首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytogenetic analysis of M2 plants after irradiation of cotton by thermal neutrons was performed in 56 families. In 40 plants of 27 M2 families, different abnormalities of chromosome pairing were found. These abnormalities were caused by primary monosomy, chromosomal interchange, and desynapsis. The presence of chromosome aberrations in some cases decreased meiotic index and pollen fertility. Comparison of the results of cytogenetics analysis, performed in M1 and M2 after irradiation, showed a nearly twofold decrease in the number of plants with chromosomal aberrations in M2, as well as narrowing of the spectrum of these aberrations. The latter result is explained by the fact that some mutations are impossible to detect in subsequent generations because of complete or partial sterility of aberrant M1 plants. It was established that the most efficient radiation doses for inducing chromosomal aberrations in the present study were 15 and 25 Gy, since they affected survival and fertility of altered plant to a lesser extent.  相似文献   

2.
Sanam'ian MF 《Genetika》2003,39(7):947-955
The effect of pollen irradiation at dose rates of 10, 15, 20, and 25 Gy on variability in cotton plants Gossypium hirsutum L. was studied. The modified plants showed a reduced fertility, mainly caused by chromosomal rearragements and genomic mutations during meiosis. The genomic mutations involved primary and tertiary monosomics, monotelodisomics, and a haploid plant. The decrease in meiotic index and pollen fertility in the cotton aneuploids was related not only to aberrations in chromosome pairing but also to genetic features of the original plants. It was found that heterozygosity for interchromosomal exchanges found in M1 plants resulted in the formation of multivalent associations of chromosomes of various forms and types of segregation from translocation complexes. Another result was high variability in pollen fertility. An increase in irradiation dose rate caused an increase in the number of translocants with a high frequency of quadrivalents. The results suggest that the great diversity of forms observed in M1 after pollination with irradiated pollen is determined, first, by elimination of some chromosomes or their arms or the whole paternal genotype and second, by interchromosomal rearrangements. The high variability in pollen fertility of translocants hampers using this trait as a marker of heterozygosity for exchanges in cotton.  相似文献   

3.
Blood samples from two healthy donors were exposed, (1) to 200 R of X-rays in G0 and G1S phases of the cell cycle, and (2) to epichlorohydrin 10(-6) M and TEPA 10(-4) M in G0 and/or in G1S and G2 phases. Part of the cells was processed for chromosome studies conventionally and the other part by the trypsinization banding technique. Detailed chromosomal analysis showed that, after irradiation, 38.2% of aberrations in G0 and 18.7% in G1S phases escaped cytogenetic detection when the conventional technique was used. After exposures to TEPA and ECHH, 10.9% of aberrations were undectable in G0 and 3.3% in G1S and G2 phases. The distribution of chromosome breaks was non-random both after irradiation and after exposure to alkylating agents. However, it differed according to the mutagen used. Some chromosomal segments were broken significantly more frequently than the others (e.g. 9q12), some were resistant to breakage (e.g. the whole Y chromsome). The segments represented by G-negative bands were more fragile than the G-positive and G-variable segments.  相似文献   

4.
Cytological characterization of transgenic soybean   总被引:10,自引:0,他引:10  
 Some of the transgenic soybean [Glycine max (L.) Merr.] plants produced by bombarding embryogenic suspension cultures with DNA-coated particles exhibit morphological aberrations, including stunted plant growth, leathery dark green leaves and partialto-total seed sterility. In general, cultures from two Asgrow soybean lines (A2242, A2872) that were maintained for 8 months or longer produced primary transformants with reduced fertility. Cytological examination (mitotic pro-metaphase to metaphase chromosomes) of cells of suspension cultures, of roots from germinating somatic embryos, and of plants (R0 and R1) derived from A2242, revealed, besides diploidy (2n=40), various chromosomal aberrations such as deletions, duplications, trisomics and tetraploidy. Diploid transgenic plants with a normal karyotype from A2242 generally exhibited good fertility. No chromosomal abnormalities were observed in A2872-derived plants. However, plants regenerated from relatively old cultures of A2872 (more than 1 year in culture) showed a range of phenotypic abnormalities although they all contained 2n=40 chromosomes. These results indicate that soybean genotypes differ in their susceptibility to chromosomal instability induced by tissue culture. Therefore, chromosome analysis of cell cultures and the plants derived from them can help eliminate chromosomally and genetically abnormal material from gene-transfer experiments. Received: 6 June 1997/Accepted: 9 October 1997  相似文献   

