首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urokinase receptor is a multi-functional protein that plays a central role in cell surface plasminogen activation, cell migration, and cell adhesion. We previously demonstrated that high affinity peptide ligands for the urokinase receptor, which are urokinase competitors, can be obtained from a 15mer peptide library (Goodson et al., 1994). In order to probe for additional urokinase receptor binding sites we affinity selected the same bacteriophage library on complexes of soluble urokinase receptor (suPAR) and the receptor binding domain of urokinase, residues 1-48 (uPA1-48). Bacteriophage were isolated which bound to suPAR and suPAR:uPA1-48 complexes with high yield. The peptide sequences encoded by these bacteriophage were distinct from those obtained previously on urokinase receptor expressing cells, and comprise two groups based upon effects on su-PAR:1-anilino-8-napthalene sulfonate (ANS) fluorescence, and vitronectin binding competition. Alanine scanning mutagensis of the soluble peptides was used to define minimal regions and key residues for suPAR binding by competition with the parent bacteriophage. A comparison of these results with sequences of domains of both vitronectin and integrin alpha-chains, which have been reported to be important for urokinase receptor binding, suggests that the homology with the peptide sequences selected is functionally significant.  相似文献   

2.
The effect of autophosphorylation and protein kinase C-catalyzed phosphorylation on the tyrosine-protein kinase activity and ligand binding affinity of the epidermal growth factor (EGF) receptor has been studied. Kinetic parameters for the phosphorylation by the receptor kinase of synthetic peptide substrates having sequences related to the 3 in vitro receptor autophosphorylation sites (tyrosine residues 1173 (P1), 1148 (P2), and 1068 (P3)) were measured. The Km of peptide P1 (residues 1164-1176) was significantly lower than that for peptides P2 (residues 1141-1151) or P3 (residues 1059-1072). The tyrosine residue 1173 was also the most rapidly autophosphorylated in purified receptor preparations, consistent with previous observations for the receptor in intact cells (Downward, J., Parker, P., and Waterfield, M. D. (1984) Nature 311, 483-485). Variation in the extent of receptor autophosphorylation from 0.1 to 2.8 mol of phosphate/mol of receptor did not influence kinase activity or EGF binding affinity either for purified receptor or receptor in membrane preparations. Phosphorylation of the EGF receptor by protein kinase C was shown to cause a 3-fold decrease in the affinity of purified EGF receptor for EGF and to reduce the receptor kinase activity. In membrane preparations, phosphorylation of the EGF receptor by protein kinase C resulted in conversion of high affinity EGF binding sites to a low affinity state. This suggests that activation of protein kinase C by certain growth promoting agents and tumor promoters is directly responsible for modulation of the affinity of the EGF receptor for its ligand EGF. The regulation of the EGF receptor function by protein kinase C is discussed.  相似文献   

3.
Synthesis and structure-activity study of myxoma virus growth factor   总被引:1,自引:0,他引:1  
Y Z Lin  X H Ke  J P Tam 《Biochemistry》1991,30(13):3310-3314
Myxoma virus growth factor (MGF) is an 85-residue peptide derived from the gene product of a DNA tumor virus that infects rabbits. The carboxyl domain of MGF possesses about 40% sequence homology with the epidermal growth factor (EGF). This EGF-like domain covering residues 30-83 was synthesized and found to possess putative activities of EGF. It was, however, about 200-fold less active than EGF in the competitive binding of EGF receptor in A431 cells and the stimulation of [3H]-thymidine uptake in NRK 49F cells. MGF(30-83) is a basic and a hydrophobic peptide rich in beta-sheet structure. These features in MGF tend to promote aggregation, leading to precipitation even in strongly denaturing solutions. Thus, the refolding of MGF was achieved with difficulty and resulted in low yield. To increase the synthetic yield of MGF(30-83), a cluster of acidic amino acids was added to the NH2-terminus of MGF(30-83). This approach was found to be effective in minimizing the refolding difficulties and allowed accessibility to the synthesis of analogues in this class of compounds. The relationships of structure and function of MGF were studied by using analogues with point substitution by the corresponding D-amino acid or by Ala at position 44 or 52 and analogues with deletion of basic residues from the amino terminus. Modifications of both the receptor contact and the structural residues greatly reduced the potency of MGF(30-83), and the overall result correlated well with the known structure-activity of the EGF family.  相似文献   

