首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field study was conducted over 2 yr to determine the effects of transgenic sweet corn containing a gene from the bacterium Bacillus thuringiensis (Bt) on the diversity and abundance of nontarget arthropods. The Bt hybrid (expressing Cry1Ab endotoxin for lepidopteran control) was compared with near-isogenic non-Bt and Bt hybrids treated with a foliar insecticide and with a near-isogenic non-Bt hybrid without insecticides. Plant inspections, sticky cards, and pitfall traps were used to sample a total of 573,672 arthropods, representing 128 taxonomic groups in 95 families and 18 orders. Overall biodiversity and community-level responses were not significantly affected by the transgenic hybrid. The Bt hybrid also had no significant adverse effects on population densities of specific nontarget herbivores, decomposers, and natural enemies enumerated at the family level during the crop cycle. As expected, the insecticide lambda-cyhalothrin had broad negative impacts on the abundance of many nontarget arthropods. One insecticide application in the Bt plots reduced the overall abundance of the natural enemy community by 21-48%. Five applications in the non-Bt plots reduced natural enemy communities by 33-70%. Nontarget communities affected in the insecticide-treated Bt plots exhibited some recovery, but communities exposed to five applications showed no trends toward recovery during the crop cycle. This study clearly showed that the nontarget effects of Bt transgenic sweet corn on natural enemies and other arthropods were minimal and far less than the community-level disruptions caused by lambda-cyhalothrin.  相似文献   

2.
Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.  相似文献   

3.
Transgenic crops with plant‐incorporated protectants are often more specific than synthetic insecticides and have the potential to reduce impacts on non‐target organisms. In this study we assessed the impact of Cry3Aa and Cry3Bb1 coleopteran‐active δ‐endotoxins on the bulb mite, Rhizoglypus robini. The effect of Cry3Aa prototoxin in solutions of the biopesticide Novodor® on mite survival was assessed in laboratory studies. Survival of R. robini exposed to Cry3Aa in a short‐term contact and ingestion experiment was not affected, although R. robini was significantly affected by the insecticide Fipronil® used as a positive control. Similarly, R. robini exposed in a longer duration feeding trial to the Cry3Aa toxin in artificial diet were also not significantly affected. When Cry3Aa was tested on the positive control insect, Leptinotarsa decemlineata, reduced weight of larvae and increased mortality was recorded. The effect of Cry3Bb1 toxin in transgenic corn tissues on R. robini food choice was assessed in a laboratory study. In no‐choice tests a greater proportion of R. robini were found on garlic roots than on Cry3Bb1 transgenic corn and a near‐isogenic non‐transgenic corn. In a choice test, more R. robini was recovered on garlic roots than on either corn variety, and on Cry3Bb1 corn than on non‐transgenic corn. In large field plots using specific mite traps across the growing season, R. robini mite populations were not significantly different between Cry3Bb1 corn and non‐transgenic corn alone or non‐transgenic corn treated with different combinations of two insecticides. Our results, combined with results from other studies, suggest that transgenic plants expressing the Cry3Aa or Cry3Bb1 Bacillus thuringiensis toxins are likely to have negligible impact on R. robini mite populations.  相似文献   

4.
Transgenic corn producing the Bacillus thuringiensis (Bt) toxin Cry3Bb1 has been useful for controlling western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. However, rapid evolution of resistance by this beetle to Bt corn producing Cry3Bb1 has been reported previously from the laboratory, greenhouse, and field. Here we selected in the greenhouse for resistance to Cry3Bb1 corn in three colonies of WCR derived from Kansas, Minnesota, and Wisconsin, respectively. Three generations of rearing on Cry3Bb1 corn significantly increased larval survival on Cry3Bb1 corn, resulting in similar survival in the greenhouse for selected colonies on Cry3Bb1 corn and isoline corn that does not produce Bt toxin. After four to seven generations of rearing on Cry3Bb1 corn, survival in the field on Cry3Bb1 corn relative to isoline corn more than doubled for selected colonies (72%) compared with control colonies (33%). For both selected and control colonies, survival in the field was significantly lower on Cry3Bb1 corn than on isoline corn. On isoline corn, most fitness components were similar for selected colonies and control colonies. However, fecundity was significantly lower for selected colonies than control colonies, indicating a fitness cost associated with resistance. The rapid evolution of resistance by western corn rootworm to Bt corn reported here and previously underlines the importance of effective resistance management for this pest.  相似文献   

