首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of Bt transgenic cottons (Bt-I expressing cry1Ac and Bt-II expressing cry1Ab and cry2Ab or cry1Ab and cry1Fa) and non-Bt cottons on feeding, oviposition and longevity of adults, and development and survival of Liriomyza trifolii larvae were studied under laboratory conditions; and infestation on four Bt and two non-Bt cotton traits were investigated under field conditions. Laboratory choice and no-choice tests showed that L. trifolii adults were capable of distinguishing between Bt cottons and non-Bt cottons. In a choice test on younger plants (4-5 leaves), the adults were found more often and made more feeding punctures (FP) on non-Bt cottons than on Bt cottons. On older plants (8-9 leaves), adults made the most FP on non-Bt cotton followed by those on Bt-II cottons and the least on Bt-I cotton. The females oviposited more eggs (6.7 eggs per leaf) on non-Bt cotton than on Bt-I (1.7 eggs per leaf) and Bt-II (0.8 eggs per leaf) cottons on younger plants and oviposited similar numbers of eggs (0.7-1.3 eggs per leaf) on non-Bt and Bt cottons on older plants. In a no-choice test, the females also fed more FP on non-Bt cottons than on Bt cottons on both younger and older plants. The females oviposited more eggs (15.6 eggs per leaf) on non-Bt cotton than on Bt-I (8.2 eggs per leaf) and Bt-II (6.5 eggs per leaf) cottons on younger plants and similar numbers of eggs (2.5-3.3 eggs per leaf) on non-Bt and Bt cottons on older plants. Larval and puparial survivals were not different among Bt and non-Bt cottons. The occurrence and damage of leafminers on cottons in the field showed that L. trifolii infested more plants and leaves and had more mines on non-Bt cotton than on Bt cottons.  相似文献   

2.
Abstract: Feeding behaviour of Helicoverpa armigera Hübner (Lep.; Noctuidae) larvae on non‐transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.), Zhong 30, and transgenic cowpea trypsin inhibitor (CpTI)‐Bt cotton, SGK 321, and non‐transgenic cotton, Shiyuan 321, was investigated in both choice tests and no‐choice tests. The results of choice tests suggested that neonates have the ability to detect and avoid transgenic cotton. In the choice tests of neonates with both transgenic and non‐transgenic cotton leaves, a significantly greater proportion of larvae and higher consumption were observed on non‐transgenic cotton than on the transgenic Bt or CpTI‐Bt cotton. In the choice tests with leaves of two transgenic cotton lines, the proportion of neonates on leaf discs of the two lines was not significantly different, but there was significantly higher consumption on CpTI‐Bt transgenic cotton than that on Bt transgenic cotton. In addition, significantly more neonates were found away from the leaf discs, lower consumption and higher mortality were achieved in the choice test with two transgenic cotton leaves than in the choice tests containing non‐transgenic cotton leaves. Leaves and buds were examined in choice tests of fourth instars. It appeared that fourth instars were found in equal numbers on transgenic and non‐transgenic cotton, except when larvae were exposed to leaves for 3 h. However, the total consumption on transgenic cotton was lower than that of the non‐transgenic cotton, so fourth instars may still have the capacity to detect transgenic cotton and reduce feeding on it, although they showed no preference on either transgenic or non‐transgenic cotton. More larvae were found off diet in the treatments with leaves than that of buds, and the number of injured leaf discs by per fourth instar was significantly higher than that of buds in choice tests, suggesting that leaf is a less preferred organ for H. armigera larvae, elicited more larval movements. Similarly, in no‐choice tests of fifth instars, significantly fewer feeding time and more moving time occurred on leaf than that of bud, boll and petal. When cotton line was considered, compared with non‐transgenic cotton, significantly lower feeding time and higher resting time occurred on the two transgenic cottons. Overall, H. armigera larvae have the ability to detect the transgenic Bt and CpTI‐Bt cottons or the less preferred organs and selectively feed more on the non‐transgenic cotton or the preferred organs, especially the neonates, which have a high capacity for avoiding transgenic cotton.  相似文献   

