首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The effect of temperature on development and survival of Chilocorus bipustulatus L. (Coleoptera: Coccinellidae), a predator of many scale insects, was studied under laboratory conditions. The duration of development of egg, first, second, third, and fourth larval instars, pupa, and preovioposition period at seven constant temperatures (15, 17.5, 20, 25, 30, 32.5, and 35°C) was measured. Development time decreased significantly with increasing temperature within the range 15-30°C. Survival was higher at medium temperatures (17.5-30(ο)C) in comparison with that at more extreme temperature regimens (15 and >30(ο)C). Egg and first larval instars were the stages where C. bipustulatus suffered the highest mortality levels at all temperatures. The highest survival was recorded when experimental individuals were older than the third larval instar. Thermal requirements of development (developmental thresholds, thermal constant, optimum temperature) of C. bipustulatus were estimated with application of linear and one nonlinear models (Logan I). Upper and lower developmental thresholds ranged between 35.2-37.9 and 11.1-13.0°C, respectively. The optimum temperature for development (where maximum rate of development occurs) was estimated at between 33.6 and 34.7°C. The thermal constant for total development was estimated 474.7 degree-days.  相似文献   

2.
Elsa Etilé  Emma Despland 《Oikos》2008,117(1):135-143
In insects, size and age at adult emergence depend on larval growth that occurs in discrete steps or instars. Understanding the mechanisms controlling stepwise larval growth and the onset of metamorphosis is essential to the study of insect life history. We examined the patterns of growth of forest tent caterpillars Malacosoma disstria to quantify variation in the number of instars that larvae undergo before pupation, to identify the mechanisms underlying variation in larval development, and to evaluate the life history consequences of this variation. All caterpillars were reared under the same conditions; at each molt, the date, the head capsule width and the mass of the freshly molted insect were recorded. Logistic regression analysis showed that a threshold size (measured either as mass or head capsule width) must be reached at the beginning of a stadium for pupation to occur at the next molt. This threshold size was higher for females than for males, and as a result, females attained a higher pupal mass than males. To achieve this larger size, females often required more instars than males, despite a higher growth ratio (size increase within an instar). Within each sex, slow growing individuals exhibited more larval instars and longer larval development time, but attained the same pupal mass as faster growing individuals. The combination of a threshold size for pupation, discrete growth steps and variation in the number of these steps can thus complicate relationships between growth rate, pupal mass and larval development time. In our study, growth ratio and number of instars were correlated with development time but not with pupal mass, and no relationship was observed between development time and pupal mass. These findings imply that, in species with variable instar number, one cannot extrapolate overall larval growth from growth during a single instar. Given the constraints of discrete larval growth, variation in instar number provides greater flexibility for insects to compensate for poor growing conditions. In this case, inferior larval growth conditions don't necessarily lead to smaller adult size.  相似文献   

3.
Developmental time of the polyembryonic parasitoid Macrocentrus grandii in larvae of Ostrinia nubilalis, the European corn borer was shown to be shortest under a warm-temperature regime and in later-host instars. Temperature had a significant effect upon parasitoid development during both host-internal and host-external phases, whereas host instar proved important only during the former developmental phase. The number of parasitoids emerging from each host showed a dramatic increase from 20 to 25°C. The ability of emerged parasitoids to reach the pupation stage successfully also was affected significantly by temperature with an optimum of 25°C. A peculiar phenomenon involving abnormal pupal development in the European corn borer observed during the study suggests that alteration of the normal host-parasitoid relationship occurred at cooler temperatures (15–20°C).  相似文献   

