首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Zinc (Zn) is essential for swine and poultry and native Zn concentrations in feedstuffs are too low to meet their Zn requirement. Dietary Zn bioavailability is affected by phytate, phytase and Zn supplemented in organic form is considered as more bioavailable than inorganic sources. A meta-analysis using GLM procedures was processed using broiler and piglet databases to investigate, within the physiological response of Zn, (1) the bioavailability of inorganic and organic Zn sources (Analysis I); (2) the bioavailability of native and inorganic Zn dependent from dietary phytates, vegetal and supplemental phytase activity (Analysis II). Analysis I: the bioavailability of organic Zn relative to inorganic Zn sources ranged, depending on the variable, from 85 to 117 never different from 100 (P > 0.05). The coefficients of determination of the regressions were 0.91 in broilers and above 0.89 in piglets. Analysis II: in broilers, bone Zn was explained by supplemental Zn (linear and quadratic, P < 0.001) and by supplemental phytase (linear, P < 0.001). In piglets, the interaction between dietary Zn and phytates/phytases was investigated by means of a new variable combining dietary phytic phosphorus (PP) and phytase activity. This new variable represents the remaining dietary PP after its hydrolysis in the digestive tract, mainly due to phytase and is called non-hydrolyzed phytic phosphorus (PPNH). Bone Zn was increased with native Zn (P < 0.001), but to a lower extent in high PP or low phytase diets (ZNN × PPNH, P < 0.001). In contrast, the increase in bone zinc in response to supplemental Zn (P < 0.001) was not modulated by PPNH (P > 0.05). The coefficients of determination of the regressions were 0.92 in broilers and above 0.92 in piglets. The results from the two meta-analyses suggest that (1) broilers and piglets use supplemented Zn, independent from Zn source; (2) broiler use native Zn and the use is slightly enhanced with supplemental phytase; (3) however, piglets are limited in the use of native Zn because of the antagonism of non-hydrolyzed dietary phytate. This explains the higher efficacy of phytase in improving Zn availability in this specie.  相似文献   

2.
Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.  相似文献   

3.
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56–75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level.We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity.  相似文献   

4.
This study addressed the mechanisms by which dietary zinc affects diarrhoea and aimed to study possible interactions between zinc status and the presence of zinc in vitro on secretagogue-induced secretion from piglet intestinal epithelium in Ussing chambers. In addition, it was studied from which side of the epithelium zinc would perform an effect and if copper caused similar effects. Twenty-four piglets (28 days of age) were weaned and fed diets containing 100 or 2500 mg zinc/kg (as ZnO) for 5 or 6 days (12 piglets per group). Intestinal epithelium underwent the following 5 treatments: zinc at the mucosal side (M(Zn)), zinc at the serosal side (S(Zn)), zinc at both sides (MS(Zn)), copper at both sides (MS(Cu)) or water at both sides (control). Provoked secretion in terms of short circuit responses to serotonin (5-HT) and vasoactive intestinal peptide (VIP) were measured. Zinc at the serosal or both sides of the epithelium reduced the 5-HT induced secretion (P<0.001); however, due to interactions (P=0.05) the effect of zinc in vitro was only present in the ZnO(100) group. The secretion caused by VIP was not affected by the diet (P=0.33), but zinc at the serosal side or both sides reduced the response to VIP (P<0.001). Copper reduced the 5-HT and VIP induced secretion to a larger extent than zinc. However, copper also disturbed intestinal barrier function as demonstrated by increased transepithelial conductance and increased short circuit current, which was unaffected by zinc. In conclusion, zinc at the serosal side of piglet small intestinal epithelium attenuated 5-HT and VIP induced secretion in vitro. These in vitro studies indicate that in vivo there will be no positive acute effect of increasing luminal Zn concentration on secretagogue-induced chloride secretion and that zinc status at the serosal side of the epithelium has to be increased to reduce secretagogue-induced chloride secretion and thereby diarrhoea.  相似文献   