5.
Exposure of cotton seeds to thermal neutrons at doses of 15, 25, and 35 Gy was shown to induce many altered plants, including sterile and chimeric ones. Most of these phenotypic changes were shown to result from novel genomic, chromosomal, and desynaptic mutations. The presence of these mutations in the karyotype of M, plants often decreased meiotic index and pollen fertility. In translocation forms, the decrease in pollen fertility was caused by the prevalence of quadrivalents in form of rings and chains with adjacent segregation of chromosomes from the translocation complexes. Based on the shapes and sizes of multivalent associations, we performed preliminary localization of translocation breakpoints. A specific feature of the effect of thermal neuron irradiation in M1 was induction of numerous unique chromosomal aberrations, consisting in the appearance in the same plant of several types of mutations (genomic and chromosomal), exchange complexes in the same nucleus, and multiple exchanges involving three nonhomologous chromosomes.  相似文献   

6.
Sanam'ian MF 《Genetika》2003,39(8):1081-1090
The karyotypes of biomorphologically abnormal cotton (Gossypium hirsutum L.) plants obtained in M2 after pollination with pollen irradiated at dose rates 10, 15, 20, and 25 Gy were studied. Various genomic and chromosomal mutations were detected in 57 M2 families. The primary monosomics isolated in M2 were found to be cytologically more stable and more viable, since they had higher meiotic indices, pollen fertility, and seed formation. In M2, a decrease in the number of plants with multiple karyotype aberrations and interchromosomal exchanges with high frequency of multivalent formation was observed. The multivalents had diverse patterns and types of chromosome segregation and translocation complexes. Their pollen fertility was higher than in translocants found in M1. Desynapsis often occurred in M2, including plants with chromosome deficiency or rearrangements. The variation in the number of univalents in various cells was found to result from different expression of synaptic genes. The results indicate stabilization of karyotypes, increase in cytologic stability and viability, and the absence of sterility in aberrant plants.  相似文献   

7.
The effect of pollen irradiation at dose rates of 10, 15, 20, and 25 Gy on variability in cotton plants Gossypium hirsutum L. was studied. The modified plants showed a reduced fertility, mainly caused by chromosomal rearrangements and genomic mutations during meiosis. The genomic mutations involved primary and tertiary monosomics, monotelodisomics, and a haploid plant. The decrease in meiotic index and pollen fertility in the cotton aneuploids was related not only to aberrations in chromosome pairing but also to genetic features of the original plants. It was found that heterozygosity for interchromosomal exchanges found in M1 plants resulted in the formation of multivalent associations of chromosomes of various forms and types of segregation from translocation complexes. Another result was high variability in pollen fertility. An increase in irradiation dose rate caused an increase in the number of translocants with a high frequency of quadrivalents. The results suggest that the great diversity of forms observed in M1 after pollination with irradiated pollen is determined, first, by elimination of some chromosomes or their arms or the whole paternal genotype and second, by interchromosomal rearrangements. The high variability in pollen fertility of translocants hampers using this trait as a marker of heterozygosity for exchanges in cotton.  相似文献   

8.
Gametocidal (Gc) chromosomes induce various types of chromosomal mutations during gametogenesis in the chromosomes of common wheat and alien chromosomes added to common wheat. However, it is not yet known whether the Gc chromosome causes aberrations at the nucleotide level because mutations caused by Gc chromosomes have been studied only by cytological screening. In order to know whether the Gc chromosome induces point mutations, we conducted PCR analysis and sequencing with the progeny of a common wheat line that is disomic for barley chromosome 2H and monosomic for Gc chromosome 2C. We analyzed 18 2H-specific EST sequences using 81 progeny plants carrying a cytologically normal-appearing 2H chromosome and found no nucleotide changes in the analyzed 1,419 sequences (in total 647,075 bp). During this analysis, we found six plants for which some ESTs could not be PCR amplified, suggesting the presence of chromosomal mutations in these plants. The cytological and PCR analyses of the progeny of the six plants confirmed the occurrence of chromosomal mutations in the parental plants. These results suggested that the Gc chromosome mostly induced chromosomal aberrations, not nucleotide changes, and that the Gc-induced chromosomal mutations in the six plants occurred after fertilization.  相似文献   

