首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to examine the effects of room temperature and body position changes on cerebral blood volume, blood pressure and center-of-foot pressure (COP). Cerebral oxygenation kinetics and blood pressure were measured by near infrared spectroscopy (NIRS) and volume-compensation, respectively, in 9 males and 9 females after rapid standing from sitting and supine positions in low (12 degrees C) or normal (22 degrees C) room temperatures. COP was also measured in a static standing posture for 90 s after rapid standing. The total hemoglobin (Hb) decreased just after standing. Blood pressure after standing at normal temperature tended to decrease immediately but at low temperature tended to decrease slightly and then to increase greatly. The decreasing ratio of total Hb and blood pressure upon standing from a supine position at normal room temperatures was the largest of any condition. Total Hb recovered to a fixed level approximately 25 sec after standing from a sitting position and approximately 35 sec after standing from a supine position. All COP parameters after standing tended to change markedly in the supine position compared to the sitting position, especially at normal temperatures. The COP parameters after standing in any condition were not significantly related to the decreasing ratio of total Hb but were related to the recovery time of total Hb after standing. In conclusion, decreasing ratios of total Hb and blood pressure after standing from a supine position at normal temperatures were large and may affect body sway.  相似文献   

2.
Seiza is one of the most commonly used sitting postures in various enrichment lessons of Japanese origin. It is reported that Seiza with large knee flexion produces harmful effects on the cartilage of knee joints and hemodynamics of the lower legs. This study aimed at examining the influence of Seiza on tissue oxygenation kinetics of the lower limbs, plantar somatic and cutaneous sensation, and the center of foot pressure (COP) sway using 10 young adults. COP sway was measured for 1 min just after sitting on a chair for 10 min (pre-test), after 30-min Seiza (post-test 1), and 5 min after Seiza (post-test 2). To evaluate the COP sway, we used 4 body sway factors; unit time sway factor (F1), front-back sway factor (F2), left-right sway factor (F3) and high frequency band power spectrum factor (F4). Physiological parameters (i.e., tissue oxygenation kinetics in the lower legs and sensation on the sole) were measured during 30-min Seiza (continuously on tissue oxygenation, and at 1 min intervals on sensation), and for 1 min just before each COP test (pre-test, post-test 1 and 2).Oxygenated hemoglobin/myoglobin (Hb/Mb) concentration decreased markedly and deoxygenated Hb/Mb concentration increased markedly, resulting in reaching a plateau state at around 7 min. Tissue Hb/Mb index changed little during Seiza. Proprioceptive perception thresholds increased rapidly about 17 min after Starting Seiza. Means of 3 COP sway factors of F1, F2 and F4 were significantly higher in post-test 1 than in pre-test and post-test 2. In conclusion, a marked decrease in tissue oxygen concentration of the lower legs within 4-5 min, and an increase of proprioceptive perception thresholds in the sole at about 17 min are induced by Seiza. Although wiggle and quick body sway in the antero-posterior axis increases markedly in an upright posture just after maintaining Seiza for 30 min, sway recovers after sitting on a chair for 5 min.  相似文献   

3.
To investigate the joint effects of body posture and calf muscle pump, the calf blood flow of eight healthy volunteers was measured with pulsed Doppler equipment during and after 3 min of rhythmic exercise on a calf ergometer in the supine, sitting, and standing postures. Muscle contractions seriously impeded calf blood flow. Consequently, blood flow occurred mainly between contractions and reached a plateau that lasted at least the final 100 s of each exercise series. After exercise the blood flow decreased much faster in the sitting and standing postures than in the supine posture. There was no difference in blood flow between various postures during the same submaximal exercise. However, subjects in the standing posture were able to perform exercise with a higher load than in the supine posture, and blood flow in the standing posture could become twice as high as in the supine posture. We conclude that calf blood flow is regulated according to needs; available perfusion pressure determined maximal blood flow and exercise; and compared with the supine posture, the standing posture and calf muscle pump increase the perfusion pressure.  相似文献   

