in a phosphoribosyltransferase (PRTase) "flexible loop", a "glutamine loop", and a C-terminal helix. Steady state fluorescence changes resulting from substrate binding were used to calculate binding constants and to detect the structural rearrangements that coordinate reactions at active sites for glutamine hydrolysis and PRTase catalysis. Pre-steady state kinetics of enzyme.PRPP and enzyme.PRPP.glutamine complex formation were determined from stopped-flow fluorescence measurements. The kinetics of the formation of the enzyme.PRPP complex were consistent with a model with two or more steps in which rapid equilibrium binding of PRPP is followed by a slow enzyme isomerization. This isomerization is ascribed to the closing of the PRTase flexible loop and is likely the rate-limiting step in the reaction of PRPP with NH(3). The pre-steady state kinetics for binding glutamine to the binary enzyme. PRPP complex could also be fit to a model involving rapid equilibrium binding of glutamine followed by an enzyme isomerization step. The changes monitored by fluorescence account for the interconversions between "end state" structures determined previously by X-ray crystallography and define an intermediate enzyme.PRPP conformer.  相似文献   

7.
A class of purine auxotrophs blocked early in the purine biosynthetic pathway was examined. The inability of these mutants to accumulate formylglycinamide ribotide (FGAR) in the presence of azaserine suggested that one or more of the first three enzymes of the pathway were either missing or defective. By direct enzyme assay, phosphoribosylpyrophosphate (PRPP) amidotransferase (E.C. 2.4.2.14) was found to be absent in extracts of mutant cells. Thus these cells were unable to convert PRPP to phosphoribosylamine (PRA). By reacting ribose 5-phosphate with ammonium ions, PRA was generated nonenzymatically in the incubation mixture, thus enabling us to test for the presence of the two enzymes required to convert PRA to FGAR. It was demonstrated that sufficient amounts of these enzymes, phosphoribosylglycineamide synthetase (E.C. 6.3.1.3) and phosphoribosylglycineamide formyltransferase (E.C. 2.1.2.2), were present in mutant extracts to allow synthesis of FGAR to occur once PRA was so provided.  相似文献   

8.
Phosphoribosyl amine (PRA) is an intermediate in purine biosynthesis and also required for thiamine biosynthesis in Salmonella enterica. PRA is normally synthesized by phosphoribosyl pyrophosphate amidotransferase, a high-turnover enzyme of the purine biosynthetic pathway encoded by purF. However, PurF-independent PRA synthesis has been observed in strains having different genetic backgrounds and growing under diverse conditions. Genetic analysis has shown that the anthranilate synthase-phosphoribosyltransferase (AS-PRT) enzyme complex, involved in the synthesis of tryptophan, can play a role in the synthesis of PRA. This work describes the in vitro synthesis of PRA in the presence of the purified components of the AS-PRT complex. Results from in vitro assays and in vivo studies indicate that the cellular accumulation of phosphoribosyl anthranilate can result in nonenzymatic PRA formation sufficient for thiamine synthesis. These studies have uncovered a mechanism used by cells to redistribute metabolites to ensure thiamine synthesis and may define a general paradigm of metabolic robustness.  相似文献   

9.
Glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase catalyzes the first reaction of de novo purine nucleotide synthesis in two steps at two sites. Glutamine is hydrolyzed to glutamate plus NH(3) at an N-terminal glutaminase site, and NH(3) is transferred through a 20-A hydrophobic channel to a distal PRPP site for synthesis of phosphoribosylamine. Binding of PRPP is required to activate the glutaminase site (termed interdomain signaling) to prevent the wasteful hydrolysis of glutamine in the absence of phosphoribosylamine synthesis. Mutations were constructed to analyze the function of the NH(3) channel. In the wild type enzyme, NH(3) derived from glutamine hydrolysis was transferred to the PRPP site, and little or none was released. Replacement of Leu-415 at the PRPP end of the channel with an alanine resulted in a leaky channel and release of NH(3) to the solvent. Mutations in five amino acids that line the channel and two other residues required for the reorganization of phosphoribosyltransferase domain "flexible loop" that leads to formation of the channel perturbed channel function as well as interdomain signaling. The data emphasize the role of the NH(3) channel in coupling interdomain signaling and NH(3) transfer.  相似文献   