4.
Although macrophages are thought to play important roles in tissue repair, the molecular mechanisms involved remain to be elucidated. Mice deficient in urokinase-type plasminogen activator (uPA-/-) exhibit decreased accumulation of macrophages following muscle injury and severely impaired muscle regeneration. We tested whether macrophage-derived uPA plays essential roles in macrophage chemotaxis and skeletal muscle regeneration. Macrophage uPA was required for chemotaxis, even when invasion through matrix was not necessary. The mechanism by which macrophage uPA promoted chemotaxis was independent of receptor binding but appeared to depend on proteolytic activity. Exogenous uPA restored chemotaxis to uPA-/- macrophages and rescued muscle regeneration in uPA-/- mice. Macrophage depletion in wild-type (WT) mice using clodronate liposomes resulted in impaired muscle regeneration, confirming that macrophages are required for efficient healing. Furthermore, transfer of WT bone marrow cells to uPA-/- mice restored macrophage accumulation and muscle regeneration. In this rescue, transferred WT cells appeared to contribute to IGF-1 expression but did not fuse to regenerating fibers. These data indicate that WT leukocytes, including macrophages, that express uPA were sufficient to rescue muscle regeneration in uPA-/- mice. Overall, the results indicate that uPA plays a fundamental role in macrophage chemotaxis and that macrophage-derived uPA promotes efficient muscle regeneration.  相似文献   

5.
An antibody against the human epidermal growth factor receptor (EGF), capable of activating its tyrosine kinase has been produced. Antibody 2913 recognizes only the cytoplasmic portion of the EGF receptor in A431 carcinoma cells, in normal human fibroblasts, and in a variety of other human tumor cell lines (Xu, Y.-A., Richert, N., Ito, S., Merlino, G. T., and Pastan, I. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 7308-7313). Indirect immunofluorescence and electron microscopy show that the antibody binds to intact cells only after membrane permeabilization. Moreover the antibody immunoprecipitates the v-erb-B gene product in avian myeloblastosis virus-infected cells but does not recognize the secreted form (105 kDa) of the A431 cell EGF receptor which lacks the cytoplasmic domain. Antibody 2913 activates the EGF receptor kinase in solubilized A431 membranes causing autophosphorylation on tyrosine residues only. Tryptic peptide maps suggest that antibody 2913 and EGF stimulate phosphorylation of the same amino acid residues. By electron microscopy, the cytoplasmic portion of the receptor was followed throughout its endocytotic pathway. The results show that the kinase domain is rapidly degraded in lysosomes with no accumulation in the cytoplasm or in the nucleus.  相似文献   

6.
The amino-terminal fragment (ATF, Ser1-Glu143) of urokinase-type plasminogen activator (uPA) is responsible for some important functions of uPA, such as receptor binding and chemotactic activity. To dissect the function and structure-activity relationship of ATF, recombinant human ATF was expressed in Pichia pastoris system at a yield of about 30 mg/L. The recombinant ATF was captured by a cation exchange column, further purified up to 99% purity by a gel filtration column, and characterized in terms of its receptor binding capability. The purified ATF was then crystallized by the method of sitting-drop vapor diffusion with magnesium sulfate as the precipitating agent at 298 K. The crystals belong to space group P1 with unit cell dimensions of a=47.5A, b=64.7A, c=65.4A, alpha=71.6 degrees , beta=92.1 degrees , gamma=84.0 degrees .  相似文献   

7.
A fragment of rat transforming growth factor alpha (TGF alpha) comprising the third disulfide loop (residues 34-43) was selected as a potential antigenic and receptor binding region. Immunization of rabbits with a peptide conjugate resulted in antibodies which were specific for both the peptide and rat TGF alpha, but not for the homologous epidermal growth factor (EGF). The synthetic decapeptide exhibited low affinity for EGF receptors on human cells. Affinity was increased 100x to 0.2% of EGF or TGF alpha binding by blocking the peptide ends. The blocked decapeptide had no mitogenic activity but prevented the mitogenic effect of EGF and TGF alpha on fibroblasts. This decapeptide is an antagonist and contains an important receptor binding region of TGF alpha.  相似文献   