4.
Seiza is a Japanese traditional floor sitting style, sitting down with both legs set at about a 180 degree angle and both femurs on both lower legs. We examined the influence of the somatic dysesthesia and decrease in voluntary toe flexion strength (VTF) induced by Seiza on the center of pressure (COP) sway. Fifteen adults participated in this experiment. COP Sway was measured immediately after a chair resting (pre-test), when a plantar dysethesia occurred (post-test A), and when a decrease (under 30% of maximal voluntary contraction (MVC)) in the VTF set in (post-test B). Tissue oxygenation kinetics in the soleus muscle and plantar somatosensory thresholds (ST) were measured just before each COP test and during Seiza. From starting Seiza, oxygenated hemoglobin/myoglobin decreased markedly and reached a plateau within about 6 min. ST abruptly increased at about 19 min from starting Seiza. VTF decreased to less than 30% MVC in 33% of the participants after 10 min from the acute increase in ST, and in 100% after 20 min. When sustaining Seiza for 19 min, ST rose and sway velocity and antero-posterior sway increased. With continued Seiza, VTF decreased to below 30% MVC at 10 - 20 min, and the above stated body sway further markedly increase.  相似文献   

5.
We examined the effects of a load's mass and position on body sway during standing with a load on the back. Three healthy male subjects participated in this experiment. The subjects supported loads of 23kg, 33kg, and 43kg on their backs using a carrier frame. They were asked to stand for 75s on a force platform with their eyes open while being as quiet as possible. Time series data of center-of-pressure (COP) were collected at a sampling rate of 50Hz during the last 60s of the 75s standing period. The COP was measured under three conditions in terms of the load position on the frame: lower (close to the hip), middle, and upper (close to the shoulder). All subjects showed that the lower the position of the load, the more anteriorly the mean COP coordinate was located in the anteroposterior (AP) direction, and the smaller the total distance of the COP trajectories became. Regarding carrying the heavier loads, each subject showed a specific tendency in the mean AP coordinate. The three subjects had different physical characteristics in terms of body height and experience at carrying heavy loads. These results suggest that the examintion of the COP in a static posture can help our understanding of individual information on the posture supporting loads and the general positioning of the body.  相似文献   

6.
To determine the effects of posture on the venodilatory response to nitroglycerin (TNG), the change in forearm venous volume after inflation of an upper arm cuff to 30 mmHg above cuff zero (VV[30]) was measured during control conditions and after TNG (0.8 mg spray) in 18 healthy young volunteers in the supine position and the sitting position. VV[30] was 3.24 +/- 0.98 ml/100 ml arm in the supine position and 2.46 +/- 1.32 ml/100 ml arm in the sitting position. TNG increased VV[30] by 0.56 +/- 0.19 ml/100 ml arm in supine subjects, but by only 0.38 +/- 0.17 ml/100 ml arm in sitting subjects (P = 0.013). When limb volume was measured in the forearm and calf without using a cuff to produce venous congestion, the increase in limb volume with TNG was significantly greater in the sitting than in the supine position. Because the fall in both systolic and diastolic pressure and the rise in heart rate were significantly greater after TNG was administered in the sitting position, it is suggested that a greater reflex venoconstriction occurred in this posture, which antagonized the TNG-induced increase in venous distensibility. In the seated position, the effect of gravity more than compensated for the impaired venodilatory response to TNG. These results suggest that TNG causes a greater reduction in venous return to the heart when administered in the sitting position than in the supine position.  相似文献   

