首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Conditions for efficient ion heating in the interaction of lower hybrid waves with plasma are experimentally determined. Experiments show that efficient lower hybrid heating stimulates a transition to the improved confinement mode. The formation of internal and external transport barriers is associated with strong central ion heating, which results in a change of the radial electric field E r and an increase in the shear of the poloidal plasma velocity. The improved confinement mode in the central region of the discharge is attained under the combined action of lower hybrid heating and an additional rapid increase in the plasma current. A new mechanism for the generation of an additional field E r is proposed to explain the formation of a transport barrier.  相似文献   

2.
Oscillations of a plasma column in a longitudinal magnetic field are considered. It is found that eigenmodes with frequencies close to the ion cyclotron frequency can be excited in columns the radii of which are smaller than the characteristic wavelength of magnetosonic oscillations predicted by the theory of homogeneous plasma. The eigenmodes have the form of waves running around the column axis in the direction of electron gyration in the magnetic field. Magnetosonic oscillations can be excited as a side effect when using helical antennas for ion cyclotron resonance heating of plasma. These oscillations should enhance electron heating in the plasma core, as well as both electron and ion heating at the periphery of the plasma column. The spectrum of eigenmodes of inhomogeneous plasma columns includes oscillations of different nature. Comparative analysis of their properties performed in the present paper is useful for understanding the full picture of the physical processes occurring during ion cyclotron resonance heating and clarifying the characteristic features of the magnetosonic oscillations under study.  相似文献   

3.
Results are presented from numerical simulations of the dynamics of beam instability in a finite plasma volume (plasma-filled cavity) in a weak magnetic field. It is shown that, in such a system, the low group velocity of the plasma waves excited by an electron beam can result in the generation and amplification of an electric field; strong electron heating in the axial region; and, as a consequence, the generation of a high potential at the axis. The quasistatic radial electric field so produced accelerates ions toward the periphery of the plasma column, forming a directed ion beam with an energy much higher than the thermal energy of the bulk plasma electrons.  相似文献   

4.
Results are presented from investigations of the possibility of heating a hydrogen plasma at the fundamental harmonic of the ion cyclotron frequency in the T-11M tokamak. The fluxes of charge-exchange atoms that escape from the plasma in the radial direction and across the toroidal magnetic field (transverse neutrals) were recorded by a Lakmus neutral particle analyzer. Measurements by the analyzer show that, during an RF pulse, the ion temperature increases by approximately 50–100 eV. Such plasma parameters as the ion temperature, rotation velocity, and isotopic composition were measured by a high-resolution spectrometer. According to the data from high-resolution spectroscopy, the ion temperature increases by approximately 150 eV. Results from numerical simulations of the ion cyclotron resonance heating of a hydrogen plasma in the T-11M tokamak are also given.  相似文献   

5.
Physical processes determining the excitation of RF electromagnetic fields in a plasma column in a magnetic field are analyzed. The Alfvén resonance plays an important role at frequencies close to the ion cyclotron frequency. It leads to the enhancement of the RF electric field and transformation of Alfvén oscillations with a predominantly transverse polarization of the electric field into lower hybrid ones, which have a significant longitudinal component of the electric field. Lower hybrid oscillations efficiently interact with electrons causing their heating. Difficulties in the implementation of ion cyclotron resonance heating by the magnetic beach method are outlined. The processes considered in this work can be important for the VASIMR plasma engine.  相似文献   

6.
Results are presented from experimental studies of ion heating in the GOL-3 device. The experiments were carried out in a multimirror configuration with a local magnetic well. It was found that, during the injection of a relativistic electron beam, a decrease in the local density of the beam in a magnetic well, which is proportional to the decrease in the strength of the longitudinal magnetic field, results in the formation of a short plasma region with a low electron temperature. The measured longitudinal gradient of the plasma pressure corresponds to an electron temperature gradient of ~2–3 keV/m. Axially nonuniform heating of the plasma electrons gives rise to the macroscopic motion of the plasma along the magnetic field in each cell of the multimirror confinement system. The mixing of the counterpropagating plasma flows inside each cell leads to fast ion heating. Under the given experimental conditions, the efficiency of this heating mechanism is higher than that due to binary electron-ion collisions. The collision and mixing of the counterpropagating plasma flows is accompanied by a neutron and γ-ray burst. The measured ratio of the plasma pressure to the vacuum magnetic field pressure in these experiments reaches 0.2.  相似文献   