5.
This study addressed the mechanisms by which dietary zinc affects diarrhoea and aimed to study possible interactions between zinc status and the presence of zinc in vitro on secretagogue-induced secretion from piglet intestinal epithelium in Ussing chambers. In addition, it was studied from which side of the epithelium zinc would perform an effect and if copper caused similar effects. Twenty-four piglets (28 days of age) were weaned and fed diets containing 100 or 2500 mg zinc/kg (as ZnO) for 5 or 6 days (12 piglets per group). Intestinal epithelium underwent the following 5 treatments: zinc at the mucosal side (M(Zn)), zinc at the serosal side (S(Zn)), zinc at both sides (MS(Zn)), copper at both sides (MS(Cu)) or water at both sides (control). Provoked secretion in terms of short circuit responses to serotonin (5-HT) and vasoactive intestinal peptide (VIP) were measured. Zinc at the serosal or both sides of the epithelium reduced the 5-HT induced secretion (P<0.001); however, due to interactions (P=0.05) the effect of zinc in vitro was only present in the ZnO(100) group. The secretion caused by VIP was not affected by the diet (P=0.33), but zinc at the serosal side or both sides reduced the response to VIP (P<0.001). Copper reduced the 5-HT and VIP induced secretion to a larger extent than zinc. However, copper also disturbed intestinal barrier function as demonstrated by increased transepithelial conductance and increased short circuit current, which was unaffected by zinc. In conclusion, zinc at the serosal side of piglet small intestinal epithelium attenuated 5-HT and VIP induced secretion in vitro. These in vitro studies indicate that in vivo there will be no positive acute effect of increasing luminal Zn concentration on secretagogue-induced chloride secretion and that zinc status at the serosal side of the epithelium has to be increased to reduce secretagogue-induced chloride secretion and thereby diarrhoea.  相似文献   

6.
Soybean meal was fermented withAspergillus usamii to improve zinc availability through the degradation of phytic acid. Rats fed a diet containing fermented soybean meal showed greater femoral zinc than did animals fed a diet containing regular soybean meal. Zinc solubility in the small intestine was higher in the rats fed fermented soybean meal than in the rats fed regular soybean meal. These results suggested that fermentation withAspergillus usamii improved zinc availability in dietary soybean meal, which was induced by the increase of zinc solubility in the small intestine. Adding the same amount of phytate that was contained in the regular soybean mealbased diet did not affect the amount of zinc present in rats fed a fermented soybean meal-based diet with sodium phytate. Phytase activity was found in fermented soybean meal, and this activity may degrade added phytate in fermented soybean meal-based diet.  相似文献   

7.
The purpose of this study was to investigate the effect of zinc lipoate and zinc sulfate on zinc availability in growing rats. 6 . 6 male albino rats were fed purified diets based on corn starch, egg albumen, sucrose, soy bean oil and cellulose over a 4-week period (diet Ia: 10 mg Zn/kg as zinc sulfate, diet Ib: 10 mg Zn/kg as zinc lipoate, diet IIa: 10 mg Zn/kg as zinc sulfate +0.4% phytic acid, diet IIb: 10 mg Zn/kg as zinc lipoate +0.4% phytic acid, diet IIIa: 20 mg Zn/kg as zinc sulfate + 0.4% phytic acid, diet IIIb: 20 mg Zn/kg as zinc lipoate + 0.4% phytic acid). Zinc lipoate and zinc sulfate both proved to be highly available zinc sources. When 0.4% phytic acid were present in the diets, apparent zinc absorption was generally depressed but was higher from zinc lipoate in tendency than from zinc sulfate. Comparable results were evident for femur zinc, plasma zinc and metallothionein concentrations in liver tissues. This indicates that zinc lipoate could be a valuable zinc source under conditions of low zinc availability. Nevertheless the absence or presence of phytic acid was a more important factor influencing zinc availability than the type of zinc source investigated.  相似文献   

8.
Feeding pharmacological zinc (Zn) to weaned pigs improves growth, and dietary phytase improves P and Zn availability. Metallothionein (MT) increases in the duodenum, kidney, and liver of pigs fed 1000 mg Zn/kg with phytase or 2000 mg Zn/kg with or without phytase when fed for 14 d postweaning. The goal of this study was to determine the effects of feeding pharmacological Zn and phytase on tissue minerals, MT, mineral excretion, and apparent retention. Twenty-four newly weaned pigs (20 d; 7.2 kg) were individually fed twice daily, a basal diet supplemented with 0, 1000, or 4000 mg Zn/kg as Zn oxide, without or with phytase (500 phytase units [FTU]/kg) for 14 d, followed by a basal diet (100 mg Zn/kg) without phytase for 7 d. Pigs fed 4000 mg Zn/kg without phytase had higher (p=0.01) plasma, hepatic, renal Zn, renal Cu, and hepatic, renal, and jejunal MT than pigs fed the basal diet or 1000 mg Zn/kg. Duodenal MT was higher (p=0.0001) in pigs fed 1000 and 4000 mg Zn/kg than in pigs fed the basal diet. In pigs fed 1000 and 4000 mg Zn/kg, Zn loading occurred during the first 11 d of supplementation; by d 14, excess Zn was being excreted in the feces.  相似文献   