3.
2000年7月中旬和8月中旬, 分别测定了采自田间的转CpTI-Bt基因双价抗虫棉(SGK321, 以下简称CpTI-Bt棉)和转Bt基因抗虫棉(中30,以下简称Bt棉)对棉铃虫Helicoverpa armigera幼虫存活、生长的影响。结果表明:7月中旬两种转基因抗虫棉抗虫效果均较好,尤其是CpTI-Bt棉棉叶和花瓣对4龄幼虫3天内致死率为92%以上;8月中旬两种转基因棉的抗虫活性均明显降低,且Bt棉的杀虫活性显著低于CpTI-Bt棉,其幼虫死亡率与对照受体棉中16的死亡率之间无显著差异,仅显著抑制了幼虫的生长;石远321(SGK321受体品系)的花瓣具有一定的抗虫活性,可显著降低取食幼虫的体重,甚至造成部分幼虫死亡; CpTI-Bt棉中,花瓣和棉叶的抗虫性明显高于蕾和铃心。对5龄幼虫取食棉铃1日后的营养指标测定结果显示: 两种转基因抗虫棉处理的幼虫相对生长率和相对取食量均显著低于石远321,但两者之间无显著差异; CpTI-Bt棉处理的幼虫近似消化率显著低于石远321和Bt棉,但其食物利用率显著高于石远321和Bt棉。  相似文献   

4.
Helicoverpa armigera (Hübner), the major target pest of transgenic Bacillus thuringiensis (Bt) cotton, remains susceptible to Bt cotton in China at present. Behavioural avoidance by ovipositing females might lead to reduced exposure to Bt cotton and minimize selection for physiological resistance. We examined the behavioural responses of H. armigera to Bt and non‐Bt cottons to determine whether behavioural avoidance to Bt cotton may be present. In oviposition choice tests, the number of eggs on non‐Bt cotton plants was significantly higher than on Bt cotton plants. Similarly, in no‐choice tests, Bt cotton plants attracted significantly fewer eggs compared with non‐Bt cotton plants. H. armigera neonates showed higher dispersal and lower establishment on Bt cotton than on non‐Bt cotton. First instars were found to feed consistently on non‐Bt cotton leaves, creating large feeding holes, but only produced tiny feeding holes on Bt cotton leaves. The H. armigera population used in this study showed avoidance of oviposition and feeding on Bt cotton. Our results provide important insights into one possible mechanism underlying the durability of Bt cotton resistance and may be useful for improving strategies to sustain the effectiveness of Bt crops.  相似文献   

5.
Abstract.  1. Transgenic crops have shown great promise for the control of target pest insects, but in some cases they can also influence non-target species. This study investigated the impact of Bt and Bt+CpTI transgenic cottons on the non-target cotton aphid, Aphis gossypii Glover, by comparing life-table parameters, feeding behaviour, and the fluctuating asymmetry of morphological traits of aphids reared on transgenic cotton and those on untransformed control plants.
2. Aphids on the Bt+CpTI cotton showed a shorter reproductive duration and maximum lifespan, lower survival rates and potential maximum fecundity, and an earlier occurrence of peak daily mortality in the first or second generation. However, the aphid population soon developed fitness and overcame the negative effect in the second or third generation. The aphids on the Bt cotton had significantly longer reproductive durations in the first generation, higher survival rates in the third generation, and apparently larger potential maximum fecundity in all three generations.
3. The percentages of accumulated duration of feeding waveforms E1 and E2 were significantly lower in aphids on the Bt+CpTI cotton than in those on the Bt or control cotton, whereas the frequencies of moving and finding feeding sites, and probe behaviour were significantly higher.
4. Fluctuating asymmetry in three morphological characters of aphids reared on transgenic and control cotton was detected. The fluctuating asymmetry value of the third segment of antenna in aphids on Bt+CpTI cotton was significantly higher than that of aphids on Bt or control cotton. Based on the fluctuating asymmetry value, the stress of cotton on the aphids could be ranked as Bt+CpTI cotton > Bt cotton > control cotton.  相似文献   