8.
The intercysteine "loop" sequence 38-57 in the beta subunit has been shown to be a determinant for expression of biological activity in human lutropin (hLH) and choriogonadotropin (hCG) [Keutmann, H. T., Charlesworth, M. C., Mason, K. A., Ostrea, T., Johnson, L., & Ryan, R. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 2038]. Together with other sequences, the 38-57 region may contribute to a multicomponent receptor binding domain in hLH/hCG. Because the structural features influencing activity in this important region are not easy to evaluate in the full-length subunit, we have used analogues of hLH beta-(38-57) prepared by solid-phase synthesis. The peptides were tested for inhibition of 125I-labeled hCG binding to rat ovarian membrane receptors. Secondary structure was analyzed by circular dichroism (CD) and by reactivity with antibodies to the native 38-57 peptide. An analogue lacking the 38-57 disulfide linkage retained 20% receptor binding and full immunoreactivity. "Far"-ultraviolet CD profiles were essentially identical with those of the disulfide-intact peptide; a transition from 10% to 30% alpha-helix in 90% trifluoroethanol was characteristic of both. The peptide thus appears not to require the disulfide bridge to retain a looped conformation with amphipathic secondary structure. An essential positive charge at position 43 was shown by complete loss of activity upon substitution of Asp or Ala for the Arg found in all known species of LH. Other analogues showed a requirement for a neutral residue at position 47, also highly conserved.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Smooth muscle myosin light chain kinase contains a 64 residue sequence that binds calmodulin in a Ca2+-dependent manner (Guerriero, V., Jr., Russo, M. A., and Means, A. R. (1987) Biochemistry, in press). Within this region is a sequence with homology to the corresponding sequence reported for the calmodulin binding region of skeletal muscle myosin light chain kinase (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, L., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191). Inspection of these sequences reveals that they both share a similar number and spatial arrangement of basic residues with those present in the myosin light chain substrate. We have synthesized a 22-residue peptide corresponding to residues 480-501 (determined from the cDNA) of the smooth muscle myosin light chain kinase. This peptide, Ala-Lys-Lys-Leu-Ser-Lys-Asp-Arg-Met-Lys-Lys-Tyr-Met-Ala-Arg-Arg-Lys-Trp- Gln-Lys-Thr-Gly, inhibited calmodulin-dependent activation of the smooth muscle myosin light chain kinase with an IC50 of 46 nM. At saturating concentrations of calmodulin, the 22-residue peptide inhibited myosin light chain and synthetic peptide substrate phosphorylation competitively with IC50 values of 2.7 and 0.9 microM, respectively. An 11-residue synthetic peptide analog, corresponding to part of the calmodulin-binding sequence in skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys-Lys-Asn-Phe-Ile-Ala-Val, also competitively inhibited synthetic peptide substrate phosphorylation with a Ki of 1 microM. The competitive inhibitory activity of the calmodulin binding regions is similar to the apparent Km of 2.7 microM for phosphorylation of the 23-residue peptide analog of the smooth muscle myosin light chain and raises the possibility that the calmodulin binding region of the myosin light chain kinase may act as a pseudosubstrate inhibitor of the enzyme.  相似文献   

10.
Recent studies indicate that binding of the urokinase-type plasminogen activator (uPA) to its high-affinity receptor (uPAR) orchestrates uPAR interactions with other cellular components that play a pivotal role in diverse (patho-)physiological processes, including wound healing, angiogenesis, inflammation, and cancer metastasis. However, notwithstanding the wealth of biochemical data available describing the activities of uPAR, little is known about the exact mode of uPAR/uPA interactions or the presumed conformational changes that accompany uPA/uPAR engagement. Here, we report the crystal structure of soluble urokinase plasminogen activator receptor (suPAR), which contains the three domains of the wild-type receptor but lacks the cell-surface anchoring sequence, in complex with the amino-terminal fragment of urokinase-type plasminogen activator (ATF), at the resolution of 2.8 A. We report the 1.9 A crystal structure of free ATF. Our results provide a structural basis, represented by conformational changes induced in uPAR, for several published biochemical observations describing the nature of uPAR/uPA interactions and provide insight into mechanisms that may be responsible for the cellular responses induced by uPA binding.  相似文献   