7.
Nine healthy men, aged between 25 and 35 years, performed sustained maximal voluntary contractions (MVC) of foot plantar, foot dorsal, and finger flexor muscles. Contractions lasted 10 min and were followed by short test contractions at 30% MVC during recovery. Two positions of the working extremity high or low were established by different body postures (supine or sitting). Under these conditions, studies of force, integrated electromyogram (iEMG), blood pressure, and heart rate showed firstly that force decreased throughout the first few minutes of maximal contraction but reached a near steady-state value after 5 to 6 min. Secondly, force decay and steady-state level depended on muscle group and body position. When sitting (low leg), muscles with a high incidence of slow twitch fibres (plantar flexors) showed a slower force decay and a higher relative steady-state force than fast dorsal flexor muscles. When supine (high leg), plantar and dorsal flexor muscles reached about the same low level of relative steady-state force. Changes in iEMG, blood pressure, and heart rate did not differ in the two positions. Thirdly, during recovery, plantar flexor muscles showed higher iEMG values as well as higher values of blood pressure and heart rate when supine than when sitting. Recovery of dorsal flexor muscles was little affected by body posture. Fourthly, force development and recovery of predominantly fast finger flexor muscles were almost independent of arm position. It was concluded that muscle fibre composition was the main factor in determining endurance capacity. However, endurance was influenced by changes in the hydrostatic blood pressure component.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The mass density of antecubital venous blood was measured continuously for 80 min/session with 0.1 g/l precision at a flow rate of 1.5 ml/min in six male subjects. Each person participated in two different sessions with the same protocol. To induce transvascular fluid shifts, the subjects changed from sitting to standing and from standing to supine positions. There was transient blood density shifts immediately after postural changes, followed by an asymptotic approach to a new steady-state blood density level. Additional deviations from a simple time course were regularly observed. Blood density increased by 3.5 +/- 1.4 (SD) g/l when standing after sitting and decreased by 5.0 +/- 1.2 g/l while supine after standing. The corresponding half time of the blood density increase was 5.6 +/- 1.4 min (standing after sitting) and 6.9 +/- 3.1 min (supine after standing) of the blood density decrease. Erythrocyte density was calculated and did not change with body position. Whole-body blood density was calculated from plasma density, hematocrit, and erythrocyte density, assuming an F-cell ratio of 0.91. Volume shifts were computed from the density data; the subject's blood volume density decreased by 6.2 +/- 1.2% from sitting to standing and increased by 8.5 +/- 2.1% from standing to supine. Additional discrete plasma density and hematocrit measurements gave linear relations (P less than 0.001) between all possible combinations of blood density, plasma density, and hematocrit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In the present experiments it was decided to have each test-subject serve as his own control by fitting the test-subjects with a G-suit and comparing the condition of inflated G-suit to the normal situation. G-suit inflation was intended to only displace blood on the venous side of the circulation, not to increase total peripheral resistance. Therefore, a very modest inflation of 50 mmHg was applied. This was considered sufficient to expel most of the blood from the venous pool in abdomen and legs, even under the condition of increased G-loading in the pull-up phase. The parabolas were to be undergone in three body positions: standing upright, sitting and supine. The prediction of the experimental outcome was that we would find no difference between transients with and without G-suit inflation in the supine position, that an initial overshoot in pressure and stroke volume in the upright position would be very much damped by the G-suit, even more in the standing than in the sitting position. Studies were performed in 5 flights of NASA's KC-135, in January 1993. Per flight 40 parabolas were flown in an adapted 'roller coaster profile', i.e. 0-G phases were followed by a 2-G pull-out phase, after a very brief 1-G phase again followed by the next 2-G pull-up phase. This sequence was flown for 10 parabolas, then a 1-G horizontal flight period was inserted. The first 3 parabolas of each set of 10 the subjects were sitting upright, seat belt fastened. The next three they were standing, feet stuck under a load strap on the floor, stabilizing themselves by a grip on the ceiling. Then three parabolas were flown with the test-subject supine, loosely attached to the floor by a load strap and further aided by a grip to another strap on the floor. The last parabola of a set was used as 'spare' to repeat any failed maneuver.  相似文献   