6.
转Bt基因棉花杀虫晶体蛋白的表达及光合特性的研究   总被引:2,自引:2,他引:0  
转Bt基因棉花(GK、ZK)及非Bt基因棉花(CZ)杀虫晶体蛋白表达及光合特性的研究表明,杀虫晶体蛋白在转Bt基因棉花GK与ZK中的表达总量及在各器官中的分配均有所不同.转Bt基因棉花叶片的净光合速率的光响应与常规棉有所不同.转Bt基因棉花GK与ZK叶片的叶绿素含量、净光合速率、蒸腾速率的日变化有明显的不同,而胞间二氧化碳浓度、气孔限制值、叶温的日变化趋势则基本一致.胞间二氧化碳浓度的日平均值在两转Bt基因棉花间的差异达显著水平,而其它各指标在不同处理间的差异均未达显著.  相似文献   

7.
转Bt基因抗虫棉的生态风险及治理对策   总被引:12,自引:3,他引:9  
评述了转Bt基因抗虫棉的生态风险及治理对策。其生态风险主要表现在目标害虫的抗性和对非目标生物群落的变化。目标害虫与转基因抗虫棉的互相作用和抗虫棉杀虫毒素的时空表达方式是目标害虫抗性发展的主要途径。在转基因抗虫棉田中,虽然对目标害虫的防治次数大为减少,但害虫和天敌群落的稳定性仍不如常规棉田,某种次要害虫大发生的可能性较大。认为将转基因抗虫棉纳入综合防治体系并培育更加高效的抗虫棉是治理目标害虫抗性和防止次要害虫上升的重要措施。  相似文献   

8.
Helicoverpa zea (Boddie), the bollworm or corn earworm, is the most important lepidopteran pest of Bt cotton in the United States. Corn is the preferred host, but the insect feeds on most flowering crops and wild host plants. As a cotton pest, bollworm has been closely linked to the insecticide-resistance prone Heliothis virescens (F.), tobacco budworm. Immature stages of the two species are difficult to separate in field environments. Tobacco budworm is very susceptible to most Bt toxins, and Bt cotton is considered to be "high dose." Bollworm is less susceptible to Bt toxins, and Bt cotton is not "high dose" for this pest. Bt cotton is routinely sprayed with traditional insecticides for bollworm control. Assays of bollworm field populations for susceptibility to Bt toxins expressed in Bt cotton have produced variable results since pre-deployment of Bt cottons in 1988 and 1992. Analyses of assay response trends have been used by others to suggest that field resistance has evolved to Bt toxins in bollworm, but disagreement exists on definitions of field resistance and confidence of variable assay results to project changes in susceptibility of field populations. Given historical variability in bollworm response to Bt toxins, erratic field control requiring supplemental insecticides since early field testing of Bt cottons, and dramatic increases in corn acreage in cotton growing areas of the Southern US, continued vigilance and concern for resistance evolution are warranted.  相似文献   

9.

Background

Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds.

Methodology/Principal Findings

We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control.

Conclusions/Significance

Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will provide researchers with information to design more robust experiments and will inform the decisions of diverse stakeholders regarding the safety of transgenic insecticidal crops.  相似文献   

10.
Zhang H  Yin W  Zhao J  Jin L  Yang Y  Wu S  Tabashnik BE  Wu Y 《PloS one》2011,6(8):e22874
Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera), in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.  相似文献   

11.
 在盆栽种植条件下,比较研究了两个转Bt基因棉(Gossypium hirsutum)与对照棉对根际土壤细菌、放线菌、真菌和主要功能类群及多样性的影 响差异。结果表明:两个转Bt基因棉根际土壤均可检测到Bt蛋白,且不同转Bt基因棉根系分泌Bt蛋白量以及Bt蛋白在根际土壤中的降解率不同 。与各自对照相比,转Bt基因棉对细菌和真菌生长繁殖有促进作用,对放线菌、好气固氮菌和钾细菌数量没有显著影响。苗期和花期转Bt基因 棉均可显著提高氨化细菌、显著降低无机溶磷菌数量,花期均可显著提高好气纤维分解菌、显著降低有机溶磷菌数量,‘Bt冀668’苗期也可显 著提高好气纤维分解菌数量。转Bt基因棉根际土壤好气纤维分解菌、有机和无机溶磷菌多度发生了变化。尽管功能类群总数转Bt基因棉高于各 自对照常规棉,但群落多样性和均匀度都有所下降,优势集中性表现明显,且花期转Bt基因棉多样性参数值以及功能类群数量的变化幅度大于 苗期。  相似文献   