5.
Field and laboratory studies were conducted to determine the effect of transgenic Bacillus thuringiensis (Bt) corn, Zea mays L. (YieldGard Rootworm), expressing the Cry3Bb1 protein on aboveground nontarget insect predators (minute pirate bug, ladybird beetles, and carabids). Visual counts of adult and immature Orius insidiosus (Say), Coleomegilla maculata (DeGeer), Hippodamia convergens Gurin-Meneville, and Scymnus spp. occurring in Bt corn and its non-Bt isoline were made at Manhattan, KS, in 2002 and at Manhattan and Scandia, KS, in 2003. No significant differences were found between the Bt corn and non-Bt isoline plots in the abundance (number per plant) of O. insidiosus, C. maculata, H. convergens, and Scymnus spp. Field predation on Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) egg masses was also observed during the silking stage of corn at Manhattan and Scandia in 2003. No significant differences were observed among treatments in predation rate for predators with chewing versus sucking mouthparts. Two laboratory studies determined the effect of Cry3Bb1 protein expressed in Bt corn pollen on C. maculata and carabids. The larvae of C. maculata were reared on Bt pollen, non-Bt pollen, or greenbugs, Schizaphis graminum (Rondani). The duration of larval and pupal stages, developmental time from egg hatch to adult emergence, percentage of survival, and elytra length were compared among treatments. There were no significant differences in developmental time of larvae fed pollen or greenbugs during their first two instars. However, significantly prolonged development of the third (1 d) and fourth instars (2 d) was observed for larvae fed greenbugs only. Total time for larval development was significantly longer for larvae that fed on greenbugs versus larvae fed on pollen. No significant differences were observed among treatments in the percentage of larvae that pupated or pupal stage duration. Larvae that fed on greenbugs had higher pupal and adult weights compared with pollen-fed larvae. However, pupal and adult weights did not vary between the Bt and non-Bt pollen treatments. No significant differences occurred in longevity and elytra length of beetles among all treatments. Two carabid species, Harpalus caliginosus F. and Harpalus pensylvanicus DeGeer, were reared on moistened dog food sprinkled with Bt or non-Bt corn pollen. No significant differences in mortality of H. caliginosus and H. pensylvanicus were detected among any of the treatments. There was no significant effect of Bt pollen on fecundity and egg viability of H. caliginosus. Our studies showed that YieldGard Rootworm had no effect on the selected coleopteran predators; therefore, this Bt corn hybrid could be used in an integrated pest management system.  相似文献   

6.
Use of ingested transgenic corn tissue as a marker for measuring movement of adult Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae; western corn rootworm) was investigated. Laboratory observations of beetles feeding on corn foliage, pollen, silks, or soybean foliage provided background on feeding patterns. The interval between food consumption and its appearance in feces (gut passage time) ranged from 102.7 +/- 11 min for soybean foliage to 56.7 +/- 2.9 min for corn silks. In a laboratory assay, protein expression tests identified the presence of Cry3Bb1 protein inside 50% of adult D. virgifera for up to 16 h after they had last consumed Cry3Bb1 protein-expressing corn silks from 'YieldGard Rootworm' corn plants (Monsanto Co.). Cry3Bb1 protein could not be detected by 32 h postfeeding. The proportion of Cry3Bb1 protein-positive beetles declined linearly with increasing time since feeding on 'YieldGard Rootworm' tissue. Approximately 20% of adult D. virgifera collected near 'YieldGard Rootworm' corn plots tested positive for Cry3Bb1 protein, indicating 'YieldGard Rootworm' tissue consumption within the last 16-32 h. Based on a 16- to 32-h postfeeding detection interval for Cry3Bb1 protein and the distance between 'YieldGard Rootworm' sources and sites where Cry3Bb1-positive insects were collected, 85.3% of males and females moved < or = 4.6-9.1 m/d through R2-R3 stage corn. Among Cry3Bb1-positive adults that left corn and were captured in an adjacent soybean field, 86.4% of males and 93.1% of females moved < or = 4.6-9.1 m/d through soybean. Detection of transgenic plant tissues in mobile insect herbivores is a novel application of biotechnology to the study of insect movement.  相似文献   