7.
8.
A study is made of some characteristic features of ion cyclotron resonance (ICR) heating in plasma-based isotope separators. The effects associated with ion drift in the RF field of a solenoidal antenna are considered in the single-particle approximation. Estimates are obtained and numerical calculations are carried out for ICR heating in the case of a “narrow” (ρ/r ~ 1, where ρ is the ion gyroradius) plasma flow.  相似文献   

9.
Stochastic heating of plasma electrons by a large-amplitude electromagnetic wave propagating across a strong external magnetic field is studied theoretically and numerically. An analytic estimate of the threshold wave amplitude at which heating begins is obtained. The dependence of the average electron energy on the magnetic field and plasma density is investigated using particle-in-cell simulations.  相似文献   

10.
A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli’s pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.  相似文献   

11.
The quasi-steady ion distribution in a plasma with a single ion species and with low-intensity ion acoustic turbulence is found. Conditions are determined under which the stimulated scattering of ion acoustic waves by ions leads to the formation of a superthermal ion distribution function that decreases with increasing velocity more gradually than does a Maxwellian distribution function. It is found that the plasma conductivity increases as a result of a decrease in the turbulence level due to an enhancement of the Cherenkov damping of ion acoustic waves by resonant ions, whose number increases because of the formation of a gradually decreasing distribution of superthermal ions.  相似文献   

12.
A simple approximation extending the theory of ion-acoustic turbulence (IAT) is proposed. The approximation is based on the idea of efficient anisotropic ion heating in the Coulomb plasma model. The model makes it possible not only to employ the main results of the existing IAT theory without an assumption of strong ion collisions, but also to substantially extend them. The role of Cherenkov absorption of ion-acoustic waves is revealed. This absorption is caused by an anisotropic ion distribution in the new regimes of IAT that are related to its angular distribution and manifest themselves in electron and ion heating. A specific feature of the model is the finite time of existence of one of the IAT regimes under study.  相似文献   

13.
A study is made of the characteristic features of the reflection and absorption of a monochromatic wave by a plasma with axisymmetric ion acoustic turbulence over a broad frequency range. The absorption anisotropy and the related conversion of an incident, linearly polarized wave into a reflected, elliptically polarized wave are described. The absorption coefficient and the difference in the phase shifts occurring in the reflection of different field components are obtained as explicit functions of the turbulent plasma parameters.  相似文献   

14.
Basic experimental results on cyclotron heating of the ion plasma component in the Globus-M spherical tokamak obtained by means of the ACORD-12 charge-exchange ion analyzer are presented. A procedure for determining the maximum energy of fast ions confined in the plasma is described. The procedure was applied to estimate the limiting energy of hydrogen minority ions accelerated during ion cyclotron heating in the Globus-M tokamak. The experimental evaluation of the maximum hydrogen ion energy is confirmed by simulations of ion orbits. Recommendations for optimizing experiments on ion cyclotron heating in the Globus-M tokamak are formulated.  相似文献   

