首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胞膜小窝(caveolae)是细胞质膜内陷所形成的囊状结构.小窝蛋白(caveolin)是胞膜小窝区别于其它脂筏结构的特征性蛋白分子,维持胞膜小窝的结构和功能,包括3个家族成员小窝蛋白-1、小窝蛋白-2和小窝蛋白-3.其中,小窝蛋白-1是参与胆固醇平衡、分子运输和跨膜信号发放事件的主要结构成分,从而调节细胞的生长、发育和增殖.小窝蛋白-1在细胞衰老中起着重要调控作用,主要通过p53-p21及p16-Rb信号通路抑制细胞增殖、酪氨酸激酶的级联反应,调控粘连信号级联、胰岛素信号及雌激素信号系统等途径调控衰老进程.衰老过程中不同器官小窝蛋白-1变化趋势不尽一致.近年研究还发现,小窝蛋白-1与神经系统退行性疾病、糖尿病、动脉粥样硬化等衰老相关疾病密切相关,通过调节多条信号通路参与这些疾病的发生发展.本文结合最新研究进展,对小窝蛋白-1在细胞衰老进程的作用及参与衰老相关疾病进行综述.  相似文献   

2.
Loss of telomere integrity can have two outcomes with opposite predicted effects on tumorigenesis. On the one hand, shortened telomeres in normal cells may trigger cell cycle arrest, leading to tumour suppression. On the other hand, in a tumour cell in which neither the p53 nor pRb pathway is intact, shortened telomeres could initiate chromosome instability and promote tumorigenesis A major issue in telomere research is to understand how shortened dysfunctional telomeres can regulate the onset of cellular senescence. Recent studies have revealed that critically shortened or acutely uncapped telomeres share molecular features with damaged DNA. We have recently linked the phosphorylation and activation of one major DNA damage effector checkpoint kinase, Chk2, to telomere erosion in signalling cell cycle arrest in normal fibroblasts. Here, we discuss several hypotheses to explain the molecular events occurring at shortened telomeres that ultimately lead to cell cycle arrest or increased genomic instability.  相似文献   

3.
4.
5.
The c-Jun N-terminal kinase (JNK/SAPK) signaling cascade controls a spectrum ofcellular processes, including cell growth, differentiation, transformation, and apoptosis.We recently demonstrated that stress kinase MKK7, a direct activator of JNKs, couplesstress signaling to G2/M cell cycle progression, CDC2 expression, and cellularsenescence. We further explored other molecules involved in JNK pathway and foundthat both MKK4, another direct activator of JNK, and c-Jun, a direct substrate of JNK,have similar roles to MKK7. Here we discuss the importance of the MKK4/MKK7-JNKc-Jun pathway linking stress and developmental signals to cell proliferation, cell cycleprogression, cellular senescence, and apoptosis including recent unpublished data fromour lab.  相似文献   

6.
Following trauma or ischemia to the central nervous system (CNS), there is a marked increase in the expression of cell cycle-related proteins. This up-regulation is associated with apoptosis of post-mitotic cells, including neurons and oligodendrocytes, both in vitro and in vivo. Cell cycle activation also induces proliferation of astrocytes and microglia, contributing to the glial scar and microglial activation with release of inflammatory factors. Treatment with cell cycle inhibitors in CNS injury models inhibits glial scar formation and neuronal cell death, resulting in substantially decreased lesion volumes and improved behavioral recovery. Here we critically review the role of cell cycle pathways in the pathophysiology of experimental stroke, traumatic brain injury and spinal cord injury, and discuss the potential of cell cycle inhibitors as neuroprotective agents. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

7.
The presence and activities of isocitrate lyase (EC 4.1.3.1 [EC] )and malate synthase (EC 4.1.3.2 [EC] ) were studied during senescenceof pumpkin cotyledons (Cucurbita sp. Amakuri Nankin). Afterincubation of detached cotyledons in permanent darkness, theactivities appeared and increased up to the eighth day and thendeclined, while the activities of catalase (EC 1.11.1.6 [EC] ), glycolateox-idase (EC 1.1.3.1 [EC] ), and hydroxypyruvate reductase (EC 1.1.1.81 [EC] )decreased dramatically. After fractionation of cell organellesby sucrose density gradient, we detected isocitrate lyase andmalate synthase activities in peroxisomal fractions. The activityof the two key enzymes of the glyoxylate cycle also increasedduring senescence in vivo and we confirmed the presence of thetwo enzymes in the peroxisomal fractions after sucrose gradientcentrifugation. At every point examined, the level of malatesynthase was demonstrated by immunoblotting. It is concludedthat the development of isocitrate lyase and malate synthaseactivities represents the transition from leaf peroxisomes toglyoxysomes and that such a phenomenon is associated with senescence. (Received January 25, 1991; Accepted March 22, 1991)  相似文献   