12.
Transgenic cotton (Cossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects, the CrylAc gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was compared with Bt cotton and to a conventional nontransgenic variety. Larval survival was lower on both types of transgenic variety, compared with the conventional cotton. Survival of first-, second-, and third-stage larvae was lower on Bt+CpTI cotton than on Bt cotton. Plant structures differed in level of resistance, and these differences were similar on Bt and Bt + CpTI cotton. Likewise, seasonal trends in level of resistance in different plant structures were similar in Bt and Bt+CpTI cotton. Both types of transgenic cotton interfered with development of sixth-stage larvae to adults, and no offspring was produced by H. armigera that fed on Bt or Bt+CpTI cotton from the sixth stage onward. First-, second-, and third-stage larvae spent significantly less time feeding on transgenic cotton than on conventional cotton, and the reduction in feeding time was significantly greater on Bt+CpTI cotton than on Bt cotton. Food conversion efficiency was lower on transgenic varieties than on conventional cotton, but there was no significant difference between Bt and Bt+CpTI cotton. In 3-yr field experimentation, bollworm densities were greatly suppressed on transgenic as compared with conventional cotton, but no significant differences between Bt and Bt+CpTI cotton were found. Overall, the results from laboratory work indicate that introduction of the CpTI gene in Bt cotton raises some components of resistance in cotton against H. armigera, but enhanced control of H. armigera under field conditions, due to expression of the CpTI gene, was not demonstrated.  相似文献   

13.
A transgenic Bt cotton (Sukang-103) and its non-Bt cotton counterpart (Sumian-12) were investigated to evaluate the potential risk of transgenes on the soil ecosystem. The activities of urease, phosphatase, dehydrogenase, phenol oxidase, and protease in cotton rhizosphere were assayed during the vegetative, reproductive, and senescing stages of cotton growth and after harvest. A Biolog system was used to evaluate the functional diversity of microbial communities in soils after a complete cotton growth cycle. Enzymatic activities in soils amended with cotton biomass were also assayed. Results showed that there were few significant differences in enzyme activities between Bt and non-Bt cottons at any of the growth stages and after harvest; amendment with cotton biomass to soil enhanced soil enzyme activities, but there were no significant difference between Bt and non-Bt cotton; the richness of the microbial communities in rhizosphere soil did not differ between Bt and the non-Bt cotton, and close to that of control soil; the functional diversity of microbial communities were not different in rhizosphere soils between Bt and non-Bt cotton. All results suggested that there was no evidence to indicate any adverse effects of Bt cotton on the soil ecosystem in this study.  相似文献   

14.
Wan P  Wu K  Huang M  Yu D  Wu J 《Environmental entomology》2008,37(4):1043-1048
Genetically modified cotton that produces a crystalline protein from Bacillus thuringiensis subsp. kurstaki (Berliner) (Bt) has been widely deployed to manage lepidopteran insect pests in cotton growing areas worldwide. However, susceptibility of different insect species to Bt protein varies, which may affect lepidopteran pest populations in the field. Studies on effects of two transgenic cotton lines (BG1560 and GK19) carrying a Cry1A gene on common cutworm Spodoptera litura F. (Lepidoptera: Noctuidae), were conducted during 2002-2005 in the cotton planting region of the Yangtze River valley of China. Results showed that common cutworm larvae had low susceptibility to Bt cotton. There was no significant difference in larval population densities in conventional and Bt cotton fields. However, the larval populations of the insect on conventional plants treated with chemical insecticides for control of target pest of Bt cotton were significantly lower than that in Bt cotton fields. These results indicated that the common cutworm was the potential to become a major and alarming pest in Bt cotton fields, and therefore efforts to develop an effective alternative management strategy are needed.  相似文献   

15.
采用传统培养与PCR-DGGE相结合的方法研究了黄河流域棉区4个省份种植的转Bt基因棉在4个生长时期(播种后第30天、第60天、第90天和第120天)的根际土壤微生物数量及细菌多样性.结果表明:同一省份同一生长时期转Bt基因棉根际土壤微生物数量与常规棉相比均无显著差异,其数量主要受不同生长时期影响,而不同省份间主要受地域条件的影响.4个省份转Bt基因棉根际土壤细菌多样性较丰富,同一省份同一生长时期内转Bt基因棉与常规棉根际土壤细菌多样性指数、均匀度和丰富度均无显著差异.不同省份间细菌多样性主要因地域条件而有所不同,但差异较小.  相似文献   