10.
Human lymphoblasts derived from normal and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient individuals have been maintained in permanent tissue culture, and comparative studies of their purine metabolism have been undertaken. In agreement with previous observations in fibroblasts, the HGPRT-deficient lymphoblasts (less than 2% normal HGPRT activity) demonstrate threefold increases in the production of purines by the de novo pathway and four- to eightfold increases in intracellular concentrations of 5-phosphoribosyl 1-pyrophosphate (PRPP). The activities of the enzymes of purine metabolism responsible for production and utilization of PRPP were measured under optimal conditions in each cell line. The activities of adenine phosphoribosyltransferase (APRT), PRPP synthetase, and PRPP amidotransferase were independent of cell density and were not significantly different in the two cell lines. The K m values of the common substrate, PRPP, were determined in normal lymphoblast extracts for APRT (K m of 0.033 mM), HGPRT (K m of 0.074 mM), and PRPP amidotransferase (K m of 0.3 m M). The relatively low affinity of PRPP amidotransferase for PRPP suggests that deficiency of the HGPRT enzyme with its attendant increase in PRPP concentration should be accompanied by increased in vivo activity of PRPP amidotransferase, the first and presumed rate-limiting enzyme of de novo purine biosynthesis.This work was supported in part by National Institutes of Health Grants AM-05646, AM-13622, and GM-17702.  相似文献   

11.
12.
Most of the nitrogen transported from the nodules of nitrogen-fixing soybean plants is in the form of the ureides allantoin and allantoic acid. Recent work has shown that ureides are formed in the plant fraction of the nodule from de novo purine biosynthesis and purine oxidation. 5-Phosphoribosylpyrophosphate amidotransferase (PRAT), which catalyzes the first committed step of purine biosynthesis, has been purified 1500-fold from soybean root nodules. The enzyme had an apparent Mr of 8 X 10(6), but this estimate may have been for an aggregation of several purine biosynthetic activities. PRAT showed a pH optimum of pH 8.0, and Km values were 18 and 0.4 mM for glutamine and 5-phosphoribosyl-1-pyrophosphate (PRPP), respectively. The reaction required Mg2+, and PRPPMg3- was shown to be the reactive molecular species of PRPP. Ammonia could replace glutamine as a substrate, and the Vm with ammonia was twice that obtained when glutamine was the substrate. The initial-rate kinetics showed sequential addition of substrates to the enzyme. Product inhibition data was consistent with the order of product release being phosphoribosylamine, PPi, and glutamate. The enzyme was subject to regulation by end products of the purine biosynthetic pathway. IMP and GMP inhibited competitively with PRPP and promoted cooperativity in the binding of this substrate; there was no cooperativity in the binding of IMP to the enzyme. XMP was a linear competitive inhibitor with PRPP. The results are discussed in terms of the key regulatory point occupied by PRAT in the pathway of ureide biogenesis.  相似文献   

13.
The activity of hypoxanthine/guanine phosphoribosyltransferase (HGPRT) was examined in the livers and kidneys of two genetic lines of chickens selected for different plasma uric acid levels. Previous work demonstrated that the high-uric acid line (HUA) had significantly greater de novo uric acid synthesis rates in kidney tissue compared to the low-uric acid line (LUA). In addition, phosphoribosylpyrophosphate (PRPP) synthetase and xanthine dehydrogenase activities in livers and kidneys were significantly higher in the HUA compared to the LUA line. PRPP pool sizes were also significantly higher in both livers and kidneys of HUA birds. HGPRT activities in livers of HUA birds were significantly (P less than 0.05) greater than in LUA birds. The mean value of liver HGPRT was 7.36 +/- 0.25 pmole inosine-5'-monophosphate (IMP) and 6.05 +/- 0.27 pmole IMP produced/micrograms protein/hr, respectively, for the HUA and LUA lines. There were no significant differences (P greater than 0.05) in kidney HGPRT activities between the two groups. The mean value of kidney HGPRT was 52.87 +/- 1.62 pmole IMP and 50.72 +/- 1.62 pmole IMP produced/micrograms protein/hr, respectively, for the HUA and LUA line. Elevated liver HGPRT may serve to enhance the regeneration of PRPP in the HUA liver. Elevated liver PRPP synthetase and PRPP pool size suggest an increased flux through the de novo purine biosynthetic pathway in HUA birds. The resulting additional pyrophosphate from the glutamine PRPP amidotransferase reaction would stimulate recovery of PRPP and spare the system from a substantial loss of energy.  相似文献   

