首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Canine hip dysplasia (CHD) is a serious and common musculoskeletal disease of pedigree dogs and therefore represents both an important welfare concern and an imperative breeding priority. The typical heritability estimates for radiographic CHD traits suggest that the accuracy of breeding dog selection could be substantially improved by the use of estimated breeding values (EBVs) in place of selection based on phenotypes of individuals. The British Veterinary Association/Kennel Club scoring method is a complex measure composed of nine bilateral ordinal traits, intended to evaluate both early and late dysplastic changes. However, the ordinal nature of the traits may represent a technical challenge for calculation of EBVs using linear methods. The purpose of the current study was to calculate EBVs of British Veterinary Association/Kennel Club traits in the Australian population of German Shepherd Dogs, using linear (both as individual traits and a summed phenotype), binary and ordinal methods to determine the optimal method for EBV calculation. Ordinal EBVs correlated well with linear EBVs (r = 0.90–0.99) and somewhat well with EBVs for the sum of the individual traits (r = 0.58–0.92). Correlation of ordinal and binary EBVs varied widely (r = 0.24–0.99) depending on the trait and cut-point considered. The ordinal EBVs have increased accuracy (0.48–0.69) of selection compared with accuracies from individual phenotype-based selection (0.40–0.52). Despite the high correlations between linear and ordinal EBVs, the underlying relationship between EBVs calculated by the two methods was not always linear, leading us to suggest that ordinal models should be used wherever possible. As the population of German Shepherd Dogs which was studied was purportedly under selection for the traits studied, we examined the EBVs for evidence of a genetic trend in these traits and found substantial genetic improvement over time. This study suggests the use of ordinal EBVs could increase the rate of genetic improvement in this population.  相似文献   

2.
Estimated breeding values (EBVs) and genomic enhanced breeding values (GEBVs) for milk production of young genotyped Holstein bulls were predicted using a conventional BLUP – Animal Model, a method fitting regression coefficients for loci (RRBLUP), a method utilizing the realized genomic relationship matrix (GBLUP), by a single-step procedure (ssGBLUP) and by a one-step blending procedure. Information sources for prediction were the nation-wide database of domestic Czech production records in the first lactation combined with deregressed proofs (DRP) from Interbull files (August 2013) and domestic test-day (TD) records for the first three lactations. Data from 2627 genotyped bulls were used, of which 2189 were already proven under domestic conditions. Analyses were run that used Interbull values for genotyped bulls only or that used Interbull values for all available sires. Resultant predictions were compared with GEBV of 96 young foreign bulls evaluated abroad and whose proofs were from Interbull method GMACE (August 2013) on the Czech scale. Correlations of predictions with GMACE values of foreign bulls ranged from 0.33 to 0.75. Combining domestic data with Interbull EBVs improved prediction of both EBV and GEBV. Predictions by Animal Model (traditional EBV) using only domestic first lactation records and GMACE values were correlated by only 0.33. Combining the nation-wide domestic database with all available DRP for genotyped and un-genotyped sires from Interbull resulted in an EBV correlation of 0.60, compared with 0.47 when only Interbull data were used. In all cases, GEBVs had higher correlations than traditional EBVs, and the highest correlations were for predictions from the ssGBLUP procedure using combined data (0.75), or with all available DRP from Interbull records only (one-step blending approach, 0.69). The ssGBLUP predictions using the first three domestic lactation records in the TD model were correlated with GMACE predictions by 0.69, 0.64 and 0.61 for milk yield, protein yield and fat yield, respectively.  相似文献   

3.
Early lactation parameters are difficult to estimate from commercial dairy records due to the small number of records available before the peak of production. A biological model of lactation was used with weekly milk records from a single Holstein herd to estimate these early lactation parameters and the secretion rate of milk from the average cell throughout lactation. A genetic analysis of the lactation curve parameters, calculated curve characteristics and secretion rate traits was undertaken. Early lactation traits were found to have little genetic variation and effectively zero heritability. Secretion rate traits for milk, protein, lactose and water were all moderately heritable and highly genetically correlated (>0.87) but fat secretion rate had lower genetic correlations with the other secretion rates. A similar pattern of correlations was seen between total lactation yield traits for fat, protein, lactose and water. The genetic correlations between the lactation curve traits and the secretion rate traits were calculated. Total milk yield, peak yield and maximum secretion potential were all highly correlated with milk, lactose and water secretion rates but less so with fat and protein secretion rates. In particular, fat secretion rate had a moderate to low genetic correlation with these lactation curve traits. Persistency of lactation was highly correlated with fat and protein secretion rates, more persistent lactations being associated with lower rates of secretion of these milk components. Similar levels of heritability were found, where trait genetic parameters were directly equivalent to those derived from the same dataset by random regression methods. However, by using a biological model of lactation to analyse lactation traits new insights into the biology of lactation are possible and ways to select cows on a range of lactation traits may be achieved.  相似文献   