9.
A 4-week study conducted on 20 weaned piglets (average initial weight 15 kg) evaluated the effects of dietary oregano (Origanum vulgare) used in the presence/absence of phytase on the Cu and Zn balance, while reducing/eliminating their inclusion in the diet as inorganic salts. Oregano was harvested from the wild flora. The Cu and Zn concentrations that were taken into consideration (9.85 ppm and 53.31 pmm, respectively) were the consensus values obtained in an interlaboratory study. The piglets were assigned to 4 groups (C, E1, E2, E3), housed in individual metabolic cages and fed on corn–soybean meal-based diets. The diet of the control group (C) with addition of 1% inorganic mineral premix (MP), contained: 40.92 ppm Cu, 144.96 ppm Zn. The experimental diets differed from the C diet as follows: E1 – 3% oregano, 0% phytase (5000 PU/g), 0% MP; E2 – 3% oregano, 0.01% phytase, 0% MP; E3 – 3% oregano, 0% phytase, 0.5% MP, E4 – 3% oregano, 0.01% phytase, 0,5% premix. For groups E1, E2, E3 and E4, 0.5% Zn of the MP were included in the diet, because the dietary oregano amount did not meet the requirements (NRC) for piglets. The mineral balance was determined during 3 periods of 5 days each. The levels of Cu and Zn were measured by FAAS in the samples (weekly samples/piglet) of ingesta, faeces and urine. It was noticed that although the dietary Cu ingested by the groups without MP was 75% (10.08 ppm) lower than C, the absorption coefficients were only 47% (28.83) lower than for group C (54.22%), while in the groups with 0.5% MP, the absorption was just 10% (48.86%) lower than for group C. For Zn, where the amount ingested by the experimental groups was 33% (97.62 ppm) lower than for group C, the absorption coefficients were just 20% (46.3%) lower than for group C (57.64%). No significant differences were noticed for Cu and Zn in terms of apparent absorption, between the groups with/without phytase. The deposits of Cu and Zn in the main organs and serum (from slaughtered piglets) were also evaluated.  相似文献   

10.
In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.  相似文献   

11.
Polyphenol-rich plant products as feed supplements have been shown to exert beneficial effects on feed efficiency in piglets. However, tannins as components of polyphenol-rich plant products are able to reduce the absorption of various trace elements. The present study investigated the effect of two polyphenol-rich dietary supplements, grape seed and grape marc meal extract (GME) and spent hops (SH), on iron (Fe), zinc (Zn) and copper (Cu) status in piglets supplied adequately with those trace elements. A trial with three groups of piglets which received a Control diet or the same diet supplemented with either 1% GME or 1% SH over a period of 4 weeks was performed. Concentrations of Fe, Zn and Cu in plasma, total iron binding capacity and saturation of transferrin in plasma did not differ between the three groups. Piglets fed the diet supplemented with SH showed no differences in the concentrations of Fe, Zn and Cu in the liver in comparison to the Control group. Piglets fed the diets supplemented with GME showed slightly lower concentrations of Zn and Cu in the liver than Control piglets (p < 0.05); however, concentrations of both elements remained in the physiological range. Overall, this study shows that the polyphenol-rich plant products GME and SH had marginal effect on the status of Fe, Zn and Cu in piglets.  相似文献   

12.
This study aimed to examine how weaning and how dietary zinc and/or copper fed post weaning may affect the electrophysiological response to glucose and to chloride secretagogues in piglet small intestine in vitro. Study 1 included 54 piglets (six litters of nine piglets). One piglet from every litter was killed 1 day before weaning. The remaining 48 piglets were allocated at weaning (28 d) to four dietary zinc treatments and subsequently killed 1-2, 5-6 or 14-15 days after weaning. Study 2 included 48 piglets (six litters of eight piglets) allocated to four dietary treatments, consisting of high or low dietary zinc with or without high dietary copper. All piglets in study 2 were killed 5-7 days after weaning. The in vitro studies in Ussing chambers showed that weaning resulted in increased ileal glucose absorption as well as increased neuroendocrine-regulated (activated by 5-HT) and cAMP-dependent (activated by theophylline) chloride secretion. High zinc supplementation reduced the responses to 5-HT and theophylline. The study did not reveal any influence of copper on these parameters. It is concluded that the positive effect of zinc supplementation on diarrhoea in weaned piglets may be due to zinc reducing the intestinal mucosal susceptibility to secretagogues that activate chloride secretion.  相似文献   