9.
The karyotypes of biomorphologically abnormal cotton (Gossypium hirsutum L.) plants obtained in M2 after pollination with pollen irradiated at dose rates 10, 15, 20, and 25 Gy were studied. Various genomic and chromosomal mutations were detected in 57 M2 families. The primary monosomics isolated in M2 were found to be cytologically more stable and more viable, since they had higher meiotic index, pollen fertility, and seed formation. In M2, a decrease in the number of plants with multiple karyotype aberrations and interchromosomal exchanges with high frequency of multivalent formation was observed. The multivalent configurations had different types and chromosome disjunctions. Their pollen fertility was higher than in translocants found in M1. Desynapsis often occurred in M2, including plants with chromosome deficiency or rearrangements. The variation in the number of univalents in various cells was found to result from different expression of synaptic genes. The results indicate stabilization of karyotypes, increase in cytologic stability and viability, and the absence of sterility in aberrant plants.  相似文献   

10.
We have studied the induction of chromosomal aberrations in human lymphocytes exposed in G0 to X rays or carbon ions. Aberrations were analyzed in G0, G1, G2 or M phase. Analysis during the interphase was performed by chemically induced premature chromosome condensation, which allows scoring of aberrations in G1, G2 and M phase; fusion-induced premature chromosome condensation was used to analyze the damage in G0 cells after incubation for repair; M-phase cells were obtained by conventional Colcemid block. Aberrations were scored by Giemsa staining or fluorescence in situ hybridization (chromosomes 2 and 4). Similar yields of fragments were observed in G1 and G2 phase, but lower yields were scored in metaphase. The frequency of chromosomal exchanges was similar in G0 (after repair), G2 and M phase for cells exposed to X rays, while a lower frequency of exchanges was observed in M phase when lymphocytes were irradiated with high-LET carbon ions. The results suggest that radiation-induced G2-phase block is associated with unrejoined chromosome fragments induced by radiation exposure during G0.  相似文献   

11.
Cytogenetic analysis was performed repeatedly on a breast cancer patient since the beginning of the antitumor treatment. Double minute chromosomes (DMS, 2-10 per cell) were found in less than 2% of peripheral blood lymphocytes besides other chromosomal abnormalities after radiation therapy and 8 months after chemotherapy. The level of structural chromosomal aberrations two years after the therapeutic treatment was 0.13-0.14 aberrations per cell, but DMS were not observed. Estimation of the fragile site (FS) frequency and distribution at this time revealed a significant expression of the common FS FRAGF (9q1.2) after the treatment of blood culture with 5-bromo-2-deoxyuridine at dose levels of 7 and 50 g/l and enhanced fragility in chromosome band 1p35-36.1 (FRA1A) in folate-deprived conditions. Rare FS were not found. The presented data are discussed.  相似文献   

12.
Summary Plants regenerated on two different media (NK and I) from the calluses of simple or cloned subcultures, which were originated from a single stock callus of Haworthia setata derived from its flower bud, were observed for eight characters, i.e., somatic chromosome number in root tips, growth vigor, leaf shape, leaf color, number of stomata per unit leaf area, esterase zymogram, chromosome association at meiotic metaphase I in pollen mother cells, and pollen fertility. From these regenerates plants with different characters from those of the parental plant were obtained. With regards to chromosomal aberrations, tetraploids, aneuploids, plants with a part of the chromosome segment deleted, with reciprocal and non-reciprocal translocations, or with paracentric inversions and those showing sub-chromatid aberrations at meiosis were obtained. The NK medium tended to regenerate more tetraploids and less plants carrying translocation than the I medium.Chromosome variabilities in somatic cells of the regenerates correlated with those of the calluses, from which they regenerated, while they did not correlate with either the meiotic irregularities (chromosome association at MI) or pollen fertility of the regenerates. From these facts, it was concluded that a rather large number of callus cells participate in the regeneration of an individual plant, although, however, only a few limited types of the cells form its germ line.Polyploidy affected growth vigor, leaf shape, stomata number and chromosome association at MI, but its effects were not detected on other characters. Chromosomal aberrations at the diploid level produced no clear changes in the regenerate's phenotype except in meiotic chromosome configuration and pollen fertility.Most chromosomal variants obtained in the present study are already reported in plants collected from wild populations, but plants with the deletion of a whole chromosome (karyotype 7L+6S) or chromosome segment (7L+1M+6S and 14L+2M+12S) have never been reported: this fact suggests that tissue culture is a powerful tool for producing plants with novel karyotypes.Contribution from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan, No. 436  相似文献   