4.
Genetic parameters were estimated with restricted maximum likelihood for individual test-day milk, fat, and protein yields and somatic cell scores with a random regression cubic spline model. Test-day records of Holstein cows that calved from 1994 through early 1999 were obtained from Dairy Records Management Systems in Raleigh, North Carolina, for the analysis. Estimates of heritability for individual test-days and estimates of genetic and phenotypic correlations between test-days were obtained from estimates of variances and covariances from the cubic spline analysis. Estimates were calculated of genetic parameters for the averages of the test days within each of the ten 30-day test intervals. The model included herd test-day, age at first calving, and bovine somatropin treatment as fixed factors. Cubic splines were fitted for the overall lactation curve and for random additive genetic and permanent environmental effects, with five predetermined knots or four intervals between days 0, 50, 135, 220, and 305. Estimates of heritability for lactation one ranged from 0.10 to 0.15, 0.06 to 0.10, 0.09 to 0.15, and 0.02 to 0.06 for test-day one to test-day 10 for milk, fat, and protein yields and somatic cell scores, respectively. Estimates of heritability were greater in lactations two and three. Estimates of heritability increased over the course of the lactation. Estimates of genetic and phenotypic correlations were smaller for test-days further apart.  相似文献   

5.

Key message

Best linear unbiased prediction (BLUP), which uses pedigree to estimate breeding values, can result in increased genetic gains for low heritability traits in autotetraploid potato.

Abstract

Conventional potato breeding strategies, based on outcrossing followed by phenotypic recurrent selection over a number of generations, can result in slow but steady improvements of traits with moderate to high heritability. However, faster gains, particularly for low heritability traits, could be made by selection on estimated breeding values (EBVs) calculated using more complete pedigree information in best linear unbiased prediction (BLUP) analysis. One complication in applying BLUP predictions of breeding value to potato breeding programs is the autotetraploid inheritance pattern of this species. Here we have used a large pedigree, dating back to 1908, to estimate heritability for nine key traits for potato breeding, modelling autotetraploid inheritance. We estimate the proportion of double reduction in potatoes from our data, and across traits, to be in the order of 10 %. Estimates of heritability ranged from 0.21 for breeder’s visual preference, 0.58 for tuber yield, to 0.83 for plant maturity. Using the accuracies of the EBVs determined by cross generational validation, we model the genetic gain that could be achieved by selection of genotypes for breeding on BLUP EBVs and demonstrate that gains can be greater than in conventional schemes.  相似文献   

6.
Records of Holstein cows from the Dairy Records Processing Center at Raleigh, NC were edited to obtain three data sets: 65,720 first, 50,694 second, and 65,445 later lactations. Correlations among yield traits and somatic cell score were estimated with three different models: 1) bovine somatotropin (bST) administration ignored, 2) bST administration as a fixed effect and 3) administration of bST as part of the contemporary group (herd-year-month-bST). Heritability estimates ranged from 0.13 to 0.17 for milk, 0.12 to 0.20 for fat, 0.14 to 0.16 for protein yields, and 0.08 to 0.09 for somatic cell score. Estimates were less for later than first lactations. Estimates of genetic correlations among yields ranged from 0.35 to 0.85 with no important differences between estimates with the 3 models. Estimates for lactation 2 agreed with estimates for lactation 1. Estimates of genetic correlations for later lactations were generally greater than for lactations 1 and 2 except between milk and protein yields. Estimates of genetic correlations between yields and somatic cell score were mostly negative or small (-0.45 to 0.11). Estimates of environmental correlations among yield traits were similar with all models (0.77 to 0.97). Estimates of environmental correlations between yields and somatic cell score were negative (-0.22 to -0.14). Estimates of phenotypic correlations among yield traits ranged from 0.70 to 0.95. Estimates of phenotypic correlations between yields and somatic cell score were small and negative. For all three data sets and all traits, no important differences in estimates of genetic parameters were found for the two models that adjusted for bST and the model that did not.  相似文献   