7.
European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), has historically been a significant economically important insect pest of corn (Zea mays L.) in the United States and Canada. The development in the 1990s of genetically modified corn expressing genes derived from Bacillus thuringiensis (Bt) that encodes insecticidal crystalline (Cry) proteins has proven to be effective in controlling this insect as well as other corn pests. The purpose of this study was to assess the movement and dispersal behavior of neonate European corn borer on Bt corn. We examined differences in neonate European corn borer dispersal behavior for the first 4 h after eclosion in the field among a stacked pyramid (Cry1F X Cry1Ab X Cry34/35Ab1) Bt corn, a Cry1F Bt corn, and a non-Bt sweet corn; and in the laboratory among a Bt corn hybrid containing Cry1F, a hybrid containing Cry1Ab, a pyramid combining these two hybrids (Cry1F X Cry1Ab), and a non-Bt near isoline corn. In field experiments, we found that dispersal was significantly higher on Bt corn compared with sweet corn. In laboratory experiments, dispersal was significantly higher on Cry1Ab Bt corn and Cry1F X Cry1Ab Bt corn than on non-Bt near isoline corn. Results indicated that neonate dispersal may be significantly greater in Bt cornfields compared with non-Bt cornfields. The findings on dispersal behavior in this study will be useful in evaluating the efficacy of a blended seed refuge system for managing European corn borer resistance in Bt corn.  相似文献   

8.
Crops genetically engineered to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) manage many key insect pests while reducing the use of conventional insecticides. One of the primary pests targeted by Bt maize in the United States is the western corn rootworm, Diabrotica virgifera virgifera LeConte. Beginning in 2009, populations of western corn rootworm were identified in Iowa, USA that imposed severe root injury to Cry3Bb1 maize. Subsequent laboratory bioassays revealed that these populations were resistant to Cry3Bb1 maize, with survival on Cry3Bb1 maize that was three times higher than populations not associated with such injury. Here we report the results of research that began in 2010 when western corn rootworm were sampled from 14 fields in Iowa, half of which had root injury to Cry3Bb1 maize of greater than 1 node. Of these samples, sufficient eggs were collected to conduct bioassays on seven populations. Laboratory bioassays revealed that these 2010 populations had survival on Cry3Bb1 maize that was 11 times higher and significantly greater than that of control populations, which were brought into the laboratory prior to the commercialization of Bt maize for control of corn rootworm. Additionally, the developmental delays observed for control populations on Cry3Bb1 maize were greatly diminished for 2010 populations. All 2010 populations evaluated in bioassays came from fields with a history of continuous maize production and between 3 and 7 y of Cry3Bb1 maize cultivation. Resistance to Cry34/35Ab1 maize was not detected and there was no correlation between survival on Cry3Bb1 maize and Cry34/35Ab1 maize, suggesting a lack of cross resistance between these Bt toxins. Effectively dealing with the challenge of field-evolved resistance to Bt maize by western corn rootworm will require better adherence to the principles of integrated pest management.  相似文献   

9.
Field-evolved resistance to Bt maize by western corn rootworm   总被引:2,自引:0,他引:2  

Background

Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae).

Methodology/Principal Findings

We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins.

Conclusions/Significance

This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.  相似文献   

10.
The growth of genetically engineered maize that produces the insecticidal protein Cry3Bb1 from Bacillus thuringiensis ( Bt ) is an effective method to control corn rootworms ( Diabrotica spp.), which are threatening maize production in North America and Europe. In this study, the risk of Cry3Bb1-expressing maize for the predatory spider Theridion impressum , a common species in European maize fields, was assessed. Quantification of Cry3Bb1 in potential prey species collected in Bt maize plots and prey spectrum analysis revealed that T. impressum ingests Cry3Bb1 in the field. Exposure to the Bt protein, however, was highly variable because some potential prey species, such as phloem-feeding herbivores and predators, contained little or no Cry3Bb1, whereas leaf-feeding herbivores contained high concentrations. Adult and juvenile T. impressum spiders were fed with Cry3Bb1-containing food (prey or maize pollen) for 8 weeks in the laboratory to examine the toxicity of the Bt protein. No differences in mortality, weight development or offspring production were observed between spiders provided with food containing or not containing Cry3Bb1. Retrospective power analysis indicated that the bioassays were sufficiently sensitive to detect meaningful differences if present. Although Cry3Bb1 is ingested by the spider in the field, our data provide no evidence for toxicity. Consequently, the growth of corn rootworm-resistant Bt maize appears to pose no risk for T. impressum .  相似文献   

