首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Nontarget feeding of Rhinocyllus conicus Fr?elich and Trichosirocalus horridus (Panzer) on native North American thistles in the genus Cirsium has been documented. Some species of these native thistles have shown greater infestation levels of R. conicus in populations that are in close proximity to the target plant species, Carduus nutans L. In 2005 a study was initiated to identify areas of potential nontarget feeding by R. conicus and T. horridus on thistle species by predicting habitats of two known introduced hosts [C. nutans and Cirsium vulgare (Savi) Tenore] and two native species [Cirsium carolinianum (Walter) Fernald and Schubert and C. discolor (Muhlenberg ex Willdenow) Sprengel] using Mahalanobis distance (D(2)). Cumulative frequency graphs showed that the D(2) models for all four plant species effectively identified site conditions that contribute to the presence of the respective species. Poisson regression showed an association between D(2) values and plant counts at field-test sites for C. nutans and C. carolinianum. However, negative binomial regression detected no association between D(2) values and plant counts for C. discolor or C. vulgare. Chi-square analysis indicated associations between both weevil species and sites where C. vulgare and Carduus nutans were found, but not between the weevil and native thistle species. Habitats of C. nutans and Cirsium carolinianum overlapped in ≈12% of the study area. Data-based habitat models may provide a powerful tool for land managers and scientists to monitor native plant populations for nontarget feeding by introduced biological control agents.  相似文献   

2.
Suwa T  Louda SM 《Oecologia》2012,169(2):467-476
The biotic resistance hypothesis is a dominant paradigm for why some introduced species fail to become invasive in novel environments. However, predictions of this hypothesis require further empirical field tests. Here, we focus on evaluating two biotic factors known to severely limit plants, interspecific competition and insect herbivory, as mechanisms of biotic resistance. We experimentally evaluated the independent and combined effects of three levels of competition by tallgrass prairie vegetation and two levels of herbivory by native insects on seedling regeneration, size, and subsequent flowering of the Eurasian Cirsium vulgare, a known invasive species elsewhere, and compared its responses to those of the ecologically similar and co-occurring native congener C. altissimum. Seedling emergence of C. vulgare was greater than that of C. altissimum, and that emergence was reduced by the highest level of interspecific competition. Insect leaf herbivory was also greater on C. vulgare than on C. altissimum at all levels of competition. Herbivory on seedlings dramatically decreased the proportion of C. vulgare producing flower heads at all competition levels, but especially at the high competition level. Competition and herbivory interacted to significantly decrease plant survival and biomass, especially for C. vulgare. Thus, both competition and herbivory limited regeneration of both thistles, but their effects on seedling emergence, survival, size and subsequent reproduction were greater for C. vulgare than for C. altissimum. These results help explain the unexpectedly low abundance recorded for C. vulgare in western tallgrass prairie, and also provide strong support for the biotic resistance hypothesis.  相似文献   

3.
Dispersal is a key process in biological studies of spatial dynamics, but the initiation of dispersal has often been neglected, despite strong indications that differential timing of dispersal can significantly affect dispersal distances. To investigate which plant and environmental factors determine the release of plumed seeds by the invasive thistles Carduus acanthoides and Carduus nutans, we exposed 192 flower heads of each species to increasing wind speeds in a full-factorial wind tunnel experiment with four air flow turbulence, three flower head wetness and two flower head temperature levels. The number of seed releases was highest under dry and turbulent conditions and from heads that had already lost a considerable number of seeds, but was not affected by flower head size, head angle or temperature. Inspection of the trials on video showed that higher wind speeds were needed to meet the seed release threshold in laminar flows and for C. acanthoides heads that had been wet for a longer time. Species differences were minimal, although seed release was more sensitive to lower levels of turbulence in the larger-headed and more open C. nutans heads. Knowledge of seed release biases towards weather conditions favourable for long-distance dispersal improves our understanding of the spread of invaders and allows managers to increase the efficiency of their containment strategies by applying them at crucial times.  相似文献   