13.
An analysis was performed of unstable chromosomal aberrations in peripheral blood of 36 cosmonauts after long-term space missions on "Mir" orbital station. 25 cosmonauts were examined before their flights to score spontaneous yields of cytogenetical damage. In all cases the doses absorbed by crews during space flights did not exceed permissible levels of irradiation, adopted for cosmonauts. The frequencies of chromosomal-type aberrations after space missions were found to increase significantly compared to the pre-flight levels. The yields of dicentrics and centric rings on the average were as high as 0.12 +/- 0.02 and 0.47 +/- 0.06% before and after the 1st flight, 0.18 +/- 0.05 and 0.71 +/- 0.11% before and after the 2nd flight respectively. During the inter-flight periods, usually lasted 1.5-2 years, the yields of chromosome damage lowered, but did not reach their spontaneous values. After each next flight the yields of chromosome aberrations increased again. The cytogenetical damage detected in cosmonauts' peripheral blood lymphocytes after chronic action of low doses of space radiation points out a possible increase in risks of stochastic effects in distant future for crews after long-term space missions.  相似文献   

14.
The new Czechoslovak fungicide trimorphamide was tested for its mutagenic activity. To evaluate the potential mutagenic effects on Drosophila, trimorphamide at 0.5, 1.0, 5.0, 10.0% was administered into the cultivation medium, and the sex-linked recessive lethal mutation detection test and the chromosome nondisjunction test were used. After administration of trimorphamide to mice at 60, 150 and 300 mg . kg-1 b.w. perorally, and 30, 70 and 150 mg . kg-1 b.w. intraperitoneally in single and repeated (5X) doses, a cytogenetic analysis of chromosomal aberrations in bone-marrow cells was performed. The cytogenetic analysis of human peripheral lymphocytes for chromosomal aberrations in vitro was performed 24 h after trimorphamide had been applied into the culture in concentrations 19.1 X 10(-3), 19.1 X 10(-4) and 19.1 X 10(-5) M. Under our testing conditions the trimorphamide concentrations used did not show any mutagenic effect upon Drosophila, compared with the controls. Also, under the conditions of the cytogenetic analysis, no significant increase in the frequency of chromosomal abnormalities in mouse bone marrow or in human peripheral lymphocyte was observed compared with the group of controls.  相似文献   

15.
Summary Barley (Hordeum vulgare L. Himalaya) seeds were artificially aged under two storage conditions (32 °C/12% moisture content (m.c.) and 38 °C/18% m.c.) to study the behavior of induced chromosomal aberrations during plant growth. The frequencies of aberrant anaphases at first mitosis in root tips were correlated with loss of germinability. However, after 3 and 5 weeks' growth, aberration frequency declined. In plants grown from artificially aged seeds, the frequency of aberrant anaphases appeared to be stabilized at about 1% after 5 weeks' growth, in spite of the large differences in the frequencies at first mitosis. This suggests that because of their genetic imbalance, cells with chromosomal aberrations induced by seed aging were being excluded during plant growth. Meiotic chromosome configurations at MI were normal (7 II) in all plants studied, although a few precocious separations were found. Meiotic aberrations were found at AI-TI, AII-TII and the tetrad stages in the pollen mother cells of plants grown from the control and artificially aged seeds. However, there were no clear differences among the control and the two aging treatments. It was obvious that some cells with meiotic chromosomal aberrations were lost between the AI-TI and AII-TII stages, and still more between the AII-TII and tetrad stages. The frequency of tetrads with micronuclei in plants produced from artificially aged seeds was the same as in the control. The plants grown from artificially aged seeds showed high pollen fertility (95.2 to 97.0%) and seed fertility (90.1 to 97.2%) which was comparable to the control values (97.4 and 97.9%) respectively, indicating no special effects of seed aging. Anaphase cells of the first mitosis in the next (A2) generation were analyzed to study the transmission of chromosomal aberrations through mitotic and meiotic cell divisions in the A1 generation. Aberrant anaphases in the progeny from the artificially aged seeds were not higher than those of the control progeny. This indicates that the chromosomal aberrations induced by seed aging are not transmitted to the next generation.Published with the approval of the Director of the Colorado state Experiment Station as Scientific Series No. 2776  相似文献   

16.
We have employed an irradiation and fusion procedure to generate somatic cell hybrids containing various fragments of the short arm of human chromosome 12 using a 12p-only hybrid (M28) as starting material. For the initial identification of hybrids retaining human DNA, nonradioactive in situ hybridization was performed. Seventeen cell lines appeared to contain detectable amounts of human material. Detailed characterization of these hybrids by Southern blot analysis and chromosomal in situ suppression hybridization (chromosome painting), using hybrid DNAs as probes after Alu element-mediated PCR, resulted in a hybrid panel encompassing the entire chromosome 12p arm. This panel will provide a valuable resource for the rapid isolation of region-specific DNA markers. In addition, this panel may be useful for the characterization of chromosome 12 aberrations in, e.g., human germ cell tumors.  相似文献   