10.
Experiments were conducted in conscious dogs to determine the relationships between postural position, arterial pressure, and renal sympathetic nerve activity. Observations of the changes in arterial pressure and renal nerve activity were made when animals spontaneously changed postural position from lying to sitting, sitting to standing, standing to sitting, and sitting to lying. Rising to sit from lying down increased arterial pressure from 109 +/- 5 to 125 +/- 3 mm Hg and increased renal nerve activity by 96 +/- 58 microV/sec (61% of control). Movement from the sitting to standing position decreased renal nerve activity by 90 +/- 39 microV/sec (48% of control) without changing mean arterial pressure. Sitting down from standing also did not change arterial pressure, whereas renal nerve activity increased by 56 +/- 17 microV/sec (33% of control). Returning to the lying position (from sitting) decreased arterial pressure, and this hypotension was associated with significant reductions in renal nerve activity. These results indicate that nonuniform changes in sympathetic outflow from the central nervous system must occur to various vascular beds during changes in postural position of conscious dogs. Thus, renal sympathetic outflow may or may not reflect changes in nerve traffic which contribute to alterations in arterial pressure.  相似文献   

11.
Both in normal subjects exposed to hypergravity and in patients with acute respiratory distress syndrome, there are increased hydrostatic pressure gradients down the lung. Also, both conditions show an impaired arterial oxygenation, which is less severe in the prone than in the supine posture. The aim of this study was to use hypergravity to further investigate the mechanisms behind the differences in arterial oxygenation between the prone and the supine posture. Ten healthy subjects were studied in a human centrifuge while exposed to 1 and 5 times normal gravity (1 G, 5 G) in the anterioposterior (supine) and posterioanterior (prone) direction. They performed one rebreathing maneuver after approximately 5 min at each G level and posture. Lung diffusing capacity decreased in hypergravity compared with 1 G (ANOVA, P = 0.002); it decreased by 46% in the supine posture compared with 25% in the prone (P = 0.01 for supine vs. prone). At the same time, functional residual capacity decreased by 33 and 23%, respectively (P < 0.001 for supine vs. prone), and cardiac output by 40 and 31% (P = 0.007 for supine vs. prone), despite an increase in heart rate of 16 and 28% (P < 0.001 for supine vs. prone), respectively. The finding of a more impaired diffusing capacity in the supine posture compared with the prone at 5 G supports our previous observations of more severe arterial hypoxemia in the supine posture during hypergravity. A reduced pulmonary-capillary blood flow and a reduced estimated alveolar volume can explain most of the reduction in diffusing capacity when supine.  相似文献   

12.
The vertical posture was studied during standing with fееt on the support surfaces of different structures. The movements of the center of pressure (CP) of each leg and the common CP (CCP) were recorded while the subject stood with a support on a smooth floor and with the support of one foot on a spike mat (SM) with different load distributions between the legs. When the body weight was transferred to one leg during standing under ordinary conditions on a smooth floor, the CP of the loaded leg moved more than the CP of the unloaded leg; i.e., the posture sway was compensated mainly due to the activity of the loaded leg, which created a larger torque. When the subject stood with one foot on the SM, the CP movement of this leg did not depend on the leg load and was about 60% of the CP movement of the leg on the smooth floor. Apparently, the CP displacement of the unloaded leg on smooth support was larger than the CP displacement of the loaded leg creating the torque necessary for compensating the body sway. Thus, maintaining the vertical posture was carried out mainly by the leg standing on the smooth support. It is assumed that additional stimulation of different surface and deep receptors of the foot caused by foot support on the SM hampered the perception of its CP position, and the vertical posture was maintained mainly by the leg afferent signals from which more precisely reflected the CP position.  相似文献   

13.
The present study sought to determine if the postural sway of a subject required to grasp a tray (motor task) holding a cup filled with water and prevent spilling (mental task), would be reduced by consciously redirecting attention to maintain the tray in a horizontal position. We hypothesized the mental task would increase the stabilization of standing postural balance. Postural sway was measured in 17 normal subjects under the following conditions: 1) holding a 100 g weight in each hand (total 200 g; no mental task), 2) holding with both hands a tray on which 200 g was placed (tray-holding task), and 3) holding with both hands a tray on which a cup filled with water weighing 200 g was placed in the center (mental task). Postural sway was significantly reduced during the mental task versus other tasks. Standing posture balance was stabilized when a mental task was added. Thus, we concluded that higher brain functions such as attention and consciousness exerted a significant influence over the control of standing posture.  相似文献   