16.
2001年在江苏选择南京、盐城两地,试验观察转Bt基因抗虫棉GK22的种植,对棉田害虫及杂草种群变动的影响,结果是:咀嚼式口器害虫的棉铃虫(Helicover pa armigera),红铃虫(Pectinophora goosypiella),玉米螟(Ostrinia nubilalis),金刚钻(Earias cupreoviridis),棉不造桥虫(Anomis flava),棉大卷叶虫(Adoxophyes orana)等虫口数量,蕾铃被害均表现出较好的控制效果,处理区咀嚼式口器害虫的幼虫总 量,比对照区分别减少92.51%,78.4%,其中:棉铃虫幼虫数量分别减少88.3%,72.9%,蕾铃被害虫减少87.5%,90.7%,74.11%,55.85%,红铃虫虫花减少74.4%,51.64%,铃内活虫减少90%,100%,玉米螟虫口减少72.7%,100%,金钢钻,造桥虫,卷叶虫虫口减少93%以上,对刺吸式口器盲蝽象(Adelphocoris suturalis),棉蚜(Aphis gossyppii),棉红叶螨(Tetranychus cinnabariuns)等害虫,试验区和对照区种群消长动态趋势基本一致,差异不显,两试对杂草种类及数量调查,抗虫棉区和对照区差异亦不明显。  相似文献   

17.
The development and adoption of transgenic (Bt) crops that express the Bacillus thuringiensis (Bt) toxin has reduced the use of synthetic insecticide on transgenic crops to target Helicoverpa spp., the major insect pest of cotton in Australia. However, it has also increased the threat posed by sucking pests, particularly Creontiades dilutus (green mirid), which are unaffected by the Bt toxins in transgenic cotton crops. Here we report the efficacy of the entomopathogenic fungus Aspergillus sp. (BC 639) in controlling the infestation of transgenic cotton crops by C. dilutus and promoting interactions of transgenic cotton with beneficial insects. The results showed that the number of C. dilutus adults and nymphs recorded on plots treated with 1000, 750, 500, 250 ml/ha BC 639 fungus formulation were the same as on plots treated with the recommended concentration of the commercial insecticide Fipronil. The fungus was found to have minimal effect on predatory insects compared with Fipronil and was most effective against C. dilutus when applied at the rate of 500 ml/ha (equivalent to 50 g spores/ha). At this rate, the fungus was as effective as Fipronil for controlling C. dilutus populations and ensured the survival of predatory beetles, lacewings and spiders compared with Fipronil treatment. The yield from fungus-treated plots was 5.24 bales per acre compared with 5.40 and 3.88 bales per acre for Fipronil-treated and unsprayed plots, respectively. The ability of the BC 639 strain to control C. dilutus infestations of transgenic cotton crops while conserving beneficial insect populations suggests its potential for supplementing integrated pest management programs to reduce the use of synthetic insecticides for transgenic cropping systems.  相似文献   

18.
Bt抗虫棉秸秆还田对土壤养分特征的影响   总被引:3,自引:0,他引:3  
【目的】研究转基因作物秸秆或残茬还田可能对土壤养分特性造成的影响。【方法】以不同抗虫水平Bt棉花和常规棉花(泗棉3号)为研究材料,分别在经过一、二个生长周期后将秸秆机械粉碎后原位还田,40 d后测定分析土壤中Bt蛋白含量及肥力相关的养分含量变化。【结果】Bt棉秸秆还田后,所有品种棉花土壤中Bt蛋白含量与还田前无显著增加,且转Bt基因棉与非转基因棉还田对土壤Bt蛋白含量的影响并无显著差异。同时,棉秸秆还田可显著提高土壤有机质、速效磷、碱解氮、速效钾、全氮、全磷和全钾含量,提升土壤pH值;增加幅度在不同抗虫水平Bt棉花间及与非转基因常规棉花品种间皆无显著性差异。【结论】秸秆还田对土壤肥力的提升与Bt棉的抗虫水平无关。“转Bt基因”不成为Bt棉秸秆还田提高土壤肥力的限制性因素,其秸秆还田不会对土壤肥力质量产生负面影响,可使土壤养分含量增加,有效提升土壤肥力。秸秆原位还田简单、无害又提升肥力,有条件作为转Bt基因植物秸秆无害化处理的理想方式。  相似文献   