4.
Testing of the crown weevil , Trichosirocalus horridus, against a range of Australian Aster aceae species confirmed its specificity to nodding thistle , Carduus nutans, and permission was granted for its release in Australia . It has established at the release site , and has been redistributed to other areas in eastern Australia . A field experiment designed to study the impact of this weevil on rosette growth and reproductive potential of the thistle is described . Results indicate that the weevil can kill some plants , and reduce rosette growth of survivors by 50% . The reproductive potential of the attacked plants , measured as seeds per plant , was reduced by 67% . The interaction of this biological control agent with two others already established in Australia , the receptacle weevil , Rhinocyllus conicus, and the seed fly , Urophora solstitialis, is discussed .  相似文献   

5.
Cirsium arvense (L.) Scop. is a perennial herb indigenous to Eurasia that is now present throughout temperate regions of the world where it is considered one of the worst weeds of pastoral and agricultural systems. Classical biological control has been attempted in both North America (NA) and New Zealand (NZ). However, nearly 50 years after the first agent releases there are no indications of successful control. We review the status of the five agents deliberately released for control of C. arvense in NA and NZ, plus the species unintentionally introduced, and the occurrence of insects native to NA on C. arvense. We retrospectively evaluate C. arvense as a target weed, critique the agents selected for release, and contrast the different situations in NA and NZ. In retrospect, we see justification for the agents released in NA, but it is evident that these agents would not meet the more stringent host specificity requirements necessary to be released today. The failure of the program in NA is attributed to compromised safety, and lack of impact. Non-target impacts by one of the released agents, Rhinocyllus conicus, have raised safety concerns for native thistle plants. The other released agents either failed to establish, or if established, had no impact on the weed. In contrast, the situation in NZ is quite different because there are no related native thistles (Cardueae), and thus little chance of non-target impacts. Thus far, failure in NZ is attributed to lack of effectiveness due to non-establishment, or no impact, of released agents. In the past, the same agents that were released in NA were subsequently released in NZ, without considering whether or not these were the best choices. Thus, the past failure in NZ might be due to the previous lack of a NZ-specific approach to biocontrol of thistles in general and C. arvense in particular. A new approach taking into consideration the absence of native Cardueae has resulted in the release of agents more likely to be effective, and has potentially set NZ on track towards successful biological control of C. arvense, and other thistles.  相似文献   

6.
The weevil Rhinocyllu conicus develops only in the flowerheads of thistles {Asteracea; Carduineae) and therefore it is used as a biocontrol agent against thistle weed species. Populations out of 14 regions within its natural distribution area (from the Atlantic coast in the west to Israel in the east) were analysed by means of allozymes and morphometries. In both analyses the 14 populations were grouped into two concordant units. Based on nine scored loci (six of them polymorphic), mean Nei's genetic distance between the two groups was 0.073. In a reclassification test following DFA of morphometric data, 93.2% of all individuals were grouped back into the correct group. The two groups were considered to belong to a temperate and a Mediterranean subspecies respectively, the latter probably identical to the formerly described Rhinocyllus oblongus .  相似文献   

7.
A laboratory study investigated development of teratocytes derived from the parasitoid Microctonus aethiopoides Loan in the natural host, Sitona discoideus Gyllenhal, and in three novel hosts, the introduced weed biological control agent Rhinocyllus conicus (Froehlich), and two New Zealand native species Nicaeana cervina Broun and Irenimus stolidus Broun. Weevils were exposed to parasitoids and then examined 6, 10 and 15 days post-parasitism for parasitoid stage and size, and teratocyte number and size. In all hosts, teratocyte numbers decreased and size increased as parasitoid development progressed, although 6 days after parasitism, fewer, larger teratocytes were found in I. stolidus than S. discoideus or N. cervina. In weevils containing second-third instar parasitoid larvae, the most permissive hosts, S. discoideus and N. cervina contained more teratocytes than the least permissive hosts I. stolidus and R. conicus. Host gender influenced some aspects of parasitoid and teratocyte development. Total teratocyte volume was greater in female than male S. discoideus at all sampling times, and at 10 days post-parasitism in N. cervina. A possible relationship between host suitability and teratocyte development is discussed.  相似文献   