14.
The sagittal and frontal components of the stabilogram were monitored in 14 healthy subjects standing on a rigid or pliant support under three different conditions of visual control: with the eyes opened (EO), with the eyes closed (EC), or in a virtual visual environment (VVE). Under the VVE conditions, the subjects looked at a three-dimensional image of elements of a room (a 3-D artificial room) that was generated by a computer and locked to the fluctuations of the body center of gravity (CG) so that the visual connection between body sway and shifts of the visual environment typical of normal visual conditions was reproduced. Frequency filtration of the fluctuations of the foot’s center of pressure (FCP) was used to isolate the movements of the vertical projection of the CG and determine the difference between these two variables. The changes in the variables (CG and FCP-CG) were estimated using spectral analysis followed by the calculation of the root mean square (RMS) amplitudes of their spectral fluctuations. In subjects standing on a rigid support, the RMS amplitudes of the spectra of both variables were the highest under the VVE and EC conditions and the lowest under the EO conditions. In subjects standing on a pliant support, body sway was considerably enhanced, which was accompanied by a different pattern of visual influences. The RMS values were the highest under the EC conditions and were lower by a factor of 2–2.5 under the EO and VVE conditions. Thus, it has been demonstrated that the cerebral structures controlling posture ignore the afferent input from the eyes under VVE conditions, if the subject is standing on a rigid support and the CG fluctuations are relatively small; however, this afferentation is efficiently used for maintaining the posture on a pliable support, when the body sway is substantially enhanced.  相似文献   

15.
Normal subjects have a larger diffusing capacity normalized per liter alveolar volume (DL/VA) in the supine than in the sitting position. Body position changes total lung diffusing capacity (DL), DL/VA, membrane conductance (Dm), and effective pulmonary capillary blood volume (Qc) as a function of alveolar volume (VA). These functions were studied in 37 healthy volunteers. DL/VA vs. VA yields a linear relationship in sitting as well as in supine position. Both have a negative slope but usually do not run parallel. In normal subjects up to 50 yr old DL/VA and DL increased significantly when subjects moved from a sitting to a supine posture at volumes between 50 and 100% of total lung capacity (TLC). In subjects greater than 50 yr old the responses of DL/VA and DL to change in body position were not significant at TLC. Functional residual capacity (FRC) decreases and DL/VA increases in all normal subjects when they change position from sitting to supine. When DL/VA increases more than predicted from the DL/VA vs. VA relationship in a sitting position, we may infer an increase in effective Qc in the supine position. In 56% of the volunteers, supine DL was smaller than sitting DL despite a higher DL/VA at FRC in the supine position because of the relatively larger decrease in FRC. When the positional response at TLC is studied, an estimation obtained accidentally at a volume lower than TLC may influence results. Above 80% of TLC, Dm decreased significantly from sitting to supine. Below this lung volume the decrease was not significant. The relationship between Qc and VA was best described by a second-order polynomial characterized by a maximum Qc at a VA greater than 60% of TLC. Qc was significantly higher in the supine position than in the sitting position, but the difference became smaller with increasing age. In observing the sitting and supine positions, we saw a decrease in maximum Qc normalized per square meter of body surface area with age.  相似文献   

16.
Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation. To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types of control mechanisms are included: 1) autonomic regulation mediated by sympathetic and parasympathetic responses, which affect heart rate, cardiac contractility, resistance, and compliance, and 2) autoregulation mediated by responses to local changes in myogenic tone, metabolic demand, and CO(2) concentration, which affect cerebrovascular resistance. Finally, we formulate an inverse least-squares problem to estimate parameters and demonstrate that our mathematical model is in agreement with physiological data from a young subject during postural change from sitting to standing.  相似文献   