4.
Helicoverpa armigera (Hübner) exhibits a facultative pupal diapause, which depends on temperature and photoperiod. Pupal diapause is induced at 20 degrees C by short photoperiods and inhibited by long photoperiods during the larval stage. However, in some pupae (35% of males and 57% of females) of a non-selected field population from Okayama Prefecture (34.6 degrees N), diapause is not induced by short photoperiods. In the present experiment, the importance of temperature for diapause induction was studied in the non-diapausing strain, which was selected from such individuals reared at 20 degrees C under a short photoperiod of 10L:14D. Furthermore, the sensitive stage for thermal determination of pupal diapause was determined by transferring larvae of various instars and pupae between 20 degrees C and 15 degrees C. Diapause was induced by 15 degrees C without respect to photoperiod. When larvae or pupae reared from eggs at 20 degrees C under a short or a long photoperiod were transferred to 15 degrees C in the periods of the middle fifth instar to the first three days after pupation, the diapause induction rate was significantly reduced in both males and females, especially in females. In contrast, when larvae or pupae reared at 15 degrees C were transferred to 20 degrees C in the same periods, diapause was induced in males, but not in females. However, the diapause induction rate of pupae transferred to 20 degrees C on the fourth day after pupation was significantly increased in females. The results show that temperature is the major diapause cue in the photoperiod-insensitive strain and the periods of middle fifth larval instar to early pupal stage are the thermal sensitive stages for pupal diapause induction with some different responses to temperatures between males and females in H. armigera.  相似文献   

5.

Nyctemera annulata Boisduval was reared in the laboratory at 26±1°C and 50 ±5% RH on a host plant, ragwort (Senecio jacoboea L.), and on an artificial diet. On ragwort the average life cycle of 34 days embraced a larval period of 24 days, with up to 6 larval instars, and a pupal period of 9–11 days, depending on whether pupation occurred at the 5th or 6th instar. On the artificial diet the larval period of 56 days, involving up to 10 instars, was followed by a pupal period of 9 days, for an average life cycle of 65 days.  相似文献   

6.
Abstract: A method of distinguishing different larval instars of Liriomyza huidobrensis morphologically, using measurements of the cephalopharyngeal skeleton was developed. The growth ratios of cephalopharyngeal skeletons between first and second and second and third instar larvae were 1.80 and 1.47, respectively, enabling clear separation to be achieved for experimental work. Using this method the development rates of the immature stages of L. huidobrensis feeding on Lactuca sativa were determined under constant temperatures of 11, 16, 19, 26 and 28 ± 1°C and were shown to increase linearly with temperature over the range investigated. The theoretical lower threshold temperatures for development from oviposition to the end of each larval instar or pupal stage were 5.35, 6.30, 6.20 and 5.70°C, respectively. The overall threshold temperature for development from oviposition to 50% adult emergence (5.70°C) was used to calculate degree‐day (DD) requirements for development from oviposition to each larval instar or pupal eclosion, which were 84.3, 30.1, 58.9, 143.7 DD, respectively. The use of these data for optimizing the timing of application of control agents which are effective against specific developmental stages is discussed.  相似文献   

7.
Studies on selection for faster development in Drosophila have typically focused on the trade-offs among development time, adult weight, and adult life span. Relatively less attention has been paid to the evolution of preadult life stages and behaviors in response to such selection. We have earlier reported that four laboratory populations of D. melanogaster selected for faster development and early reproduction, relative to control populations, showed considerably reduced preadult development time and survivorship, dry weight at eclosion, and larval growth rates. Here we study the larval phase of these populations in greater detail. We show here that the reduction in development time after about 50 generations of selection is due to reduced duration of the first and third larval instars and the pupal stage, whereas the duration of the second larval instar has not changed. About 90% of the preadult mortality in the selected populations is due to larval mortality. The third instar larvae, pupae, and freshly eclosed adults of the selected populations weigh significantly less than controls, and this difference appears during the third larval instar. Thereafter, percentage weight loss during the pupal stage does not differ between selected and control populations. The minimum amount of time a larva must feed to subsequently complete development is lower in the selected populations, which also exhibit a syndrome of reduced energy expenditure through reduction in larval feeding rate, larval digging and foraging activity, and pupation height. Comparison of these results with those observed earlier in populations selected for adaptation to larval crowding and faster development under a different protocol from ours reveal differences in the evolved traits that suggest that the responses to selection for faster development are greatly affected by the larval density at which selection acts and on details of the selection pressures acting on the timing of reproduction.  相似文献   