13.
Five groups of individually housed albino rats (n = 7 each, initial average weight = 42 g) were fed diets based on corn starch and casein over a 4-week period. All diets were supplemented with 35 mg/kg of iron from FeSO4 x 7 H2O. Group I (control) was fed the basal diet free of phytic acid (PA) and phytase. By replacing corn starch by 7.5 g (groups II and IV) and 15 g phytic acid (groups III and V) from sodium phytate per kg diet, molar PA/iron ratios of 18 and 36 were obtained. In groups IV and V, 1000 U phytase from Aspergillus niger per kg diet were added. Food conversion efficiency ratio and growth rate as well as iron in plasma and spleen, hemoglobin, red blood cell count and erythrocyte zinc protoporphyrin were not influenced by the different dietary treatments. Dietary phytate reduced apparent iron absorption in groups II and III. Furthermore hematocrit, transferrin saturation and iron concentration in liver and femur were lowered in rats fed diets with PA, while total and latent iron-binding capacity of plasma increased. Microbial phytase supplementation (groups IV and V) partly counteracted the antinutritive effects of phytic acid on iron availability.  相似文献   

14.
The effect of maternal dietary selenium (Se) and gestation on the concentrations of Se and zinc (Zn) in the porcine fetus were determined. Mature gilts were randomly assigned to treatments of either adequate (0.39 ppm Se) or low (0.05 ppm Se) dietary Se. Gilts were bred and fetuses were collected throughout gestation. Concentrations of Se in maternal whole blood and liver decreased during gestation in sows fed the low-Se diet compared to sows fed the Se-supplemented diet. Maternal intake of Se did not affect the concentration of Se in the whole fetus; however, the concentration of Se in fetal liver was decreased in fetuses of sows fed the low-Se diet. Although fetal liver Se decreased in both treatments as gestation progressed, the decrease was greater in liver of fetuses from sows fed the low-Se diet. Dietary Se did not affect concentrations of Zn in maternal whole blood or liver or in the whole fetus and fetal liver. The concentration of Se in fetal liver was lower but the concentration of Zn was greater than in maternal liver when sows were fed the adequate Se diet. These results indicate that maternal intake of Se affects fetal liver Se and newborn piglets have lower liver Se concentrations compared to their dams, regardless of the Se intake of sows during gestation. Thus, the piglet is more susceptible Se deficiency than the sow.  相似文献   

15.
The effect of diets differing in enzyme supplements, mineral phosphorus (P) and microwave wheat treatment on phytate hydrolysis and lower inositol phosphate isomers (InsPs) appearance in broiler crops was studied. The broilers (16- and 15-day-old) were assigned to 48 pens of 15 or 20 birds each (n = 8 pens per treatment) in Experiments 1 and 2, respectively. In Experiment 1, birds received a low-P wheat-soybean meal diet where the wheat was either microwave treated or not. These diets were offered without further supplementation or with added phytase (500 FTU/kg diet), alone or in combination with a xylanase (16,000 BXU/kg diet). In Experiment 2, two maize-soybean meal-based diets were fed, without or with monocalcium phosphate supplementation. Furthermore, these diets were offered without further supplementation or with phytase at 500 or 12,500 FTU/kg diet. On day 23 or 24 (Experiments 1 and 2, respectively), crop digesta were pooled per pen, freeze-dried and analysed for InsPs and the marker TiO2. Microwaving reduced the intrinsic phytase activity and InsP6 hydrolysis, but increased the concentration of Ins(1,2,3,4,5)P5 and Ins(1,2,4,5,6)P5 in the digesta of crop (Experiment 1). Microwave treatment significantly interacted with enzyme supplementation for Ins(1,2,5,6)P4 concentration, indicating a synergistic effect of intrinsic and supplied phytase in the crop. Xylanase tended to support phytase hydrolysis in diets with microwave-treated wheat. Phytase addition increased InsP6 hydrolysis up to 79% (Experiment 2). Thus, wheat phytase activity can cause high InsP6 hydrolysis in the crop. Treatment differences in lower InsPs indicated that hydrolysis of the first InsP6 phosphate group is not the only step in the degradation cascade in the crop of broilers that is influenced by dietary factors.  相似文献   