8.
Park  Ikju  Thompson  David C. 《Biological invasions》2021,23(6):1663-1668

One of the main obstacles of classical biological control is that biological control organisms cannot be recalled once they are released in nature. It is particularly true for the flowerhead weevil, Rhinocyllus conicus Frölich, which was released as a biological control organism for the invasive musk thistle, Carduus nutans L. (MT). While weevils successfully suppressed introduced populations of musk thistles and other invasive thistle species, non-target attacks have been reported on multiple native thistles including federally listed threatened and endangered (T&E) thistle species. To investigate the foraging behavior of female weevils on invasive and native thistles, we examined volatile organic compounds (VOCs) emitted from MT and a T&E plant species, Sacramento Mountains thistle, Cirsium vinaceum Wooton & Standley (SMT) in the Lincoln National Forest, New Mexico. We used a dynamic headspace volatile collection system and gas chromatography-mass spectrometry to compare volatile profiles between MT and SMT. Female weevils reacted to 7 electrophysiologically active chemical compounds in the blends based on gas chromatography-electroantennography. The behavioral response of female weevils was indifferent when VOCs from both thistles were offered in y-tube olfactometry experiments. Yet, they preferred VOCs collected from MT to purified air. The searching time of female weevils was longer to VOCs collected from SMT over controls. Investigating signals during the initial host recognition of released biological control organisms may open new opportunities to reduce non-target attacks on T&E plant species.

  相似文献   

9.
Releases of Trichosirocalus horridus (Panzer) (Coleoptera: Curculionidae), native to Europe, began in Tennessee in 1989 as part of a biological control program against musk thistle (Carduus nutans L.). In surveys conducted to investigate non-target feeding of T. horridus on native Cirsium thistle species from 2005 to 2008, adults of T. horridus were observed on all five native Cirsium thistles. These adult occurrences are the first documentation of T. horridus occurring on three of these native species [C. carolinianum (Walt.) Fern & Schub., C. horridulum Michx. and C. muticum Michx.], and the first record of T. horridus occurring in the Great Smoky Mountains National Park. While C. carolinianum and C. horridulum did not show symptoms of larval feeding in the meristematic tissues, C. altissimum, C. discolor, and C. muticum all had damaged meristems and possible oviposition scars on the midribs of the leaves. However, the impact of feeding by larvae of T. horridus on the reproductive potential of native plants is uncertain, because even in the target species (musk thistle and other introduced Cirsium species) plant death only sometimes occurs, and seed production continues.  相似文献   

10.
Abstract.  1. Recent studies have shown that plant–plant interaction via chemicals (allelopathy) can affect insects. Here the effects on aphid acceptance of barley after exposure to volatiles and root exudates from two common weeds, the thistles Cirsium arvense and Cirsium vulgare , were investigated.
2. Settling by bird cherry-oat aphid, Rhopalosiphum padi , was significantly reduced on barley plants that had been exposed to volatiles from Cirsium species for 5 days. Settling by Sitobion avenae was also reduced on Cirsium -exposed plants, whereas settling by Metopolophium dirhodum was not.
3. In olfactometer tests, Cirsium -exposed barley was significantly less attractive to R. padi than was unexposed barley, indicating that exposure causes a change in the volatile profile of barley.
4. Exposure of barley to root exudates from Cirsium species had no effect on R. padi settling.
5. The results lend weight to the theory that the effects of plant–plant allelopathy can extend to higher trophic levels.  相似文献   

11.
A laboratory study of aspects of parasitoid host acceptance, suitability and physiological regulation in natural and novel host species was carried out to investigate the degree of variability encountered with different hosts and to determine the value of such observations in host range determination. The parasitoid Microctonus aethiopoides Loan was exposed to a natural host, Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) and three novel hosts, the New Zealand native Nicaeana cervina Broun, the introduced weed biological control agent Rhinocyllus conicus (Froehlich), and a congeneric pest species, Sitona lepidus Gyllenhal (all Coleoptera: Curculionidae). Per cent parasitism of these species was 54%, 43%, 39% and 0%, respectively. The results indicated that for both S. discoideus and R. conicus more males than females were parasitized (69% cf. 45%, and 49% cf. 32% respectively) but host size was not a significant factor. Overall, superparasitism was recorded in about 29% of parasitized weevils and there was evidence that host discrimination to avoid superparasitism occurred in the natural host. Conversely, superparasitism occurred more frequently than would be expected in N. cervina (42%) coupled with higher survival of larvae in superparasitized hosts in this species. The frequency distribution of attack of R. conicus by M. aethiopoides was not different from random. Parasitoid development was more rapid in the natural host, S. discoideus, and parasitoid size was positively correlated with host size. There was a strong positive relationship between parasitoid larval survival and the presence of teratocytes in all hosts. Host fecundity and fertility were reduced by parasitism for most species, and in some cases, by exposure to parasitoids in the absence of detectable parasitism. It was concluded that laboratory observations can provide useful information on the compatibility between host and parasitoid which can complement traditional host range tests to predict field host range.  相似文献   