17.
The purpose of this study was to examine the effects of the increased sympathetic activity elicited by the upright posture on blood flow to exercising human forearm muscles. Six subjects performed light and heavy rhythmic forearm exercise. Trials were conducted with the subjects supine and standing. Forearm blood flow (FBF, plethysmography) and skin blood flow (laser Doppler) were measured during brief pauses in the contractions. Arterial blood pressure and heart rate were also measured. During the first 6 min of light exercise, blood flow was similar in the supine and standing positions (approximately 15 ml.min-1.100 ml-1); from minutes 7 to 20 FBF was approximately 3-7 ml.min-1.100 ml-1 less in the standing position (P less than 0.05). When 5 min of heavy exercise immediately followed the light exercise, FBF was approximately 30-35 ml.min-1.100 ml-1 in the supine position. These values were approximately 8-12 ml.min-1.100 ml-1 greater than those observed in the upright position (P less than 0.05). When light exercise did not precede 8 min of heavy exercise, the blood flow at the end of minute 1 was similar in the supine and standing positions but was approximately 6-9 ml.min-1.100 ml-1 lower in the standing position during minutes 2-8. Heart rate was always approximately 10-20 beats higher in the upright position (P less than 0.05). Forearm skin blood flow and mean arterial pressure were similar in the two positions, indicating that the changes in FBF resulted from differences in the caliber of the resistance vessels in the forearm muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The transfer function relating arterial pressure (AP) to cerebral blood flow velocity (CBFV) during resting conditions has been used to predict the CBFV response to hypotension. We hypothesized that this approach could predict the CBFV response to posture change in elderly individuals if impaired autoregulation allowed changes in AP to be passively transferred to CBFV. AP (Finapres) and CBFV (middle cerebral artery transcranial Doppler) were measured in 10 healthy young (age 24 +/- 1 yr) and 10 healthy elderly (age 72 +/- 3 yr) subjects during 5 min of quiet sitting and 1 min of active standing while breathing was paced at 0.25 Hz. Transfer functions between AP and CBFV changes during sitting were estimated from each full waveform in both low-frequency (LF; 0.05-0.2 Hz) and heartbeat-frequency (HBF; 0.7-1.4 Hz) ranges. The impulse-response function was used to compute changes in CBFV during posture change. The LF transfer function did not predict orthostatic changes in CBFV in either group, suggesting normal cerebral autoregulation. In the HBF range, the prediction was high in elderly (R = 0.65 +/- 0.23) but not young subjects (R = 0.19 +/- 0.35; P < 0.003, young vs. elderly). Thus rapidly acting regulatory mechanisms that reduce the transmission of beat-to-beat changes in AP to CBFV may be engaged during posture change in young but not elderly subjects.  相似文献   

19.
ABSTRACT: To decrease the influence of postural sway during spinal measurements, an instrumented fixation posture (called G) was proposed and tested in comparison with the free standing posture (A) using the DTP-3 system in a group of 70 healthy volunteers. The measurement was performed 5 times on each subject and each position was tested by a newly developed device for non-invasive spinal measurements called DTP-3 system. Changes in postural stability of the spinous processes for each subject/the whole group were evaluated by employing standard statistical tools. Posture G, when compared to posture A, reduced postural sway significantly in all spinous processes from C3 to L5 in both the mediolateral and anterioposterior directions. Posture G also significantly reduced postural sway in the vertical direction in 18 out of 22 spinous processes. Importantly, posture G did not significantly influence the spinal curvature.  相似文献   

20.
A procedure was developed that enables measurement of rapid variations in calf blood flow during voluntary rhythmic contraction of the calf muscles in supine, sitting, and standing positions. During the exercise, maximum blood velocity is measured by Doppler ultrasound equipment in the popliteal artery. The Doppler signals are calibrated by plethysmography to enable calculation of blood flow during exercise in ml.100 ml-1.min-1. Knowledge of the cross-sectional area of the vessel and the angle of insonation is not required in this procedure. Evaluation of the calibration method with 10 healthy volunteers showed that for each subject a new calibration was necessary after a change in posture; the relationship between the blood flow and the maximum Doppler frequency averaged over one heart cycle was linear for each calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号