8.
The caterpillars of Sesamia nonagrioides developing under long-day (LD) photoperiod pupate in the 5th or 6th instar whereas under short day (SD) conditions they enter diapause and undergo several extra larval molts. The diapause is terminated within 1-3 instars upon transfer of SD larvae to the LD conditions. Brain removal from the 6th instar larvae promotes pupation followed by imaginal development; however, one third of the SD larvae and 12% of the LD larvae debrained at the start of the instar first undergo 1-2 larval molts. The incidence of larval molts is enhanced by the brain implants. Exclusively pupal molts occur in the LD larvae debrained late in the 6th instar. Decapitation elicits pupation in both LD and SD larvae, except for some of the 4th and 5th and rarely 6th instar that are induced to a fast larval molt. The pupation of decapitated larvae is reverted to a larval molt by application of a juvenile hormone (JH) agonist. No molts occur in abdomens isolated from the head and thorax prior to the wandering stage. Abdomens isolated later undergo a larval (SD insects) or a pupal (LD insects) molt. Taken together the data reveal that in S. nonagrioides (1) several larval molts followed by a pupal and imaginal molt can occur without brain; (2) an unknown head factor outside the brain is needed for the pupal-adult molt; (3) brain exerts both stimulatory and inhibitory effect on the corpora allata (CA); (4) larval molts induced in CA absence suggest considerable JH persistence.  相似文献   

9.
Invasive ectothermic species are limited in their geographic range expansion primarily by their capacity to withstand temperature extremes. Epiphyas postvittana is a highly polyphagous invasive leafroller that was discovered in California in 2006. To predict its potential range and future response to climate change, high temperature tolerance of this species was determined for all life stages and larval instars. Using the static method to estimate high temperature tolerance with response to probing as an endpoint, the mean time leading to 50% mortality (LT(50)) ranged from 45 to 187h at 32.3°C, 34 to 68h at 36°C, 11 to 21h at 38°C, and 1.2 to 5.6h at 40.4°C. There was no clear pattern in the relative tolerance of the life stages across the range of temperatures tested. For pupae and adults, gender did not influence the LT(50) values at any of the temperatures tested. For the larval instars, LT(50) values increased with increasing larval instar at the highest three temperatures while this trend was reversed for the lowest temperature (32.3°C). An analysis of LT(50) values obtained from acute responses to probing compared to subsequent survival to adult emergence, showed that chronic mortality severely affected all larval instars at three out of the four constant temperatures and resulted in 64-85% reduction in LT(50) values. No difference in acute and chronic mortality was found for exposure of the egg stage to high temperatures. These findings have important implications for predicting thermal limits and range expansions of insect species, since upper thermal tolerance could readily be overestimated from the use of ad hoc rather than ecologically relevant endpoint measurements such as survival to adult emergence.  相似文献   

10.
Heightened temperature increases the development rate of mosquitoes. However, in Aedes aegypti (Diptera: Culicidae), the larvae of which commonly experience limited access to food in urban habitats, temperature effects on adult production may also be influenced by changes in the capacity of larvae to survive without food. We carried out experiments to investigate the effects of temperatures increasing at intervals of 2 °C from 20 °C to 30 °C on the growth, maturation rate and longevity of optimally fed larvae placed in starvation. Overall, both growth rate and starvation resistance were lower in the first three larval instars (L1-L3) compared with L4, in which growth of >75% occurred. Although increasing the temperature reduced the duration of each instar, it had a U-shaped impact in terms of the effect of initial growth on starvation resistance, which increased from L1 to L2 at 20 °C and 30 °C, remained constant at 22 °C and 28 °C, and decreased at 24 °C and 26 °C. Growth from L2 to L3 significantly increased starvation resistance only from 26 °C to 30 °C. Increased temperature (>22 °C) consistently reduced starvation resistance in L1. In L2-L4, increments of 2 °C decreased starvation resistance between 20 °C and 24 °C, but had weaker and instar-specific effects at >24 °C. These data show that starvation resistance in Ae. aegypti depends on both instar and temperature, indicating a trade-off between increased development rate and reduced starvation survival of early-instar larvae, particularly in the lower and middle temperatures of the dengue-endemic range of 20-30 °C. We suggest that anabolic and catabolic processes in larvae have distinct temperature dependencies, which may ultimately cause temperature to modify the density regulation of Ae. aegypti populations.  相似文献   