17.
Studies on meiotic behaviour and pollen fertility have been carried out in Zephyranthes candida, Z. grandiflora and Z. flava. Maximum meiotic abnormalities in chromosome behaviour were observed in Z. candida and Z. grandiflora. There were variations in the number of bivalent formation, multivalents and anaphasic separation. All types of abnormalities were found to be associated with low percentage of pollen fertility. In Z. flava, chromosomal aberrations were low and pollen fertility was high. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Exposure of cotton seeds to thermal neutrons at doses of 15, 25, and 35 Gy was shown to induce many biomorphologically abnormal plants, including sterile and chimeric ones. Most of these phenotypic changes were shown to result from novel genomic, chromosomal, and desynaptic mutations. The presence of these mutations in the karyotype of M1 plants often decreased meiotic index and pollen fertility. In translocation forms, the decrease in pollen fertility was caused by the prevalence of quadrivalents in form of rings and chains with adjacent segregation of chromosomes from the translocation complexes. Based on the shapes and sizes of multivalent associations, we performed preliminary localization of translocation breakpoints. A specific feature of the effect of thermal neuron irradiation in M1 was induction of numerous unique chromosomal aberrations, consisting in the appearance in the same plant of several types of mutations (genomic and chromosomal), interchange complexes in the same nucleus, and multiple interchanges involving three nonhomologous chromosomes.  相似文献   

19.
To clarify the relationship between cell death and chromosomal aberrations following exposure to heavy-charged ion particles beams, exponentially growing Human Salivary Gland Tumor cells (HSG cells) were irradiated with various kinds of high energy heavy ions; 13 keV/μm carbon ions as a low-LET charged particle radiation source, 120 keV/μm carbon ions and 440 keV/μm iron ions as high-LET charged particle radiation sources. X-rays (200 kVp) were used as a reference. Reproductive cell death was evaluated by clonogenic assays, and the chromatid aberrations in G2/M phase and their repairing kinetics were analyzed by the calyculin A induced premature chromosome condensation (PCC) method. High-LET heavy-ion beams introduced much more severe and un-repairable chromatid breaks and isochromatid breaks in HSG cells than low-LET irradiation. In addition, the continuous increase of exchange aberrations after irradiation occurred in the high-LET irradiated cells. The cell death, initial production of isochromatid breaks and subsequent formation of chromosome exchange seemed to be depend similarly on LET with a maximum RBE peak around 100–200 keV/μm of LET value. Conversely, un-rejoined isochromatid breaks or chromatid breaks/gaps seemed to be less effective in reproductive cell death. These results suggest that the continuous yield of chromosome exchange aberrations induced by high-LET ionizing particles is a possible reason for the high RBE for cell death following high-LET irradiation, alongside other chromosomal aberrations additively or synergistically.  相似文献   

20.
The genetic implications of induced synaptonemal complex (SC) damage are not known. However, on theoretical grounds, such aberrations could be involved in mechanisms leading to potentially heritable defects. Cyclophosphamide (CP), a chemical reported to cause structural and numerical chromosomal aberrations in the mouse, was used to determine if SC damage observed in meiotic prophase is related to subsequent metaphase chromosomal aberrations. Male mice were injected i.p. with CP. In some instances, mice were also injected simultaneously with tritiated thymidine to label DNA so that cells could be tracked autoradiographically through spermatogenesis. Prophase, primary metaphase (M1), and secondary metaphase (M2) samples were sequentially harvested at appropriate times from the same individual, and nuclei were examined for aberrations. Correlation coefficients between SC and metaphase chromosome aberrations were calculated. The inclusion of tritium labeling increased the number and significance of positive correlations. Positive correlations were found between (1) dose-dependent total SC damage and damage to M1, and to a lesser extent, M2 chromosomes; (2) SC breaks/fragments and M1 chains/rings as well as isochromatid breaks/fragments; (3) SC asynapsis and M1 chromatid breaks/fragments; (4) SC multi-axial configurations and M1 chains/rings as well as isochromatid and chromatid breaks/fragments; and (5) SC multi-axial configurations and M2 hyperploidy. These correlations do not define mechanistic or causal relationships between SC and chromosomal damage. However, taken together with the observation that induced SC damage is many times greater than ensuing metaphase chromosome damage, they substantiate SC analysis as a highly sensitive indicator of potentially heritable effects of this (and presumably other) genotoxic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号