12.
Abstract Granivory (seed feeding) evolved in many animal groups. Field observations hint at the existence of granivory in terrestrial isopods (Crustacea: Isopoda: Oniscidea), for which it was previously unknown. In this paper granivory in terrestrial isopods is addressed for the first time, focusing on (i) seed acceptance in the presence of plant litter and (ii) size as a constraint for acceptance and consumption. In a laboratory choice experiment, Armadillidium vulgare consumed seeds of Capsella bursa‐pastoris and Poa annua when plant litter was present. In a no‐choice experiment, seeds of seven plant species were offered to four isopod species giving 13 combinations in total [A. vulgare (seven species of seeds), Oniscus asellus (two), Porcellio scaber (two), and Porcellionides pruinosus (two)]. The tested isopods differed in their acceptance (proportion of individuals consuming seeds) and consumption (both number and amount of seeds eaten) of seed species. Size as a constraint was demonstrated in A. vulgare offered Cirsium arvense seed, since the probability that this large seed was eaten increased with body size of the isopod. In the other 10 seed–isopod pairs, seed consumption increased linearly with isopod body size. Granivory is thus widespread in terrestrial isopods, although the tendency to eat seeds differs between species.  相似文献   

13.
The population dynamics of invasive plants are influenced by positive and negative associations formed with members of the fauna present in the introduced range. For example, mutualistic associations formed with pollinators or seed dispersers may facilitate invasion, but reduced fitness from attack by native herbivores can also suppress it. Since population expansion depends on effective seed dispersal, interactions with seed dispersers and predators in a plant species introduced range may be of particular importance. We explored the relative contributions of potential seed dispersers (ants) and vertebrate predators (rodents and birds) to seed removal of two diplochorous (i.e., wind- and ant-dispersed), invasive thistles, Cirsium arvense and Carduus nutans, in Colorado, USA. We also conducted behavior trials to explore the potential of different ant species to disperse seeds, and we quantified which potential ant dispersers were prevalent at our study locations. Both ants and vertebrate predators removed significant amounts of C. arvense and C. nutans seed, with the relative proportion of seed removed by each guild varying by location. The behavior trials revealed clear seed preferences among three ant species as well as differences in the foragers’ abilities to move seeds. In addition, two ant species that acted as potential dispersal agents were dominant at the study locations. Since local conditions in part determined whether dispersers or predators removed more seed, it is possible that some thistle populations benefit from a net dispersal effect, while others suffer proportionally more predation. Additionally, because the effectiveness of potential ant dispersers is taxon-specific, changes in ant community composition could affect the seed-dispersal dynamics of these thistles. Until now, most studies describing dispersal dynamics in C. arvense and C. nutans have focused on primary dispersal by wind or pre-dispersal seed predation by insects. Our findings suggest that animal-mediated dispersal and post-dispersal seed predation deserve further consideration.  相似文献   

14.
Nodding (musk) thistle (Carduus thoermeri Weinmann in the Carduus nutans L. group) and plumeless thistle (Carduus acanthoides L.) are introduced noxious weeds of Eurasian origin. Both weeds are problematic in pastures, rangelands, and croplands and along state highways in many parts of the United States. The success of both species of thistles is largely due to their prolific seed production, seed longevity, competitive ability, and lack of natural enemies. Classical biological control of nodding thistle in Virginia has been achieved with three exotic thistle herbivores, Rhinocyllus conicus Froelich (Coleoptera: Curculionidae), Trichosirocalus horridus (Panzer) (Coleoptera: Curculionidae), and Cassida rubiginosa Müller (Coleoptera: Chrysomelidae). T. horridus also effectively controls plumeless thistle. These insect herbivores complement each other. Nodding thistle biological control is achieved in about 5–6 years in Virginia, Missouri, and Montana. In addition, a rust fungus (Puccinia carduorum Jacky) (Uredinales: Pucciniaceae) has been introduced and established for control of nodding thistle in Virginia. Development and reproduction of the three thistle herbivores are not adversely affected by the rust. The rust hastens plant senescence and reduces seed production. Control of plumeless thistle with R. conicus and T. horridus takes approximately twice as long as control of nodding thistle.  相似文献   

