首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.  相似文献   

2.
An overview of enzymatic production of biodiesel   总被引:13,自引:0,他引:13  
Biodiesel production has received considerable attention in the recent past as a biodegradable and nonpolluting fuel. The production of biodiesel by transesterification process employing alkali catalyst has been industrially accepted for its high conversion and reaction rates. Recently, enzymatic transesterification has attracted much attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. But the cost of enzyme remains a barrier for its industrial implementation. In order to increase the cost effectiveness of the process, the enzyme (both intracellular and extracellular) is reused by immobilizing in a suitable biomass support particle and that has resulted in considerable increase in efficiency. But the activity of immobilized enzyme is inhibited by methanol and glycerol which are present in the reacting mixture. The use of tert-butanol as solvent, continuous removal of glycerol, stepwise addition of methanol are found to reduce the inhibitory effects thereby increasing the cost effectiveness of the process. The present review analyzes these methods reported in literature and also suggests a suitable method for commercialization of the enzymatic process.  相似文献   

3.
Biodiesel fuel (BDF), which refers to fatty acid alkyl esters, has attracted considerable attention as an environmentally friendly alternative fuel for diesel engines. Alkali catalysis is widely applied for the commercial production of BDF. However, enzymatic transesterification offers considerable advantages, including reducing process operations in biodiesel fuel production and an easy separation of the glycerol byproduct. The high cost of the lipase enzyme is the main obstacle for a commercially feasible enzymatic production of biodiesel fuels. To reduce enzyme associated process costs, the immobilization of fungal mycelium within biomass support particles (BSPs) as well as expression of the lipase enzyme on the surface of yeast cells has been developed to generate whole-cell biocatalysts for industrial applications.  相似文献   

4.
Biodiesel, chemically defined as monoalkyl esters of long chain fatty acids, are derived from renewable feed stocks like vegetable oils and animal fats. It is produced by both batch and continuous transesterification processes in which, oil or fat is reacted with a monohydric alcohol in the presence of a catalyst. The conventional method of producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to as alcoholysis, a form of transesterification reaction or through an interesterification reaction. In order to increase the cost effectiveness of the process, the enzymes are immobilized using a suitable matrix. The use of immobilized lipases and whole cells may lower the overall cost, while presenting less downstream processing problems. Main focus of this paper is to discuss the important parameters that affect the biodiesel yield, various immobilization techniques employed, mechanisms and kinetics of transesterification reaction and the recent advances in continuous transesterification processes.  相似文献   

5.
Biotechnological production of biodiesel has attracted considerable attention during the past decade compared to chemical-catalysed production since biocatalysis-mediated transesterification has many advantages. Currently, there are extensive reports on enzyme-catalysed transesterification for biodiesel production; the related research can be classified into immobilised-extracellular and immobilised-intracellular biocatalysis and this review focusses on these forms of biocatalyst for biodiesel production. The optimisation of the most important operating conditions affecting lipase-catalysed transesterification and the yield of alkyl esters, such as the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol, are discussed. However, there is still a need to optimise lipase-catalysed transesterification and reduce the cost of lipase production before it is applied commercially. Optimisation research of lipase-catalysed transesterification could include development of new reactor systems with immobilised biocatalysts, the use of lipases tolerant to organic solvents, intracellular lipases (whole microbial cells) and genetically modified microorganisms (intelligent yeasts). Biodiesel fuel is expensive in comparison with petroleum-based fuel and 60–70% of the cost is associated with feedstock oil and enzyme. Therefore ways of reducing the cost of biodiesel with respect to enzyme and substrate oils reported in literature are also presented.  相似文献   

6.
Increase in volume of biodiesel production in the world scenario proves that biodiesel is accepted as an alternative to conventional fuel. Production of biodiesel using alkaline catalyst has been commercially implemented due to its high conversion and low production time. For the product and process development of biodiesel, enzymatic transesterification has been suggested to produce a high purity product with an economic, environment friendly process at mild reaction conditions. The enzyme cost being the main hurdle can be overcome by immobilization. Immobilized enzyme, which has been successfully used in various fields over the soluble counterpart, could be employed in biodiesel production with the aim of reducing the production cost by reusing the enzyme. This review attempts to provide an updated compilation of the studies reported on biodiesel production by using lipase immobilized through various techniques and the parameters, which affect their functionality.  相似文献   