11.
Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) provide an effective management tool for many key insect pests. However, pest species have repeatedly demonstrated their ability to adapt to management practices. Results from laboratory selection experiments illustrate the capacity of pest species to evolve Bt resistance. Furthermore, resistance has been documented to Bt sprays in the field and greenhouse, and more recently, by some pests to Bt crops in the field. In 2009, fields were discovered in Iowa (USA) with populations of western corn rootworm, Diabrotica virgifera virgifera LeConte, that had evolved resistance to maize that produces the Bt toxin Cry3Bb1. Fields with resistant insects in 2009 had been planted to Cry3Bb1 maize for at least three consecutive years and as many as 6years. Computer simulation models predicted that the western corn rootworm might evolve resistance to Bt maize in as few as 3years. Laboratory and field data for interactions between western corn rootworm and Bt maize indicate that currently commercialized products are not high-dose events, which increases the risk of resistance evolution because non-recessive resistance traits may enhance survival on Bt maize. Furthermore, genetic analysis of laboratory strains of western corn rootworm has found non-recessive inheritance of resistance. Field studies conducted in two fields identified as harboring Cry3Bb1-resistant western corn rootworm found that survival of western corn rootworm did not differ between Cry3Bb1 maize and non-Bt maize and that root injury to Cry3Bb1 maize was higher than injury to other types of Bt maize or to maize roots protected with a soil insecticide. These first cases of field-evolved resistance to Bt maize by western corn rootworm provide an early warning and point to the need to apply better integrated pest management practices when using Bt maize to manage western corn rootworm.  相似文献   

12.
A polyphasic approach has been developed to gain knowledge of suitable key indicators for the evaluation of environmental impact of genetically modified Bt 11 and Bt 176 corn lines on soil ecosystems. We assessed the effects of Bt corn (which constitutively expresses the insecticidal toxin from Bacillus thuringiensis, encoded by the truncated Cry1Ab gene) and non-Bt corn plants and their residues on rhizospheric and bulk soil eubacterial communities by means of denaturing gradient gel electrophoresis analyses of 16S rRNA genes, on the nontarget mycorrhizal symbiont Glomus mosseae, and on soil respiration. Microcosm experiments showed differences in rhizospheric eubacterial communities associated with the three corn lines and a significantly lower level of mycorrhizal colonization in Bt 176 corn roots. In greenhouse experiments, differences between Bt and non-Bt corn plants were detected in rhizospheric eubacterial communities (both total and active), in culturable rhizospheric heterotrophic bacteria, and in mycorrhizal colonization. Plant residues of transgenic plants, plowed under at harvest and kept mixed with soil for up to 4 months, affected soil respiration, bacterial communities, and mycorrhizal establishment by indigenous endophytes. The multimodal approach utilized in our work may be applied in long-term field studies aimed at monitoring the real hazard of genetically modified crops and their residues on nontarget soil microbial communities.  相似文献   

13.
Ingestion and excretion of two transgenic Bt corn varieties by slugs   总被引:1,自引:0,他引:1  
The release of transgenic Bacillus thuringiensis (Bt) corn expressing various Cry endotoxins has raised concern that these endotoxins are disseminated in the food web and may adversely affect non-target beneficial organisms, such as predators and organisms of the decomposer food web. We therefore investigated in a laboratory study, whether the Cry1Ab and Cry3Bb1 protein from Bt corn could potentially be transferred to such organisms by measuring the Cry protein content in the two common agricultural slug pests Arion lusitanicus and Deroceras reticulatum and their feces. We measured Cry1Ab and Cry3Bb1 protein concentration in leaves, intestines, and feces of corn leaf-fed slugs using ELISA and determined how much of the ingested protein is excreted by the slugs. Cry3Bb1 concentration in leaves of DKC5143Bt corn was significantly higher than Cry1Ab concentration in leaves of N4640Bt corn. While slugs were feeding on corn leaves, the Cry3Bb1 and Cry1Ab proteins were found in intestines and feces of both slug species. Bt protein concentrations in intestines of Cry3Bb1 corn-fed slugs were in both slug species higher than in Cry1Ab corn fed slugs, whereas no differences between Cry3Bb1 and Cry1Ab protein in feces were found. After slugs had ceased feeding on Bt corn, Cry1Ab was detectable in fresh slug feces for a significantly longer time and often in higher amounts than the Cry3Bb1. Our results indicate that both Cry proteins are likely to be transferred to higher trophic levels and to the decomposer food web. Since different Bt proteins seem to vary in their degradation, they have different transfer probabilities. This should be considered in risk assessments for non-target arthropods.  相似文献   