11.
Abstract:  The development of the solitary endoparasitoid Meteorus gyrator was compared in the six larval stages of its host, the tomato moth Lacanobia oleracea , and at five constant temperatures. The host instar at the time of parasitism had a marked effect on the larval developmental period of the parasitoid, such that larvae derived from eggs oviposited in first instar hosts took approximately 18 days to egress, whilst those derived from eggs oviposited in sixth instar hosts took <10 days. The weight of cocoons was greatest when oviposition was into final instar hosts, where female cocoons averaged 12.8 mg, and lowest in those derived from eggs oviposited into first instars (9.2 mg). The parasitoid's larval development rate in third instar hosts increased with temperature increments in a linear fashion up to 25°C , after which development times were only marginally increased. At 10°C, the mean larval development time was approximately 90 days and pupal development 35–40 days, whilst at 25°C development times were 10–11 days for larvae and 6–7 days for the pupae. In the majority of cases, overall development times were marginally longer (<1 day) in females than in males.  相似文献   

12.
Effects of temperature and thermoperiod on larval development and the induction of diapause were investigated in the European corn borer, Ostrinia nubilalis. Developmental threshold temperatures characteristic of the first four larval instars were estimated under both thermoperiods and constant temperatures. Threshold values were similar under the two conditions, but the 4th-larval instar was shown to display a significantly lower developmental threshold temperature than was characteristic of the earlier instars. Although developmental times (days per instar) were not greatly affected by fluctuating temperature regimes, the quantity of growth (weight, head width) during the 4th and 5th (last) stadia was found to be much greater under thermoperiodic regimes than under comparable constant temperature conditions. By means of thermoperiodic regimes having identical mean temperatures but different cryophase durations, it was demonstrated that the induction of diapause is dependent on the duration of the cryophase rather than on the mean temperature of the thermoperiod. To be effective, the cryophase must be colder than the insect's thermoperiodic response threshold. It was also demonstrated that thermoperiodic responses that are readily produced under continuously dark rearing conditions are not manifested under continuous light.  相似文献   

13.
Diurnal fluctuations in temperature are ubiquitous in terrestrial environments, and insects and other ectotherms have evolved to tolerate or acclimate to such fluctuations. Few studies have examined whether ectotherms acclimate to diurnal temperature fluctuations, or how natural and domesticated populations differ in their responses to diurnal fluctuations. We examine how diurnally fluctuating temperatures during development affect growth, acclimation, and stress responses for two populations of Manduca sexta: a field population that typically experiences wide variation in mean and fluctuations in temperature, and a laboratory population that has been domesticated in nearly constant temperatures for more than 300 generations. Laboratory experiments showed that diurnal fluctuations throughout larval development reduced pupal mass for the laboratory but not the field population. The differing effects of diurnal fluctuations were greatest at higher mean temperature (30°C): Here diurnal fluctuations reduced pupal mass and increased pupal development time for the laboratory population, but had little effect for the field population. We also evaluated how mean and fluctuations in temperature during early larval development affected growth rate during the final larval instar as a function of test temperature. At an intermediate (25°C) mean temperature, both the laboratory and field population showed a positive acclimation response to diurnal fluctuations, in which subsequent growth rate was significantly higher at most test temperatures. In contrast at higher mean temperature (30°C), diurnal fluctuations significantly reduced subsequent growth rate at most test temperatures for the laboratory population, but not for the field population. These results suggest that during domestication in constant temperatures, the laboratory population has lost the capacity to tolerate or acclimate to high and fluctuating temperatures. Population differences in acclimation capacity in response to temperature fluctuations have not been previously demonstrated, but they may be important for understanding the evolution of reaction norms and performance curves.  相似文献   

14.
Sheĭman IM  Shkutin MF 《Biofizika》2003,48(1):111-116
The effect of weak electromagnetic radiation (36 GHz, 100 mu W/cm2) on the development of the grain beetle Tenebrio molitor was studied. Insects were irradiated in different larval instars and at the pupal stage. It was found that weak electromagnetic radiation stimulated the molting and pupation of larvae and the metamorphosis of pupae. The stimulating effect of radiation was weak when animals were exposed in the initial period of the instar and the pupal stage and was more pronounced if the irradiation was carried out in the second half of the current instar and the pupil stage. The effect of weak electromagnetic radiation on the development of beetle can be related to the function of the hormones of metamorphosis.  相似文献   