7.
脂肪酶催化合成生物柴油的研究   总被引:78,自引:0,他引:78  
生物柴油是用动植物油脂或长链脂肪酸与甲醇等低碳醇合成的脂肪酸甲酯,是一种替代能源。这里探讨了生物法制备生物柴油的过程,采用脂肪酶酯化和酯交换两条工艺路线进行催化合成。深入研究制备过程中,不同脂肪酶、酶的用量和纯度、有机溶剂、低碳醇的抑制作用、吸水剂的作用、反应时间和进程、底物的特异性和底物摩尔比等参数对酯化过程的影响。试验结果表明,采用最佳酯化反应参数和分批加入甲醇并用硅胶作脱水剂的工艺过程,酯化率可以达到92%,经分离纯化后的产品GC分析的纯度可达98%以上,固定化酶的使用半衰期可达到360h。同时对酯交换制备生物柴油过程中,甲醇的用量和甲醇的加入方式对脂肪酶催化过程的影响作了初步研究,优化后的酯交换率可达到83%。  相似文献   

8.
Biodiesel has gained widespread importance in recent years as an alternative, renewable liquid transportation fuel. It is derived from natural triglycerides in the presence of an alcohol and an alkali catalyst via a transesterification reaction. To date, transesterification based on the use of chemical catalysts has been predominant for biodiesel production at the industrial scale due to its high conversion efficiency at reasonable cost. Recently, biocatalytic transesterification has received considerable attention due to its favorable conversion rate and relatively simple downstream processing demands for the recovery of by-products and purification of biodiesel. Biocatalysis of the transesterification reaction using commercially purified lipase represents a major cost constraint. However, more cost-effective techniques based on the immobilization of both extracellular and intracellular lipases on support materials facilitate the reusability of the catalyst. Other variables, including the presence of alcohol, glycerol and the activity of water can profoundly affect lipase activity and stability during the reaction. This review evaluates the current status for lipase biocatalyst-mediated production of biodiesel, and identifies the key parameters affecting lipase activity and stability. Pioneer studies on reactor-based lipase conversion of triglycerides are presented.  相似文献   

9.
Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rapeseed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cottonseed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production.  相似文献   

10.
In recent years biodiesel has drawn considerable amount of attention as a clean and renewable fuel. Biodiesel is produced from renewable sources such as vegetable oils and animal fat mainly through catalytic or non-catalytic transesterification method as well as supercritical method. However, as a consequence of disadvantages of these methods, the production cost increases dramatically. This article summarizes different biodiesel production methods with a focus on their advantages and disadvantages. The downstream and upstream strategies such as using waste cooking oils, application of non-edible plant oils, plant genetic engineering, using membrane separation technology for biodiesel production, separation and purification, application of crude glycerin as an energy supplement for ruminants, glycerin ultra-purification and their consequent roles in economizing the production process are fully discussed in this article.  相似文献   

11.
This work aims to demonstrate the enzymatic production of fatty acid ethyl ester biodiesel from highly acidic feedstock in a single-step reaction, without co-solvents and avoiding the inhibition of the enzyme by ethanol and glycerol. Additionally, an empirical equation is proposed to predict the kinetics of the production reaction as a function of the used feedstock and catalyst concentration. Biodiesel production from highly acidic feedstock perform via simultaneous esterification of free fatty acids and transesterification of triacylglycerols. Enzymatic catalysis is one of the most promising alternative technologies for the biodiesel production. Increasing of the enzymatic bioactivity is crucial for the success of such process in industrial scale. Currently, stepwise addition of the alcohol or the use of co-solvents have been proposed to avoid enzyme inhibition, such strategies add downstream processes to the production. These results can be applied to the development economical-viable enzymatic production of biodiesel in industrial scale.  相似文献   

12.
A silica gel-based substrate feeding system was developed to prevent methanol inhibiting the catalyst during enzymatic biodiesel synthesis. In the system, silica gel swelled upon methanol addition and subsequently released it in a controlled manner to prevent excess methanol affecting the enzyme. Biodiesel was synthesized by the enzymatic transesterification of canola oil with methanol. For this reaction, enzyme loading, methanol/oil molar ratio, silica gel dosage, glycerol content, and methanol feeding method were tested using commercial immobilized enzymes (Novozym 435 and Lipozyme RM IM from Novozymes). The results showed that conversion was highest with controlled substrate feeding rather than direct methanol addition, suggesting that the method developed here can easily prevent enzyme inhibition by limiting methanol concentration to an acceptable level.  相似文献   

13.
The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on “food versus fuel,” non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.  相似文献   

14.
Gong Y  Jiang M 《Biotechnology letters》2011,33(7):1269-1284
Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.  相似文献   