14.
In the United States of America, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is commonly managed with transgenic corn (Zea mays L.) expressing insecticidal proteins from the bacteria Bacillus thuringiensis Berliner (Bt). Colonies of this pest have been selected in the laboratory on each commercially available transformation event and several resistant field populations have also been identified; some field populations are also resistant. In this study, progeny of a western corn rootworm population collected from a Minnesota corn field planted to SmartStax® corn were evaluated for resistance to corn hybrids expressing Cry3Bb1 (event MON88017) or Cry34/35Ab1 (event DAS‐59122‐7) and to the individual constituent proteins in diet‐overlay bioassays. Results from these assays suggest that this population is resistant to Cry3Bb1 and is incompletely resistant to Cry34/35Ab1. In diet toxicity assays, larvae of the Minnesota (MN) population had resistance ratios of 4.71 and >13.22 for Cry34/35Ab1 and Cry3Bb1 proteins, respectively, compared with the control colonies. In all on‐plant assays, the relative survival of the MN population on the DAS‐59122‐7 and MON88017 hybrids was significantly greater than the control colonies. Larvae of the MN population had inhibited development when reared on DAS‐59122‐7 compared with larvae reared on the non‐Bt hybrid, indicating resistance was incomplete. Overall, these results document resistance to Cry3Bb1 and an incomplete resistance to Cry34/35Ab1 in a population of WCR from a SmartStax® performance problem field.  相似文献   

15.
A 14-d continuous dietary exposure bioassay using nymphs of the insidious flower bug, Orius insidiosus (Say) (Heteroptera: Anthocoridae), was conducted to assess nontarget impacts of genetically modified corn event MON 863 expressing the Cry3Bb1 protein for management of corn rootworms, Diabrotica spp. (Coleoptera: Chrysomelidae). Nymphs of O. insidiosus were continuously fed a bee pollen diet inoculated with a maximum hazard exposure dose (930 microg/g of diet) of the Cry3Bb1 protein for 14 d. The Cry3Bb1 protein at a concentration of 930 microg/g of diet had no adverse effect on the survival and development (to adults) of O. insidiosus nymphs. In contrast, when O. insidiosus nymphs were fed bee pollen diet treated with a hazard dose of the protease inhibitor E64 (53 microg/g of diet) or the stomach poison potassium arsenate (8.9 microg/g of diet), all nymphs died before developing to adults. Furthermore, statistical power analysis indicated that at levels of 80% power and a 5% type I error rate, the study design would have been able to detect a minimum 30% reduction in survival of test nymphs and a 20% reduction in nymphal development to the adults relative to the buffer control groups. Based on the maximum level (93 microg/g) of the Cry3Bb1 protein expressed in MON 863 corn tissues including leaves, roots, and pollen, findings from this study indicate that corn hybrids containing the MON 863 event have a minimum 10 times safety factor for nymphs of O. insidiosus and thus pose minimal risk to this beneficial insect.  相似文献   

16.
A polyphasic approach has been developed to gain knowledge of suitable key indicators for the evaluation of environmental impact of genetically modified Bt 11 and Bt 176 corn lines on soil ecosystems. We assessed the effects of Bt corn (which constitutively expresses the insecticidal toxin from Bacillus thuringiensis, encoded by the truncated Cry1Ab gene) and non-Bt corn plants and their residues on rhizospheric and bulk soil eubacterial communities by means of denaturing gradient gel electrophoresis analyses of 16S rRNA genes, on the nontarget mycorrhizal symbiont Glomus mosseae, and on soil respiration. Microcosm experiments showed differences in rhizospheric eubacterial communities associated with the three corn lines and a significantly lower level of mycorrhizal colonization in Bt 176 corn roots. In greenhouse experiments, differences between Bt and non-Bt corn plants were detected in rhizospheric eubacterial communities (both total and active), in culturable rhizospheric heterotrophic bacteria, and in mycorrhizal colonization. Plant residues of transgenic plants, plowed under at harvest and kept mixed with soil for up to 4 months, affected soil respiration, bacterial communities, and mycorrhizal establishment by indigenous endophytes. The multimodal approach utilized in our work may be applied in long-term field studies aimed at monitoring the real hazard of genetically modified crops and their residues on nontarget soil microbial communities.  相似文献   