15.
A self-consistent model of radio-frequency (RF) plasma generation in stellarators in the ion cyclotron frequency range is described. The model includes equations for the particle and energy balance and boundary conditions for Maxwell’s equations. The equation of charged particle balance takes into account the influx of particles due to ionization and their loss via diffusion and convection. The equation of electron energy balance takes into account the RF heating power source, as well as energy losses due to the excitation and electron-impact ionization of gas atoms, energy exchange via Coulomb collisions, and plasma heat conduction. The deposited RF power is calculated by solving the boundary problem for Maxwell’s equations. When describing the dissipation of the energy of the RF field, collisional absorption and Landau damping are taken into account. At each time step, Maxwell’s equations are solved for the current profiles of the plasma density and plasma temperature. The calculations are performed for a cylindrical plasma. The plasma is assumed to be axisymmetric and homogeneous along the plasma column. The system of balance equations is solved using the Crank-Nicholson scheme. Maxwell’s equations are solved in a one-dimensional approximation by using the Fourier transformation along the azimuthal and longitudinal coordinates. Results of simulations of RF plasma generation in the Uragan-2M stellarator by using a frame antenna operating at frequencies lower than the ion cyclotron frequency are presented. The calculations show that the slow wave generated by the antenna is efficiently absorbed at the periphery of the plasma column, due to which only a small fraction of the input power reaches the confinement region. As a result, the temperature on the axis of the plasma column remains low, whereas at the periphery it is substantially higher. This leads to strong absorption of the RF field at the periphery via the Landau mechanism.  相似文献   

16.
Plasma methods for processing spent nuclear fuel are analyzed. It is shown that, by ICR heating in a nonuniform magnetic field, the energy of the heated ash ions can be increased substantially, while nuclear fuel ions can be kept cold. Two methods for extracting heated ash ions from a cold plasma flow are considered, specifically, that by increasing the ion gyroradius and that due to ion drift in a curved magnetic field. It is found that the required degree of separation of ash and fuel ions can be achieved in systems with quite moderate parameters.  相似文献   

17.
Large-scale plasma oscillations (so-called MHD oscillations) observed at the T-10 tokamak are investigated. The central electron cyclotron heating was used to enhance oscillations at the m/n = 1/1 mode with the goal of determining the internal characteristics of the process. The spatially resolved electron cyclotron emission diagnostics allowed analyzing the propagation characteristics of plasma perturbations. The experiments have revealed that excitation of oscillations in a particular mode occur simultaneously in the entire area located within the corresponding rational magnetic surface. The propagation of plasma perturbations along the torus is found to be inhomogeneous. The electron cyclotron emission diagnostics allowed finding eigen (resonance) frequencies of plasma oscillations from the parameters of their inhomogeneous propagation in the plasma core and comparing them with spectra of oscillations of the magnetic field induced by the plasma current in the edge plasma, which were recorded by magnetic probes. It is established that the frequencies of eigenmodes are independent of the electron temperature, plasma density, and auxiliary heating power. Even spatial harmonics of the principal magnetic surface are observed under strong excitation of oscillations. The rational magnetic surfaces that determine oscillation harmonics retain their position during the entire steady-state phase of the total plasma current in spite of the strong sharpening of the temperature profile due to central heating.  相似文献   

18.
Electron-ion collisions in relativistically strong electromagnetic fields are considered. Analytical and numerical analyses both show that all qualitative effects characteristic of collisions in nonrelativistic strong fields [1–3] occur at relativistic intensities of an electromagnetic wave as well. Expressions for Joule plasma heating and for the energy distributions of fast particles are derived from simple analytic considerations and are confirmed by numerical simulations. It is found, in particular, that, due to the relativistic increase in the mass of a scattered electron, Joule heating in ultrarelativistic fields becomes more intense as the field amplitude grows.  相似文献   

19.
The reflectometer method is used to comparatively study plasma fluctuations in the edge plasma of the TUMAN-3M tokamak during L—H transitions initiated by different methods. It is shown that the width of the spectrum of backscattered microwave radiation is the most representative parameter when comparing the results obtained in different confinement regimes. The following methods for affecting the edge plasma were applied: gas puffing, a fast current ramp-up, a rapid increase in the toroidal magnetic field, and ion cyclotron heating. The studies were performed at different positions of the cutoff of O-and X-mode probing waves. A similar behavior of the spectral width was observed during transitions triggered by the fast current ramp-up and the rapid increase in the toroidal field. This provides evidence that the mechanism for transition to the H-mode is the same in both cases in spite of the different character of the evolution of the current density profiles. The fastest and strongest narrowing of the spectra was observed during the transition triggered by ion cyclotron heating. Possible reasons for similarities and differences in the behavior of the spectra during the transitions to the improved confinement regime are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号