16.
Five groups of individually housed albino rats (n=7, initial average weight=48 g) were fed diets based on egg albumen and cornstarch (basal diet 8.2 g Ca, 6.0 g P, 0.7 g Mg, 225 mg Zn, 150 mg Fe, 60 mg Mn, 8 mg Cu, and 5 mg Cd) over a 4-wk period. Group I (control) was fed the basal diet free of phytic acid (PA). In groups II, III, IV, and V, cornstarch was replaced by 3.5, 7.0, 10.5, and 14.0 g sodium phytate/kg diet, respectively. Daily gain, feed efficiency, Zn status (Zn in plasma, femur, testes, liver and kidneys, activity of the plasma alkaline phosphatase) and apparent absorption of Zn, Fe, Cu, and Mn remained unchanged by the different dietary treatments. PA decreased apparent Mg absorption significantly and apparent absorption of Ca in tendency. Increasing the amount of phytate caused a corresponding enhancement of amount of the digestible P. Cd accumulation in the liver was not significantly altered, and kidney Cd accumulation slightly increased owing to PA. In conclusion, it was shown that under conditions of high dietary Zn, PA had only little effect on the carryover of Cd in growing rats.  相似文献   

17.
An experiment was conducted to study the effect of microbial phytase (Natuphos® 500) supplementation in chicks fed different levels of available phosphorus (AP) and citric acid (CA) on performance, mineral retention (Ca, P, Mg, and Zn), bone and plasma minerals (Ca, P, Mg, and Zn), plasma total protein (TP), and serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) activities. Data were analyzed as a 2×4×2 factorial arrangement with two levels of AP (3.5 and 2.5 g/kg), four levels of phytase (0, 200, 400 and 600 U/kg), and two levels of citric acid (0 and 20 g/kg). The low-AP diets reduced performance. Phytase supplementation increased weight gain (up to 7% quadratically) and feed consumption (up to 5%). This response was statistically maximized by 200 U/kg phytase. Feed to gain ratio was not affected by phytase addition. Growth response to phytase was negatively affected by citric acid. Decreasing AP content in the diet increased Ca, P, and Mg retention, and reduced Zn retention. Phytase supplementation linearly increased Ca, P, and Zn retention by 9, 10 and 16%, respectively. Citric acid addition also increased Ca, P, and Zn retention by 3, 3 and 4%, respectively. Likewise, the decrease in AP content in the diet caused a reduction of tibia ash and tibia Zn, and an increase in tibia Ca and P contents. Phytase supplementation increased tibia ash (up to 4%), tibia Ca (up to 2%), P (up to 1%) and Zn (up to 4%) contents, tibia weight (up to 9%), and relative tibia (up to 19%) and liver (up to 13%) weights. Citric acid increased tibia ash (2%), and tibia Ca (2%) and P (2%) contents. Finally, by decreasing AP levels in the diet, plasma Ca and Zn concentrations as well as AST, ALP, and LDH activities were increased. However, plasma P and TP content were reduced. Phytase supplementation increased linearly plasma Ca (up to 4%), P (up to 12%), Mg (up to 10%), Zn (up to 22%) and TP (up to 7%) content, and serum AST (up to 22%), ALT (up to 40%), and LDH (up to 17%) activities, and reduced linearly serum ALP (up to 34%) activity. Citric acid addition increased plasma Ca, Mg, and Zn content by 10, 4, and 5%, respectively, and reduced ALP activity by 13%. In conclusion, these results indicated that the addition of phytase to maize and soyabean meal low-AP diets improved the performance and increased Ca, P, and Zn utilization in chicks. However, the inclusion of citric acid depressed the performance and caused an increase in mineral utilization. Growth response to phytase was negatively affected by citric acid.  相似文献   