8.
Herein we report on the effects that different stochastic contributions induce in bacterial colonies in terms of protein concentration and production. In particular, we consider for what we believe to be the first time cell-to-cell diversity due to the unavoidable randomness of the cell-cycle duration and its interplay with other noise sources. To that end, we model a recent experimental setup that implements a protein dilution protocol by means of division events to characterize the gene regulatory function at the single cell level. This approach allows us to investigate the effect of different stochastic terms upon the total randomness experimentally reported for the gene regulatory function. In addition, we show that the interplay between intrinsic fluctuations and the stochasticity of the cell-cycle duration leads to different constructive roles. On the one hand, we show that there is an optimal value of protein concentration (alternatively an optimal value of the cell cycle phase) such that the noise in protein concentration attains a minimum. On the other hand, we reveal that there is an optimal value of the stochasticity of the cell cycle duration such that the coherence of the protein production with respect to the colony average production is maximized. The latter can be considered as a novel example of the recently reported phenomenon of diversity induced resonance.  相似文献   

9.
10.
We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria.  相似文献   

11.
The roles of 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene in interorgan signaling during senescence in orchid (Cymbidium) flowers were investigated. Following application of radiolabeled ACC to the stigma or the rostellum (modified lobe of the stigma), radiolabeled ethylene is produced by all flower parts. In intact flowers as well as in excised central columns, stigma- or rostellum-applied ACC or [alpha]-aminoisobutyric acid were largely immobile. Local treatment of the central column of previously aminoethoxyvinylglycine-treated flowers with either ethylene or 2-chloroethylphosphonic acid (ethephon) rapidly induced emission of ethylene from the petals, showing that ethylene is readily translocated within the flower. Creation of alternative outlets (incisions) in the labellum or the central column significantly delayed the occurrence of senescence symptoms in ACC-treated flowers. The results do not confirm the presumed role of ACC as a signal in interorgan communication during flower senescence. In these flowers, ethylene produced in the stigmatic region following pollination or emasculation serves as a mobile factor responsible for senescence symptoms observed in other flower parts.  相似文献   

12.
The mechanism whereby l-serine specifically promotes the dark senescence of detached oat (Avena) leaves has been examined. The fact that this promotion is strong in darkness but very weak in white light has been explained, at least in part, by the finding that added serine is partly converted to reducing sugars in light. Labeled serine gives rise to 14C-sugars and 14CO2. In the absence of CO2, serine does cause chlorophyll loss in light and undergoes a decreased conversion to sugar.  相似文献   

13.
14.

In anti-cancer treatment, deoxynucleoside analogues are widely used in combination chemotherapy. Improvement can be achieved by rational design of novel combinations with cell cycle inhibitors. These compounds inhibit protein kinases, preventing the cell cycle from continuing when affected by deoxynucleoside analogs. The efficacy is dependent on the site of cell cycle inhibition, whether multiple cyclin-dependent kinases are inhibited and whether the inhibitors should be given before or after the deoxynucleoside analogs. The action of cell cycle inhibition in vivo may be limited by unfavorable pharmacokinetics. Preclinical and clinical studies will be discussed, aiming to design improved future strategies.  相似文献   

15.
目的:检测衰老标记蛋白(SMP)30 mRNA在不同癌细胞系中的表达情况,探讨其在不同细胞中的表达差异。方法:分别采用RT-PCR与荧光定量PCR检测SMP30 mRNA在正常肝细胞、肝癌细胞、胃癌细胞、乳腺癌细胞、宫颈癌细胞中的表达,并用SPSS13.0进行统计学分析。结果:SMP30 mRNA在所有被检测的细胞株中均有表达,在癌细胞中的相对表达量分别为肝癌细胞(0.926±0.340)、胃癌细胞(0.922±0.379)、乳腺癌细胞(0.614±0.356)、宫颈癌细胞(0.608±0.346),而在正常肝细胞中为0.175±0.158,显示SMP30 mRNA在癌细胞中的表达量较正常肝细胞中高(P0.05),且在肝癌细胞中的表达量比在其他癌细胞中更高。结论:SMP30 mRNA在癌细胞中的表达高于正常肝细胞,且在肝癌细胞中的表达高于其他癌细胞,具有临床应用价值。  相似文献   