14.
Phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase is the "key anabolic enzyme" of purine nucleotide synthesis; PRPP synthetase connects the pentose cycle with the same pathway. We have studied their behavior in 5 control subjects and in 8 affected by CLL. Determination of PRPP amidotransferase was carried out through the evaluation of 14C-glutamic acid (released by 14C-glutamine) in the incubation mixture. PRPP synthetase was followed by adding ATP and ribose 5-phosphate to the incubation mixtures, and by evaluating the PRPP formed through the release of CO2 in a coupled reaction. In the case of PRPP-amidotransferase, our values are in the range reported in the literature: in patients affected by CLL, the enzyme activity is much higher and the increase is more evident when values referred to the patients, than when to the cells. Our values of PRPP synthetase are consistent with those of Peters and Veerkamp, but no definite conclusion is possible in the case of leukemic patients.  相似文献   

15.
The de novo biosynthesis of uric acid was examined in isolated hepatocytes from the high and low uric acid lines of chickens. Rates of incorporation of radiolabeled glycine into uric acid by hepatocytes from the high uric acid (HUA) line were approximately 3.6-fold greater than found in low uric acid (LUA) control hepatocytes. Uric acid synthesis rates in these cells were positively correlated with plasma uric acid levels (r = +0.77; P less than 0.01). The activity of phosphoribosylpyrophosphate (PRPP) amidotransferase was measured in acetone powder preparations from liver and kidney tissues of the HUA and LUA lines. Activities in kidney tissues were about 21% lower than those found in livers. PRPP amidotransferase activities in liver and kidney tissues did not correlate significantly with plasma uric acid levels. The increased synthesis of uric acid in the HUA line may be the result of the increased PRPP synthetase activities and PRPP pool sizes previously reported for these tissues.  相似文献   

16.
For the derivation of an inosine-overproducing strain from the wild type microorganism, it is known that the addition of an adenine requirement, removal of purine nucleoside hydrolyzing activity, removal of the feedback inhibition, and repression of key enzymes in the purine nucleotides biosynthetic pathway are essential. Thus, the disruption of purA (adenine requirement), deoD (removal of purine nucleosides phosphorylase activity), purR (derepression of the regulation of purine nucleotides biosynthetic pathway), and the insensitivity of the feedback inhibition of phosphoribosylpyrophosphate (PRPP) amidotransferase by adenosine 5'-monophosphate (AMP) and guanosine 5'-monophosphate (GMP) were done in the Escherichia coli strain W3110, and then the inosine productivity was estimated. In the case of using a plasmid harboring the PRPP amidotransferase gene (purF) that encoded a desensitized PRPP amidotransferase, purF disrupted mutants were used as the host strains. It was found that the innovation of the four genotypes brought about a small amount of inosine accumulation. Furthermore, an adenine auxotrophic mutant of E. coli showed inappropriate adenine use because its growth could not respond efficiently to the concentration of adenine added. As the presence of adenosine deaminase is well known in E. coli and it is thought to be involved in adenine use, a mutant disrupted adenosine deaminase gene (add) was constructed and tested. The mutant, which is deficient in purF, purA, deoD, purR, and add genes, and harboring the desensitized purF as a plasmid, accumulated about 1 g of inosine per liter. Although we investigated the effects of purR disruption and purF gene improvement, unexpectedly an increase in the inosine productivity could not be found with this mutant.  相似文献   