18.
BackgroundComplementary feeding of breastfed infants with foods high in bioavailable zinc (Zn) can help meet physiological requirements for Zn. Some infant cereals contain high concentrations of phytic acid (PA) and calcium (Ca) that may reduce absorbable Zn.ObjectivesThis study measured PA, Zn and Ca concentrations in selected infant cereals sold in Canada and investigated the effects of dietary PA and Ca at concentrations present in infant cereals on Zn bioavailability in rats.Methods and resultsMale Sprague-Dawley rats (36-day old) were fed a control diet containing normal Zn (29.1 mg/kg) and Ca (4.95 g/kg) or six test diets (n = 12/diet group). Test diets were low in Zn (8.91–9.74 mg/kg) and contained low (2.16–2.17 g/kg), normal (5.00–5.11 g/kg) or high (14.6–14.9 g/kg) Ca without or with added PA (8 g/kg). After 2 weeks, rats were killed and Zn status of the rats was assessed. PA, Zn and Ca concentrations in infant cereals (n = 20) differed widely. PA concentrations ranged from undetectable to 16.0 g/kg. Zn and Ca concentrations ranged from 7.0–29.1 mg/kg and 0.8–13.4 g/kg, respectively. The [PA]/[Zn] and [PA × Ca]/[Zn] molar ratios in infants cereals with detectable PA (16 of 20 cereals) ranged from 22–75 and 0.9–14.9 mol/kg, respectively, predicting low Zn bioavailability. Body weight, body composition (lean and fat mass), right femur weight and length measurements and Zn concentrations in serum and femur indicated that diets higher in Ca had a more pronounced negative effect on Zn status of rats fed a PA-supplemented diet. Addition of PA to the diet had a greater negative effect on Zn status when Ca concentration in the diet was higher.ConclusionThese results show that, in rats, higher concentrations of dietary Ca and PA interact to potentiate a decrease in bioavailable Zn and may suggest lower Zn bioavailability in infant cereals with higher PA and Ca concentrations.  相似文献   

19.
WangFD BianW 《Cell research》2001,11(2):135-141
INTRODUCTIONZinc is essential for normal brain development,evidenced by the fact that zinc deficiency in lactating mothers is characterized by a high incidence ofneuroanatomical maiformatinns and functional abnormalities in suckling offspring[1-3]. By colltrast,relatively little is known about the relationship be{tween maternal zinc nutrition and fetal brain development[2, 4, 5]. Dvergsten et al[6-81 investigated theeffects of maternal zinc deficiency on postnatal development of the rat ce…  相似文献   

20.
The optimization of dietary phosphorus (P) and calcium (Ca) supply requires a better understanding of the effect of dietary fiber content of co-products on the digestive utilization of minerals. This study was designed to evaluate the effects of dietary fiber content from 00-rapeseed meal (RSM) on P and Ca digestibility throughout the gastrointestinal tract in growing pigs fed diets without or with microbial phytase. In total, 48 castrated male pigs (initial BW=36.1±0.4 kg) were housed in metabolic crates for 29 days. After an 8-day adaptation period, pigs were allocated to one of the eight treatments. The impact of dietary fiber was modulated by adding whole RSM (wRSM), dehulled RSM (dRSM) or dRSM supplemented with 4.5% or 9.0% rapeseed hulls (dRSMh1 and dRSMh2). Diets contained 0 or 500 phytase unit of microbial phytase per kg. From day 14 to day 23, feces and urine were collected separately to determine apparent total tract digestibility (ATTD) and apparent retention (AR) of P and Ca. At the end of the experiment, femurs and digestive contents were sampled. No effect of variables of interest was observed on growth performance. Microbial phytase increased ATTD and AR of P (P<0.001) but the P equivalency with the wRSM diet was lower than expected. Moreover, stomach inorganic P (iP) solubility was improved by microbial phytase (P<0.001). The ATTD of Ca was not affected by microbial phytase which increased AR of Ca and femur characteristics (P<0.05). Ileal recovery of P was not affected by microbial phytase but cecal recovery was considerably reduced by microbial phytase (P<0.001). The decrease in digesta pH between the distal ileum and cecum (7.6 v. 5.9) enhanced the solubility of iP and may have improved its absorption, as supported by the negative relationship between soluble iP and pH (R2=0.40, P<0.001 without microbial phytase and R2=0.24, P=0.026 with microbial phytase). The inclusion of hulls improved the solubility of iP (P<0.05). In conclusion, dehulling does not largely increase nutrient digestibility although dRSM seems to improve the efficacy of microbial phytase in releasing phosphate in the stomach. Moreover, dietary fiber may affect solubilization process in the cecum which potentiates the effect of microbial phytase on P digestibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号