19.
Transgenic Bt cotton, engineered to continuously produce activated delta-endotoxins of the soil bacteria Bacillus thuringiensis, holds great promise in controlling Helicoverpa armigera and other lepidopteran pests. However, it also may impact the invertebrate community, which needs to be clarified. The effects of Bt cotton on two nontarget insects, Aphis gossypii and Orius sauteri, were assessed under semifield and laboratory conditions. Mean total duration of nymphal stages of A. gossypii was shorter (5.9 versus 6.3 d), and rm was higher (0.418 versus 0.394) on conventional Simian 3 (the most frequently planted non-Bt cotton in northern China) than on Bt transgenic NuCOTN 33B (the first Bt cotton commercially planted in China). Mean duration of fourth-instar O. sauteri was significantly longer on transgenic GK-12 (3.7 d) than on NuCOTN 33B (3.2 d), but no different from Simian 3. Mean total mortality was significantly lower on Simian 3 (3.7%) than on GK-12 (14.8%). During the fourth instar, the predator consumed a significantly higher number of prey on Simian 3 (202.3 prey) than on NuCOTN 33B (159.0), whereas the mean total number of A. gossypii prey consumed during the nymphal stage was significantly higher on Simian 3 (336.8 prey) and GK-12 (330.3 prey) than on NuCOTN 33B (275.7). No detrimental effects were detected on development (nymphs, adults, and progeny eggs), fecundity, longevity, and egg viability of O. sauteri on Bt cotton aphids compared with non-Bt cotton aphids. These results suggest that Bt cotton cultivars GK-12 and NuCOTN 33B have no direct effect on nontargets A. gossypii and O. sauteri. Germplasm divergence may account for the negative effects observed on A. gossypii and O. sauteri when reared on NuCOTN 33B or NuCOTN 33B-fed aphids. The biological meanings of the small difference observed between GK-12 and Simian 3 on survival of O. sauteri will require close monitoring over longer time periods.  相似文献   

20.
棉花是耐干旱和耐盐碱的经济作物。随着土壤的盐碱化和干旱化, 在人口数量和植棉成本剧增的背景下, 我国黄河流域和长江流域棉花种植面积锐减, 棉花种植被迫向滨海盐碱地和内陆及西北干旱地区转移。本文于2013年和2014年在山东东营滨海盐碱地和河北枣强半干旱轻度盐碱地以非转基因棉(‘中棉所49’)为对照, 以转Bt基因棉(‘中棉所79’)为试验材料, 分别作施农药和不施农药处理, 于每年5月初到9月中旬, 调查取样点棉株及地面上害虫及其天敌的种类和数量, 并分析不同施药处理下转基因和非转基因棉田昆虫群落的生物多样性参数差异。结果表明, 施药和不施药转Bt基因棉田昆虫群落和害虫亚群落昆虫的个体总数均低于非转基因棉田, 其中昆虫群落和害虫亚群落个体数在二者之间差异显著; 转Bt基因棉田昆虫群落和害虫亚群落昆虫的多样性指数和均匀度指数均高于非转基因棉田, 而优势集中性指数均低于非转基因棉田, 但差异均不显著。施药条件下两种棉田的昆虫群落和害虫亚群落昆虫个体总数、多样性指数和均匀度指数均低于不施药棉田, 优势集中性指数均高于不施药棉田, 但转基因棉田和非转基因棉田之间无显著差异。表明转基因抗虫棉在盐碱旱地对棉田靶标害虫具有较好的控制作用, 棉田昆虫群落稳定性较高, 昆虫群落对外界的入侵和干扰缓冲能力强, 而化学农药的使用对昆虫群落杀伤力较大, 容易导致某种昆虫的抗性产生和昆虫群落的不稳定, 但比非盐碱旱地棉田昆虫群落生物多样性低, 棉田生态系统更简单。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号