15.
Russell FL  Louda SM 《Oecologia》2005,146(3):373-384
Spatial and temporal variation in insect floral herbivory is common and often important. Yet, the determinants of such variation remain incompletely understood. Using 12 years of flowering data and 4 years of biweekly insect counts, we evaluated four hypotheses to explain variation in damage by the Eurasian flower head weevil, Rhinocyllus conicus, to the native North American wavyleaf thistle, Cirsium undulatum. The four factors hypothesized to influence weevil impact were variations in climate, weevil abundance, phenological synchrony, and number of flower heads available, either on wavyleaf thistle or on the other cooccurring, acquired native host plant (Platte thistle, Cirsium canescens), or on both. Climate did not contribute significantly to an explanation of variation in R. conicus damage to wavyleaf thistle. However, climate did influence weevil synchrony with wavyleaf flower head initiation, and phenological synchrony was important in determining R. conicus oviposition levels on wavyleaf thistle. The earlier R. conicus was active, the less it oviposited on wavyleaf thistle, even when weevils were abundant. Neither weevil abundance nor availability of wavyleaf flower heads predicted R. conicus egg load. Instead, the strongest predictor of R. conicus egg load on wavyleaf thistle was the availability of flower heads on Platte thistle, the more common, earlier flowering native thistle in the sand prairie. Egg load on wavyleaf thistle decreased as the number of Platte thistle flower heads at a site increased. Thus, wavyleaf thistle experienced associational defense in the presence of flowering by its now declining native congener, Platte thistle. These results demonstrate that prediction of damage to a native plant by an exotic insect may require knowledge of both likely phenological synchrony and total resource availability to the herbivore, including resources provided by other nontarget native species.  相似文献   

16.
Prediction of host plant range and ecological impact of exotic phytophagous insects, such as insects for classical biological control of weeds, represents a major challenge. Recently, the flowerhead weevil (Rhinocyllus conicus Fröl.), introduced from Europe into North America to control exotic thistles (Carduus spp.), has become invasive. It feeds heavily on some, but not all species of native North American thistles (Cirsium spp.). We hypothesized that such non-target use among native plants could be better predicted by knowledge of characteristic chemical profiles of secondary compounds to supplement the results of host specificity testing. To evaluate this hypothesis, we reviewed the literature on the chemistry of Cirsium and Carduus thistles. We asked what compounds are known to be present, what is known about their biological activity, and whether such information on chemical profiles would have better predicted realized host range and ecological effects of R. conicus in North America. We found an extensive, but incomplete literature on the chemistry of true thistles. Two main patterns emerged. First, consistent chemical similarities and interesting differences occur among species of thistles. Second, variation occurs in biologically active groups of characteristic compounds, specifically flavonoids, sterols, alkaloids and phenolic acids, that are known to influence host plant acceptance, selection, and feeding by phytophagous insects. Surprisingly, sesquiterpene lactones, which are characterisitic in closely related Asteraceae, have not been extensively reported for Cirsium or Carduus. The minimal evidence on sesquiterpene lactones may reflect extraction methods vs. true absence. In summary, our review suggests further research on thistle chemistry in insect feeding is warranted. Also, since the exotic Canada thistle (Cirsium arvense) is an invasive thistle of current concern in North America, such research on mechanisms underlying host range expansion by exotic insects would be useful.  相似文献   

17.
Exotic species change the structure and composition of invaded communities in multiple ways, but the sign of their impact on native species is still controversial. We evaluated the effects of the thistles Carduus thoermeri and Onopordum acanthium—two of the most abundant exotic plant species in disturbed areas of the Patagonian steppe—on the native tending ant assemblage. Exotic thistles showed an increased number of plants with aphids and had greater aphid density than native plants. Since native tending ants were present only in plants with aphids, their abundance was higher in infested thistles than in native plants. Path analyses confirmed that ant activity depended more on aphid density than on thistle traits. Our results suggest that the presence of exotic thistles in disturbed areas of NW Patagonia indirectly benefit the native ant assemblage through the maintenance of an increased aphid population. This illustrates how the impact of exotic on native species can depend on the ecological context.  相似文献   