17.
The purified enzyme xanthosine-5'-monophosphate (XMP) aminase from Escherichia coli strain B-96 is shown to possess catalytic activity with either glutamine or ammonia as a substrate. This enzyme, which possesses identical subunits, has the following properties: (a) a pH optimum of 8.3 for both aminase and amidotransferase; (b) an apparent K-m for both glutamine and NH3 of 1 mM; (c) an amidotransferase that is approximately 2 times more active than the aminase; (d) a linear relationship between velocity and enzyme concentrationfor both activities; (e) inhibition of both activities by the glutamine analogue 6-diazo-5-oxo-L-norleucine, but the amidotransferase is more sensitive than the aminase; and (f) inhbiition of both activities by the adenosine analogue, psicofuranine, but again the amidotransferase activity is more sensitive than the aminase. The so-called XMP aminase from the E. coli mutant B-24-1 also has been examined in both crude extracts nad ammonium sulfate fractions and the following data have been obtained: (a) both preparations of enzyme contain aminase and amidotransferase activity; (b) both activities have the same substrate requirements; (c) the pH optima for both activities in the crude extract are identical with those found with the purified enzyme preparation; and (d) the amidotransferase activity in the crude extract and the ammonium sulfate fractions is 2- to 3-fold more active than the aminase. These data demonstrate that this enzyme from E. coli is not strictly a XMP aminase but is, in fact, an amidotransferase capable of utilizing either glutamine or NH3 as a substrate.  相似文献   

18.
Subcellular organelle fractionation of nitrogen-fixing nodules of soybean (Glycine max (L.) Merr.) indicates that a number of enzymes involved in the assimilation of ammonia into amino acids and purines are located in the proplastids. These include asparagine synthetase (EC 6.3.1.1), phosphoribosyl amidotransferase (EC 2.4.2.14), phosphoglycerate dehydrogenase (EC 1.1.1.95), serine hydroxymethylase (EC 2.1.2.1), and methylene-tetrahydrofolate dehydrogenase (EC 1.5.1.5). Of the two isoenzymes of asparate aminotransferase (EC 2.6.1.1) in the nodule, only one was located in the proplastid fraction. Both glutamate synthase (EC 1.4.1.14) and triosephosphate isomerase (EC 5.3.1.1) were associated at least in part with the proplastids. Glutamine synthetase (EC 6.3.1.2) and xanthine dehydrogenase (EC 1.2.1.37) were found in significant quantities only in the soluble fraction. Phosphoribosylpyrophosphate synthetase (EC 2.7.6.1) was found mostly in the soluble fraction, although small amounts of it were detected in other organelle fractions. These results together with recent organelle fractionation and electron microscopic studies form the basis for a model of the subcellular distribution of ammonium assimilation, amide synthesis and uredie biogenesis in the nodule.Abbreviations FH4 tetrahydrofolic acid - PRPP 5-phospho--D-ribose 1-pyrophosphate - PRPP synthetase ribosephosphate pyrophosphokinase (phosphoribosylpyrophosphate synthetase)  相似文献   

19.
Recent studies of glutamine PRPP amidotransferase have provided a new understanding of the function and mechanism of this rather complicated enzyme that may be a paradigm for other complex enzymes. New insights have been gained into the mechanisms of catalysis in the active sites of the two half-reactions, catalytic coupling, allosteric control by feedback inhibitors and the channeling of reaction and metabolic intermediates.  相似文献   

20.
Administration of the current tuberculosis (TB) vaccine to newborns is not a reliable route for preventing TB in adults. The conversion of XMP to GMP is catalyzed by guaA-encoded GMP synthetase (GMPS), and deletions in the Shiguella flexneri guaBA operon led to an attenuated auxotrophic strain. Here we present the cloning, expression, and purification of recombinant guaA-encoded GMPS from Mycobacterium tuberculosis (MtGMPS). Mass spectrometry data, oligomeric state determination, steady-state kinetics, isothermal titration calorimetry (ITC), and multiple sequence alignment are also presented. The homodimeric MtGMPS catalyzes the conversion of XMP, MgATP, and glutamine into GMP, ADP, PP(i), and glutamate. XMP, NH(4)(+), and Mg(2+) displayed positive homotropic cooperativity, whereas ATP and glutamine displayed hyperbolic saturation curves. The activity of ATP pyrophosphatase domain is independent of glutamine amidotransferase domain, whereas the latter cannot catalyze hydrolysis of glutamine to NH(3) and glutamate in the absence of substrates. ITC data suggest random order of binding of substrates, and PP(i) is the last product released. Sequence comparison analysis showed conservation of both Cys-His-Glu catalytic triad of N-terminal Class I amidotransferase and of amino acid residues of the P-loop of the N-type ATP pyrophosphatase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号