11.
High molecular weight urokinase-type plasminogen activator (uPA) in which proteolytic activity was inactivated (diisopropyl fluorophosphate (DFP)-uPA), its amino-terminal fragment (ATF, amino acids (aa) 1-143), and fucosylated and defucosylated growth factor domains (GFD, aa 4-43) were tested for growth-promoting effects and binding in human SaOS-2 osteosarcoma cells and U-937 lymphoma cells. DFP-uPA, ATF, and both the fucosylated and defucosylated GFD were capable of competing with 125I-ATF for binding to both SaOS-2 and U-937 cells. DFP-uPA, ATF, and fucosylated GFD were also mitogenic in SaOS-2 cells and increased cell numbers. However, defucosylated GFD was nonmitogenic in SaOS-2 cells and did not stimulate cell proliferation, even though it bound to these cells in a manner equivalent to the fucosylated GFD. A nonglycosylated high molecular weight uPA expressed and purified from Escherichia coli inhibited 125I-ATF binding to SaOS-2 cells but was also nonmitogenic. No mitogenic activity was observed in U-937 cells treated with the uPA forms capable of eliciting a mitogenic response in SaOS-2 cells. Proteolytically prepared kringle domain (aa 47-135) and low molecular weight uPA (aa 144-411) did not compete for 125I-ATF binding and did not elicit any mitogenic response in either of the cell lines tested. In addition, tissue plasminogen activator (tPA), which has been shown to be homologous to uPA in its growth factor domain and is also fucosylated, did not inhibit 125I-ATF binding nor elicit any mitogenic response. These results demonstrate that the GFD, implicated in binding to the uPA receptor, is also responsible for growth factor like activity in SaOS-2 cells and that the fucosylation at Thr18 within this domain may serve as a molecular trigger in eliciting this response.  相似文献   

12.
The mode of interaction between human epidermal growth factor (hEGF) and its receptor has been investigated by immunochemical studies and a synthetic peptide approach. Two types of monoclonal and five different monospecific polyclonal antibodies against hEGF have been prepared, whose epitopes are regions 1-13, 13-32, 33-53, 33-43, 22-32, and discontinuous sequences of hEGF. Antibody against 22-32 (Type I) and antibody against 33-53 (PRE 4) inhibited the binding of 125I-hEGF to membrane receptor on A 431 cells more markedly than the other antibodies. When hEGF was bound to the receptor, only antibody against 13-32 (PRE 2) could bind to hEGF-receptor complex whereas antibody against 22-32 (Type I) could not. These data suggest that region 13-20 is exposed outside during receptor-binding and both region 22-32 and region 33-53 contact the hEGF receptor. The activity of synthetic peptides corresponding to the amino acid residues 1-13, 13-32, 33-53, 13-20, 22-32, and 33-43 of hEGF was also examined. Out of the six peptides, only 13-32 stimulated DNA synthesis of BALB 3T3 cells. The activity was approximately 1/10(6) of that of intact hEGF. All of these data suggest that region 22-32 is responsible for binding to the receptor for signal transduction and region 33-53 binds to the receptor to stabilize the ligand-receptor interaction. This dual binding model fits in well with the three-dimensional hEGF structure deduced from NMR spectra.  相似文献   

13.
Natriuretic peptide receptor A (NPR-A) is the biological receptor for atrial natriuretic peptide (ANP). Activation of the NPR-A guanylyl cyclase requires ANP binding to the extracellular domain and ATP binding to a putative site within its cytoplasmic region. The allosteric interaction of ATP with the intracellular kinase homology domain (KHD) is hypothesized to derepress the carboxyl-terminal guanylyl cyclase catalytic domain, resulting in the synthesis of the second messenger, cyclic GMP. Here, we show that phosphorylation of the KHD is essential for receptor activation. Using a combination of phosphopeptide mapping techniques, we have identified six residues within the ATP-binding domain (S497, T500, S502, S506, S510, and T513) which are phosphorylated when NPR-A is expressed in HEK 293 cells. Mutation of any one of these Ser or Thr residues to Ala caused reductions in the receptor phosphorylation state, the number and pattern of phosphopeptides observed in tryptic maps, and ANP-dependent guanylyl cyclase activity. The reductions were not explained by decreases in NPR-A protein levels, as indicated by immunoblot analysis and determinations of cyclase activity in the presence of detergent. Conversion of Ser-497 to Ala resulted in the most dramatic decrease in cyclase activity (~20% of wild-type activity), but conversion to an acidic residue (Glu), which mimics the charge of the phosphoserine moiety, had no effect. Simultaneous mutation of five of the phosphorylation sites to Ala resulted in a dephosphorylated receptor which was unresponsive to hormone and had potent dominant negative inhibitory activity. We conclude that phosphorylation of the KHD is absolutely required for hormone-dependent activation of NPR-A.  相似文献   