16.
Using cell-free extracts made from Xenopus eggs, we show that cdk2-cyclin E and A kinases play an important role in negatively regulating DNA replication. Specifically, we demonstrate that the cdk2 kinase concentration surrounding chromatin in extracts increases 200-fold once the chromatin is assembled into nuclei. Further, we find that if the cdk2–cyclin E or A concentration in egg cytosol is increased 16-fold before the addition of sperm chromatin, the chromatin fails to initiate DNA replication once assembled into nuclei. This demonstrates that cdk2–cyclin E or A can negatively regulate DNA replication. With respect to how this negative regulation occurs, we show that high levels of cdk2–cyclin E do not block the association of the protein complex ORC with sperm chromatin but do prevent association of MCM3, a protein essential for replication. Importantly, we find that MCM3 that is prebound to chromatin does not dissociate when cdk2– cyclin E levels are increased. Taken together our results strongly suggest that during the embryonic cell cycle, the low concentrations of cdk2–cyclin E present in the cytosol after mitosis and before nuclear formation allow proteins essential for potentiating DNA replication to bind to chromatin, and that the high concentration of cdk2–cyclin E within nuclei prevents MCM from reassociating with chromatin after replication. This situation could serve, in part, to limit DNA replication to a single round per cell cycle.  相似文献   

17.
Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in an accumulation of ubiquitinated proteins and caused increase in the amount of endoplasmic reticulum membranes in the parasite. Taken together, our results suggest that the ubiquitin-proteasome pathway is required for cell cycle and EFF transformation in T. foetus.  相似文献   

18.
Up-regulation of cell cycle proteins occurs in both mitotic and post-mitotic neural cells after central nervous system (CNS) injury in adult animals. In mitotic cells, such as astroglia and microglia, they induce proliferation, whereas in post-mitotic cells such as neurons they initiate caspase-related apoptosis. We recently reported that early central administration of the cell cycle inhibitor flavopiridol after experimental traumatic brain injury (TBI) significantly reduced lesion volume, scar formation and neuronal cell death, while promoting near complete behavioral recovery. Here we show that in primary neuronal or astrocyte cultures structurally different cell cycle inhibitors (flavopiridol, roscovitine, and olomoucine) significantly reduce up-regulation of cell cycle proteins, attenuate neuronal cell death induced by etoposide, and decrease astrocyte proliferation. Flavopiridol, in a concentration dependent manner, also attenuates proliferation/activation of microglia. In addition, we demonstrate that central administration of flavopiridol improves functional outcome in dose-dependent manner after fluid percussion induced brain injury in rats. Moreover, delayed systemic administration of flavopiridol significantly reduces brain lesion volume and edema development after TBI. These data provide further support for the therapeutic potential of cell cycle inhibitors for the treatment of clinical CNS injury and that protective mechanisms likely include reduction of neuronal cell death, inhibition of glial proliferation and attenuation of microglial activation.  相似文献   

19.
Synchronous cell division in cultures of Chlorella vulgaris Beijerinck was induced by intermittent illumination: 9 hours light, 6 hours darkness. The rate of photosynthetic O2 evolution per cell increases 4-fold in a one-step manner at the beginning of the light period, to the same extent as the increase in cell number. Over the division cycle, the following accumulation times during the light period were found: chlorophyll a, between 2 and 8 hours, chlorophyll b, between 5 and 8 hours, reaction centers of photosystems I and II, between 2 and 6 hours; and cytochrome f, between 2.5 and 5 hours. Cytochrome f accumulation is closely followed by an increase in amplitude of the rapid phase in light-induced absorption increase at 520 nanometers and in intensity of the delayed light emission. Enhancement of the delayed fluorescence yield per flash under continuous illumination (caused by the establishment of the pH difference across the thylakoid membrane) is maximal by the first hour of the light period.  相似文献   

20.
大鼠发情期和间情期下丘脑ghrelin mRNA的表达   总被引:1,自引:0,他引:1  
为探索下丘脑ghrelin mRNA及GnRH mRNA在大鼠(Rattus norregicus)发情期和间情期的表达特点,通过外部观察和阴道涂片相结合的方法确定发情期和间情期,将12只未经产SD雌性大鼠分为2组,即发情期组和间情期组,每组6只。取动物下丘脑,用实时荧光RT-PCR方法检测ghrelin mRNA和GnRH mRNA的表达丰度。结果表明,间情期组大鼠下丘脑ghrelin mRNA的表达丰度显著高于发情期组(P<0.01);间情期组大鼠下丘脑GnRH mRNA的表达丰度显著低于发情期组(P<0.01)。研究发现,下丘脑ghrelin mRNA和GnRH mRNA在发情期与间情期具不同的表达模式,提示ghrelin可能在下丘脑水平上对GnRH mRNA的表达具下调作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号