15.
The cost of lipases and the relatively slower reaction rate remain as the major obstacles for enzymatic production of biodiesel as opposed to the conventional chemical processes. This paper reviews the starting oils usually employed in biodiesel production, the processes for transforming them to biodiesel placing particular emphasis on enzymatic transesterification. The pros and cons of the lipase-based process, the key operational variables and the technological alternatives for attenuating lipase deactivation are also discussed. Finally, suggestions are made for future studies, paying particular attention to the use of whole cell immobilization in the production process, as this methodology may reduce both the cost of the biocatalyst and dependence on lipase manufacturers.  相似文献   

16.
Shi H  Bao Z 《Bioresource technology》2008,99(18):9025-9028
A new method which coupled the two-phase solvent extraction (TSE) with the synthesis of biodiesel was studied. Investigations were carried out on transesterification of methanol with oil-hexane solution coming from TSE process in the presence of sodium hydroxide as the catalyst. Biodiesel (fatty acid methyl esters) were the products of transesterification. The influential factors of transesterification, such as reaction time, catalyst concentration, mole ratio of methanol to oil and reaction temperature were optimized. The results showed that the optimal reaction parameters were sodium hydroxide concentration 1.1% by weight of rapeseed oil, mole ratio of methanol to oil 9:1, reaction time 120 min, and reaction temperature 55-60 degrees C. Under these conditions, the TG conversion would rise up to 98.2%. Based on the new method, biodiesel production process could be simplified and the biodiesel cost could be reduced.  相似文献   

17.
Biodiesel production with immobilized lipase: A review   总被引:1,自引:0,他引:1  
Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is “greener”. This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99–125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored.  相似文献   

18.
Recently, with the global shortage of fossil fuels, excessive increase in the price of crude oil and increased environmental concerns have resulted in the rapid growth in biodiesel production. The central reaction in the biodiesel production is the transesterification reaction which could be catalyzed either chemically or enzymatically. Enzymatic transesterification has certain advantages over the chemical catalysis of transesterification, as it is less energy intensive, allows easy recovery of glycerol and the transesterification of glycerides with high free fatty acid contents. Limitations of the enzyme catalyzed reactions include high cost of enzyme, low yield, high reaction time and the amount of water and organic solvents in the reaction mixture. Researchers have been trying to overcome these limitations in the enzyme catalyzed transesterification reaction. This paper is meant to review the latest development in the field of lipase catalyzed transesterification of biologically derived oil to produce biodiesel.  相似文献   

19.
Biodiesel production—current state of the art and challenges   总被引:3,自引:0,他引:3  
Biodiesel is a clean-burning fuel produced from grease, vegetable oils, or animal fats. Biodiesel is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. The transesterification reaction consists of transforming triglycerides into fatty acid alkyl esters, in the presence of an alcohol, such as methanol or ethanol, and a catalyst, such as an alkali or acid, with glycerol as a byproduct. Because of diminishing petroleum reserves and the deleterious environmental consequences of exhaust gases from petroleum diesel, biodiesel has attracted attention during the past few years as a renewable and environmentally friendly fuel. Since biodiesel is made entirely from vegetable oil or animal fats, it is renewable and biodegradable. The majority of biodiesel today is produced by alkali-catalyzed transesterification with methanol, which results in a relatively short reaction time. However, the vegetable oil and alcohol must be substantially anhydrous and have a low free fatty acid content, because the presence of water or free fatty acid or both promotes soap formation. In this article, we examine different biodiesel sources (edible and nonedible), virgin oil versus waste oil, algae-based biodiesel that is gaining increasing importance, role of different catalysts including enzyme catalysts, and the current state-of-the-art in biodiesel production. JIMB 2008: BioEnergy—special issue.  相似文献   

20.
The global economy heads for a severe energy crisis: whereas the energy demand is going to rise, easily accessible sources of crude oil are expected to be depleted in only 10–20 years. Since a serious decline of oil supply and an associated collapse of the economy might be reality very soon, alternative energies and also biofuels that replace fossil fuels must be established. In addition, these alternatives should not further impair the environment and climate. About 90% of the biofuel market is currently captured by bioethanol and biodiesel. Biodiesel is composed of fatty acid alkyl esters (FAAE) and can be synthesized by chemical, enzymatic, or in vivo catalysis mainly from renewable resources. Biodiesel is already established as it is compatible with the existing fuel infrastructure, non-toxic, and has superior combustion characteristics than fossil diesel; and in 2008, the global production was 12.2 million tons. The biotechnological production of FAAE from low cost and abundant feedstocks like biomass will enable an appreciable substitution of petroleum diesel. To overcome high costs for immobilized enzymes, the in vivo synthesis of FAAE using bacteria represents a promising approach. This article points to the potential of different FAAE as alternative biofuels, e.g., by comparing their fuel properties. In addition to conventional production processes, this review presents natural and genetically engineered biological systems capable of in vivo FAAE synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号