14.
Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.  相似文献   

15.
Urokinase-type plasminogen activator (uPA) stimulates MCF-7 cell migration by binding to the UPA receptor and activating the Ras-extracellular signal-regulated kinase (Ras-ERK) signaling pathway. Studies presented here show that soluble uPA receptor and a peptide derived from the linker region between domains 1 and 2 of the uPA receptor also stimulate cellular migration via a mitogen-activated protein kinase/ERK kinase (MEK)-dependent pathway. Signaling proteins that function upstream of Ras in uPA- stimulated cells remain undefined. To address this problem, we transfected MCF-7 cells to express the noncatalytic carboxylterminal domain of focal adhesion kinase (FAK), FAK(Y397F), kinase-defective c-Src, or Shc FFF, all of which express dominant-negative activity. In each case, ERK phosphorylation and cellular migration in response to uPA were blocked. Both activities were rescued by co-transfecting the cells to express constitutively active MEK1, indicating that FAK, c-Src, and Shc are upstream of MEK. Shc was tyrosine-phosphorylated in uPA-treated cells. The level of phosphorylated Shc was increased within 1 min and remained increased for at least 30 min. Sos co-immunoprecipitated with Shc in cells that were treated with uPA for 1-2.5 min, probably reflecting the formation of Shc-Grb2/Sos complex; however, by 10 min, co-immunoprecipitation of Sos with Shc was no longer observed. Rapid dissociation of Sos from Shc represents a possible mechanism for the transient phosphorylation of ERK in uPA-treated MCF-7 cells.  相似文献   

16.
Urokinase-type plasminogen activator (uPA) represents a central molecule in pericellular proteolysis and is implicated in a variety of physiological and pathophysiological processes such as tissue remodelling, wound healing, tumor invasion, and metastasis. uPA binds with high affinity to a specific cell surface receptor, uPAR (CD87), via a well defined sequence within the N-terminal region of uPA (uPA19-31). This interaction directs the proteolytic activity of uPA to the cell surface which represents an important step in tumor cell proliferation, invasion, and metastasis. Due to its fundamental role in these processes, the uPA/uPAR-system has emerged as a novel target for tumor therapy. Previously, we have identified a synthetic, cyclic, uPA-derived peptide, cyclo19,31uPA19-31, as a lead structure for the development of low molecular weight uPA-analogues, capable of blocking uPA/uPAR-interaction [Burgle et al., Biol. Chem. 378 (1997), 231-237]. We now searched for peptide variants of cyclo19,31uPA19-31 with elevated affinities for uPAR binding. Among other tasks, we performed a systematic D-amino acid scan of uPA19-31, in which each of the 13 L-amino acids was individually substituted by the corresponding D-amino acid. This led to the identification of cyclo19,31[D-Cys19]-uPA19-31 as a potent inhibitor of uPA/uPAR-interaction, displaying only a 20 to 40-fold lower binding capacity as compared to the naturally occurring uPAR-ligands uPA and its amino-terminal fragment. Cyclo19,31[D-Cys19]-uPA19-31 not only blocks binding of uPA to uPAR but is also capable of efficiently displacing uPAR-bound uPA from the cell surface and to inhibit uPA-mediated, tumor cell-associated plasminogen activation and fibrin degradation. Thus, cyclo19,31[D-Cys19]-uPA19-31 represents a promising therapeutic agent to significantly affect the tumor-associated uPA/uPAR-system.  相似文献   