17.
Black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is an occasional pest of maize (corn), Zea mays L., that may cause severe stand losses and injury to corn seedlings. The efficacy of the neonicotinoid seed treatment clothianidin at two commercially available rates and their interaction with a transgenic corn hybrid (Bt corn), trait expressing the Bacillus thuringiensis variety aizawai insecticidal toxin Cry 1Fa2, against black cutworm larvae was investigated. Clothianidin at a rate of 25 mg kernel(-1) on Bt corn increased larval mortality and reduced larval weight gains additively. In contrast, weights of larvae fed non-Bt corn seedlings treated with clothianidin at a rate of 25 mg kernel(-1) increased significantly, suggesting either compensatory overconsumption, hormesis, or hormoligosis. Both Bt corn alone and clothianidin at a rate of 125 mg kernel(-1) applied to non-Bt corn seedlings caused increased mortality and reduced larval weight gains. In two field trials, plots planted with Bt corn hybrids consistently had the highest plant populations and yields, regardless of whether they were treated with clothianidin at the lower commercial rate of 25 mg kernel(-1) The use of Bt corn alone or in combination with the low rate of clothianidin (25 mg kernel(-1)) seems suitable as a means of suppressing black cutworm in no-tillage cornfields, although rescue treatments may still be necessary under severe infestations. Clothianidin alone at the low rate of 25 mg kernel(-1) is not recommended for black cutworm control until further studies of its effects on larval physiology and field performance have been completed.  相似文献   

18.
The relative decomposability of corn (Zea mays L.) residues from insect (Bt)-protected hybrids and conventional hybrids cultivated under insect pressure was investigated in two studies. Above-ground biomass, residue macromolecular composition, and stalk physical strength were also measured. In the first decomposition study, chopped residues (stalks and leaves) were used from a corn rootworm-protected (Cry3Bb1) hybrid and its non-Bt near isoline that were grown in replicated plots infested with corn rootworms (Diabrotica spp.). In the second study, residue (intact stalk sections) was used from three European corn borer (ECB, Ostrinia nubilalis Hübner)-resistant (Cry1Ab) hybrids representing different seed manufacturer/maturity date series, their non-Bt near isolines, two Cry3Bb1-protected isolines, and three additional conventional hybrids, all cultivated in replicated plots under conditions of elevated ECB pressure. In both studies, insect-resistant residues decomposed at rates similar to their non-protected near isolines. No evidence was found that insect-protected hybrids produced more above-ground biomass or had distinct residue composition. While some measures of mechanical stalk strength indicated that ECB-damaged stalks were not as stiff as protected stalks, these physical differences did not translate into differences in residue decomposition. We conclude that while individual hybrids may vary in their production of biomass, residue composition or residue decomposability, these characteristics do not systematically vary with the presence of the Bt gene conferring insect resistance, even under conditions of insect pressure.  相似文献   

19.
Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.  相似文献   

20.
Field‐evolved resistance by the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte to the Cry3Bb1 trait expressed in maize, has been documented in areas of Nebraska USA. Currently, only limited information is available on life‐history traits of Cry3Bb1‐resistant field populations. Therefore, the Gassmann on‐plant bioassay was used to investigate the potential variability among four Cry3Bb1‐resistant WCR field collections made in 2011–2012 by focusing on the key parameters: larval survival, developmental stage and weight with specific emphasis on the impact of adult emergence timing on these parameters in subsequent progeny. Key results: In three of four collections, the susceptibility of larval progeny from adults that emerged early or late within a generation from Cry3Bb1 plants was similar. Each of the three collections exhibited complete resistance; that is, survival on Cry3Bb1 plants was greater or equal to survival on non‐Bt isoline plants. Bioassays from an additional field collection from one site 2 years (2013) after the original collection (2011) (both from Cry3Bb1 maize) indicated that resistance to Cry3Bb1 was maintained over time at the site despite Bt trait rotation in 2012. In general, comparative WCR life‐history parameter data from Cry3Bb1 and isoline maize indicate that fitness of field collections exhibiting complete resistance was similar on each hybrid. The mean proportion of larvae in third instar and mean weight of larvae recovered in bioassays from progeny of early‐ and late‐emerged adults was not significantly affected by emergence period. This suggests that delays in development and associated mean adult emergence commonly observed in populations that are susceptible to Cry3Bb1 may become smaller as populations become resistant to Cry3Bb1. Results from this article will inform Cry3Bb1 resistance mitigation efforts and contribute to the development of sustainable WCR management programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号