18.
We explored consequences of spatial and temporal heterogeneity in herbivory on the survival, growth, and reproduction of the Californian native dune thistle, Cirsium occidentale, in coastal and inland sites, for 2 years. We assessed the relative impacts of insect and mammalian herbivores and compared the relative importance of herbivory in coastal and inland habitats and among locations with different microclimates across a coastal dune. Effects of insect and mammalian herbivores were tested with a combination of insecticidal spray and cage exclusion treatments in a factorial experiment at the coastal site. Mammalian herbivores strongly affected the population dynamics of C. occidentale in both years, and their effects were augmented by fungal infection (1991), herbivory by stem-borers (1990) and, to a lesser extent, by insect seed predators in both years. Mammals caused most plant deaths, but the mammal species responsible differed among sites. Rabbit herbivory altered the vegetative growth of coastal thistles and significantly modified other key aspects of Cirsium demography, including growth rate and timing of reproduction. Small, uncaged plants grazed by rabbits took at least 1 year longer to mature than did caged plants. Larvae of Pyrausta subsequalis were the only insects that killed established plants. In 1990 and 1991, the numbers of insects damaging seed heads before dispersal were low, but were sufficient to cause receptacle and seed damage. The number of mature, undamaged seeds (and percent successful seed production) was reduced significantly only for heads infested by fungi near the ocean in 1991: the fungus occurred in 37% of heads and caused a 77% reduction in mature seeds. Received: 21 October 1996 / Accepted: 27 March 1997  相似文献   

19.
Candidate weed biocontrol agents must be screened to exclude those that could threaten desirable plants . Traditionally , this has been done by rejecting species that develop on economically important plants in laboratory no - choice tests . However , because congeneric plants often support development in these tests , even when they are not utilized in nature , the tests do not meet legislated requirements for rare plant species or the increasing public concern for native plants . Plant suitability for larval development is a poor predictor of host range because insects use a sequence of steps in which the early steps , such as host finding and acceptance for oviposition , tend to be stronger than the later ones , such as suitability for development . This study is a trial of a new approach to screening insects as weed biocontrol agents that uses risk analysis to quantify the suitability of a plant as a host on the basis of inset performance at various stages in its life cycle . The insects used for the study was a NW Chinese biotype of the leaf beetle , Altica carduorum, which in terms of climate adaptation and damage it inflicts on the weedy thistle Cirsium arvense, is a promising biocontrol agent for Canada . However , its ability to develop on all North American Cirsium spp . in laboratory no - choice tests currently excludes its release . We show by risk and factor analyses , with five sequential host - selection parameters , that the suitability of these thistles to A. carduorum is so low that the beetle would not jeopardize the continued existence of rare native thistles , so its release should not be a problem .  相似文献   

20.
A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a risk management framework for ecological impacts of invasive species (minimal, minor, moderate, major, massive). The vast majority of agents introduced for classical biological control of weeds (>99% of 512 agents released) have had no known significant adverse effects on non-target plants thus far; major effects suppressing non-target plant populations could be expected to be detectable. Most direct non-target impacts on plants (91.6%) were categorized as minimal or minor in magnitude with no known adverse long-term impact on non-target plant populations, but a few cacti and thistles are affected at moderate (n = 3), major (n = 7) to massive (n = 1) scale. The largest direct impacts are from two agents (Cactoblastis cactorum on native cacti and Rhinocyllus conicus on native thistles), but these introductions would not be permitted today as more balanced attitudes exist to plant biodiversity, driven by both society and the scientific community. Our analysis shows (as far as is known), weed biological control agents have a biosafety track record of >99% of cases avoiding significant non-target impacts on plant populations. Some impacts could have been overlooked, but this seems unlikely to change the basic distribution of very limited adverse effects. Fewer non-target impacts can be expected in future because of improved science and incorporation of wider values. Failure to use biological control represents a significant opportunity cost from the certainty of ongoing adverse impacts from invasive weeds. It is recommended that a simple five-step scale be used to better communicate the risk of consequences from both action (classical biological control) and no action (ongoing impacts from invasive weeds).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号