15.
The effects of a transgenic Bacillus thuringiensis (Bt)-cotton cultivar (DPL 32) on three instars of the soybean looper, Pseudoplusia includens (Walker), were determined in laboratory studies. First, third, and fifth instars were fed field collected Bt-cotton leaves for 1, 2, four and 7 d or until pupation, and then transferred to artificial diet. Mortality during the larval stage increased linearly in response to an increase in the length of feeding time on Bt-cotton by first and third instars. The maximum mortality of about two out of three larvae occurred for first instars fed on Bt-cotton until pupation. For the fifth instar, there was no significant response to feeding time; however, most of these larvae reached pupation before 4 d of feeding on Bt-cotton. The length of the larval developmental period also increased linearly with an increase in feeding time on Bt-cotton in first and third instars; again, there was no significant response in the fifth instars. For both mortality and larval developmental time, the linear trend lines for the first and third instars were quite similar. Pupal weight declined linearly in the first and fifth instars in response to feeding time on Bt-cotton. Although pupal weight also declined for third instars, the response was not linear. The effect of Bt-cotton appears not to extend past pupation in that there were no significant responses in mortality and developmental time of pupae during the pupal stage. These data indicate that larvae surviving Bt-cotton are adversely affected in several ways, which should be considered in evaluating Bt-cotton suppression of soybean looper infestations.  相似文献   

16.
The intraspecific variation in larval instars is a widely distributed phenomenon amongst holometabolous insects. Several factors can affect the number of instars, such as temperature, humidity, and density. Only a few references could be found in the literature because the invariability in the number of larval instars is considered normal, and the issue has raised little to no interest. Despite this, no study to date has intended to assess or focus on the larval development. Here, we analyzed the effect of different rearing temperature on the larval stage of Dermestes maculatus DeGeer (Coleoptera: Dermestidae). The results indicated that at all temperatures, L5 represented a decisive point for individuals as well as the other later larval instars, because the next step to follow was to pupate or molt to the next larval instar. Furthermore, there were mainly two populations, L5 and L6, although in different proportions according to temperature. We also found that at a greater number of instars, the larval development at all temperatures lasted longer. Moreover, the exponential model was the best adjustment in the developmental time of all populations as well as for the accumulated developmental time of L1–L4. Thus, we conclude that random factors such as genetics could probably cause interspecific variability in D. maculatus larval development.  相似文献   

17.
石坚  王原  梁佳  杜娟  赵章武 《昆虫学报》2021,64(9):1080-1091
【目的】神经肽F(neuropeptide F, NPF)是无脊椎动物特有的一类神经肽,因其C末端是苯丙氨酸(F)而命名,参与昆虫的取食、生物节律、学习记忆等多种生理功能的调控。本研究旨在明确NPF对亚洲玉米螟Ostrinia furnacalis生长发育的影响,为害虫防治提供重要依据。【方法】采用一种基于工程菌高效合成靶向昆虫基因的dsRNA的方法经济有效地敲降npf,用低浓度(0.01%)和高浓度(0.02%)dsNPF和dsGFP(对照)分别饲喂亚洲玉米螟1龄初、3龄初和5龄初幼虫直至化蛹,检测5龄幼虫平均取食量、体重、体长、存活率和化蛹率,蛹羽化率和成虫产卵量,以及幼虫各龄期、蛹发育历期和成虫寿命。【结果】从亚洲玉米螟1, 3和5龄初幼虫开始饲喂0.01%和0.02% dsNPF时,与饲喂相应浓度dsGFP的对照相比,除个别点外,5龄幼虫的取食量、体重、体长、存活率和化蛹率,蛹羽化率和成虫单雌产卵量均显著降低,幼虫各龄期、蛹发育历期均显著延长,成虫寿命显著缩短。且dsNPF处理幼虫的龄期越早对发育的影响越大。其中0.01% dsNPF处理的1龄幼虫和0.02% dsNPF处理的3龄幼虫有90%的个体在蛹期死亡,而0.02%dsNPF处理的1龄幼虫有90%的个体在幼虫期死亡。【结论】结果提示NPF对亚洲玉米螟的发育和取食具有调控作用,这为探索新型绿色的害虫防治提供了依据。  相似文献   