17.
Epidermal growth factor (EGF) is a peptide which effects the growth and/or differentiated functions of many cell types. Several pieces of evidence indicate that EGF and its receptor may play a role in carcinogenesis. Functional and structural characteristics of EGF and its receptor and their relationship to transforming proteins are discussed. EGF has extensive homology with alpha-transforming growth factor (alpha-TGF), which may actually be an embryonic form of EGF. Nevertheless, both EGF and alpha-TGF elicit transformation-associated phenotypes in target cells under certain conditions. EGF effects are mediated by a receptor present on the plasma membrane. The EGF receptor is a highly complex protein having several functions in addition to binding EGF in a highly specific manner. One of these functions is to phosphorylate tyrosyl residues on certain proteins. This activity is similar to that expressed by the src family of oncogene-encoded proteins. Besides sharing functional homology the EGF receptor also exhibits structural homology to several oncogene-encoded proteins. The v-erb-B-transforming protein has a striking extent of homology (95%) to the cytoplasmic portion of the EGF receptor. These data support the concept that some aspect of EGF-stimulated metabolism is involved in cellular transformation.  相似文献   

18.
M Haniu  T Iyanagi  P Miller  T D Lee  J E Shively 《Biochemistry》1986,25(24):7906-7911
The complete amino acid sequence of porcine hepatic microsomal NADPH-cytochrome P-450 reductase has been determined by microsequence analysis on several sets of proteolytic fragments. Sequence studies were performed initially on a 20-kilodalton (kDa) fragment and then on 80-kDa fragment. The amino-terminal end of the mature protein was blocked with an acetyl group, followed by 676 amino acid residues. It has been revealed that the COOH-terminal 20-kDa fragment has been derived from original enzyme by cleavage at the Asn-Gly (residues 502-503) linkage by an unknown mechanism. An NADPH-protected cysteine residue is located at residue 565, near a region exhibiting high sequence homology with ferredoxin-NADP+ reductase. The FMN and FAD binding regions are possibly located in the amino-terminal region and the middle part of the protein molecule, respectively, as suggested by Porter and Kasper [Porter, T. D., & Kasper, C. B. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 973-977]. When this sequence is compared with that of rat enzyme, 60 amino acid residues are substituted, probably due to species differences. However, total sequence homology between these enzymes is 90%. Hydropathy plot analysis reveals that two regions from residues 27-43 and from residues 523-544 exhibit a high degree of hydrophobicity, suggesting membrane binding or interaction with cytochrome P-450.  相似文献   

19.
The EGF receptor is a transmembrane receptor tyrosine kinase that is enriched in lipid rafts. Subdomains I, II and III of the extracellular domain of the EGF receptor participate in ligand binding and dimer formation. However, the function of the cysteine-rich subdomain IV has not been elucidated. In this study, we analyzed the role of the membrane-proximal portion of subdomain IV in EGF binding and signal transduction. A double Cys-->Ala mutation that breaks the most membrane-proximal disulfide bond (Cys600 to Cys612), ablated high affinity ligand binding and substantially reduced signal transduction. A similar mutation that breaks the overlapping Cys596 to Cys604 disulfide had little effect on receptor function. Mutation of residues within the Cys600 to Cys612 disulfide loop did not alter the ligand binding or signal transducing activities of the receptor. Despite the fact that the C600,612A EGF receptor was significantly impaired functionally, this receptor as well as all of the other receptors with mutations in the region of residues 596 to 612 localized normally to lipid rafts. These data suggest that the disulfide-bonded structure of the membrane-proximal portion of the EGF receptor, rather than its primary sequence, is important for EGF binding and signaling but is not involved in localizing the receptor to lipid rafts.  相似文献   

20.
The recently identified natural peptide ligand, tuberoinfundibular peptide of 39 residues (TIP39) for the parathyroid hormone-2 (PTH2) receptor has been structurally characterized by high resolution NMR, circular dichroism, and computer simulations. The structural features of TIP39, determined in the presence of a zwitterionic lipid to mimic the membrane environment of the G-protein-coupled PTH2 receptor, consist of two alpha-helices, Ala(5)-Arg(21) and Leu(26)-Val(35). Although TIP39 shares limited sequence homology with parathyroid hormone (PTH), a comparison of the structural features of TIP39 and PTH illustrates a similar topological display of residues of the N-terminal helix important for PTH2 receptor activation. The C-terminal helix of TIP39 differs from that of PTH with respect to size and amphipathicity, suggesting an altered mode of binding for TIP39, consistent with the receptor chimera and ligand truncation studies presented in the accompanying paper (Hoare, S. R. J., Clark, J. A., and Usdin, T. B. (2000) J. Biol. Chem. 275, 27274-27283). The structural characterization of TIP39 also provides some insight into the lack of affinity of this novel ligand for the PTH1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号