18.
The effect of four temperatures (18, 20, 25 and 30°C) on pupa development and sexual maturity of Anastrepha obliqua adults was investigated under laboratory conditions. The results showed that the duration of the pupal stage decreased with an increase in temperature (29, 25, 13 and 12 days, respectively), and maintaining the pupae at 18°C and 20°C results in a low percentage of pupation, pupa weight loss and lesser flying ability. However, it significantly favored sexual behavior, a higher proportion of sexual calls and matings. While enhanced pupa development was observed at a temperature of 30°C, adults had low sexual efficiency, as well as a lower proportion of calls and matings. Gas chromatography-mass spectrometry (GC-MS) analysis of male volatiles showed that the amount of (Z,E)-α-farnesene did not vary among males from pupae reared at different temperatures; however, less (E,E)-α-farnesene was emitted by males obtain from pupa reared at 30°C. Male flies kept at 30°C during their larval stage had more (Z)-3-nonenol and, also, an unknown compound was detected. The fecundity of the females was higher at low temperatures. Regarding fertility, no significant differences were found between temperatures. The optimal temperature on pupa development was 25°C when males displayed ideal attributes for rearing purposes.  相似文献   

19.
The optimal temperature at which an organism grows and develops is commonly correlated with latitude and elevation; however, the maximum temperature for physiological performance often is not. This makes performance at temperatures between the optimum and the maximum of particular interest. Temperature can influence long‐term performance (growth and development), as well as short‐term performance (heat shock protein) responses differentially. In the present study, two populations of the clouded sulphur butterfly Colias eriphyle Edwards that differ in elevation, thermal regime and optimal and maximum temperatures are studied to quantify their responses to repeated, sub‐lethal heat treatments early in development (second instar). Heat treatments accelerate development during the second to fourth instars in both populations initially, although this effect disappears by pupation. Heat treatment decreases pupal mass in the lower elevation population, suggesting that repeated exposure to high temperatures early in development may reduce final size and fecundity in this population. Heat shock protein gene (hsp70) expression levels in the lower elevation (1633 m a.s.l.) population are highest 24 h after the start of the heat treatment and then the fall to pre‐exposure levels by 36–72 h, suggesting a rapid response to stressful temperatures. By contrast, heat treatment has no significant effect on pupal mass in the higher elevation (2347 m a.s.l.) population. This population has higher levels of hsp70 expression overall but constant expression levels, suggesting that the temperature treatments used are insufficient to elicit a heat stress response. Overall, the effects of repeated exposure to sub‐lethal high temperatures early in development on growth, final size and gene expression differ between populations that differ in thermal sensitivity.  相似文献   

20.
Summary Developoment, growth, and survival of larvae and pupae of the red turnip beetle, Entomoscelis americana Brown, were studied in 10 constant and four alternating temperature regimes (10 to 32.5° C), in field-cages, and in natural populations in Manitoba. This beetle has a northtemperate distribution in North America. Larval and pupal development occurs in spring and normally is completed before the end of June. Growth and development occurred at all constant temperatures tested, but survival was low at the extreme temperatures. Therefore, the threshold and upper limit were near 10 and 32.5° C. The developmental times of the sexes did not differ and decreased with temperature, except possibly at 32.5° C. The average weight of adult females increased with temperature up to 32.5° C and those of males up to 25° C. Considering developmental rate, survival, adult weight, and incidence of malformed adults, the optimum temperature was estimated to be near 27.5° C.Development was accelerated significantly (6 to 9%) in alternating regimes with temperatures differing by 10° C, but not in regimes differing by 5 and 15° C. All alternating regimes increased adult weight, 5 to 17% for females and 2 to 10% for males. Field cage studies confirmed the increase in adult weight, but not the acceleration in development.A three-parameter normal function described accurately the relationship between developmental rate and constant temperature. A computer simulation model based on this equation estimated developmental times in field cages to within one to five days. For natural populations the model overestimated the developmental times by five to 16 days. The discrepancies between model estimates and observed developmental times in natural populations apparently were due to the elevation of larval and pupal body temperatures above air temperatures by behavioral thermoregulation. The elevation of body temperature was estimated to be equivalent to the addition of 5 to 6° C to the maximum daily air temperature. The adaptations and responses of this beetle to the cool spring temperatures of the north-temperate region are discussed.Contribution No. 1164, Agriculture Canada, Research Station, Winnipeg, Manitoba, Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号