7.
The difficulties and costs of measuring individual feed intake in dairy cattle are the primary factors limiting the genetic study of feed intake and utilisation, and hence the potential of their subsequent industry-wide applications. However, indirect selection based on heritable, easily measurable, and genetically correlated traits, such as conformation traits, may be an alternative approach to improve feed efficiency. The aim of this study was to estimate genetic and phenotypic correlations among feed intake, production, and feed efficiency traits (particularly residual feed intake; RFI) with routinely recorded conformation traits. A total of 496 repeated records from 260 Holstein dairy cows in different lactations (260, 159 and 77 from first, second and third lactation, respectively) were considered in this study. Individual daily feed intake and monthly BW and body condition scores of these animals were recorded from 5 to 305 days in milk within each lactation from June 2007 to July 2013. Milk yield and composition data of all animals within each lactation were retrieved, and the first lactation conformation traits for primiparous animals were extracted from databases. Individual RFI over 301 days was estimated using linear regression of total 301 days actual energy intake on a total of 301 days estimated traits of metabolic BW, milk production energy requirement, and empty BW change. Pair-wise bivariate animal models were used to estimate genetic and phenotypic parameters among the studied traits. Estimated heritabilities of total intake and production traits ranged from 0.27±0.07 for lactation actual energy intake to 0.45±0.08 for average body condition score over 301 days of the lactation period. RFI showed a moderate heritability estimate (0.20±0.03) and non-significant phenotypic and genetic correlations with lactation 3.5 % fat-corrected milk and average BW over lactation. Among the conformation traits, dairy strength, stature, rear attachment width, chest width and pin width had significant (P<0.05) moderate to strong genetic correlations with RFI. Combinations of these conformation traits could be used as RFI indicators in the dairy genetic improvement programmes to increase the accuracy of the genetic evaluation of feed intake and utilisation included in the index.  相似文献   

8.
The improvement of meat quality and production traits has high priority in the pork industry. Many of these traits show a low to moderate heritability and are difficult and expensive to measure. Their improvement by targeted breeding programs is challenging and requires knowledge of the genetic and molecular background. For this study we genotyped 192 artificial insemination boars of a commercial line derived from the Swiss Large White breed using the PorcineSNP60 BeadChip with 62,163 evenly spaced SNPs across the pig genome. We obtained 26 estimated breeding values (EBVs) for various traits including exterior, meat quality, reproduction, and production. The subsequent genome-wide association analysis allowed us to identify four QTL with suggestive significance for three of these traits (p-values ranging from 4.99×10−6 to 2.73×10−5). Single QTL for the EBVs pH one hour post mortem (pH1) and carcass length were on pig chromosome (SSC) 14 and SSC 2, respectively. Two QTL for the EBV rear view hind legs were on SSC 10 and SSC 16.  相似文献   

9.
Biofuels have gained importance recently and the use of maize biomass as substrate in biogas plants for production of methane has increased tremendously in Germany. The objectives of our research were to (1) estimate variance components and heritability for different traits relevant to biogas production in testcrosses (TCs) of maize, (2) study correlations among traits, and (3) discuss strategies to breed maize as a substrate for biogas fermenters. We evaluated 570 TCs of 285 diverse dent maize lines crossed with two flint single-cross testers in six environments. Data were recorded on agronomic and quality traits, including dry matter yield (DMY), methane fermentation yield (MFY), and methane yield (MY), the product of DMY and MFY, as the main target trait. Estimates of variance components showed general combining ability (GCA) to be the major source of variation. Estimates of heritability exceeded 0.67 for all traits and were even much greater in most instances. Methane yield was perfectly correlated with DMY but not with MFY, indicating that variation in MY is primarily determined by DMY. Further, DMY had a larger heritability and coefficient of genetic variation than MFY. Hence, for improving MY, selection should primarily focus on DMY rather than MFY. Further, maize breeding for biogas production may diverge from that for forage production because in the former case, quality traits seem to be of much lower importance.  相似文献   

10.
Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (rTI) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of rmg = 0.5. For a low heritability trait (h2 = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles rTI from 0.27 to 0.54. Including the conventional information source ‘own performance’ into the before mentioned index, additional SNP information increases rTI by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.  相似文献   

11.
This study examined the genetic and phenotypic associations between finisher performance, pre-breeding body condition of the gilt, subsequent lactation feed intake and survival of the primiparous sow to farrow in the second parity. Complete data were available on ~2200 sows, along with additional cohort and historical performance data. Genetic variation was observed for average lactation feed intake (heritability: 0.18 ± 0.04), with a significant proportion of observed variation in average intake attributable to variation in lactation length. Weight and body condition (fatness) at finishing were very highly correlated genetically (0.89 ± 0.03 and 0.90 ± 0.02) and moderately correlated phenotypically (0.58 ± 0.01 and 0.58 ± 0.01) with weight and body condition before mating. Estimates of genetic (r(g)) and phenotypic (r(p)) correlations between feed intake recorded at finishing and average lactation feed intake (LADI) were moderate (r(g) = 0.26 ± 0.16 and 0.42 ± 0.22) and low (r(p) = 0.07 ± 0.02 and 0.08 ± 0.03), with r(g) dependent on the models and data subsets used for lactation intake. Non-unity genetic correlations imply that different genetic control mechanisms regulate feed intake during growth and lactation. Moderate genetic correlations between lactation feed intake with live weight (TWT) or growth rate (TADG) recorded at selection and live weight before mating (0.42 ± 0.11, 0.42 ± 0.11 and 0.37 ± 0.15) were considerably higher than the corresponding phenotypic correlations for LADI with TADG or 29WT (0.09 ± 0.02 and 0.08 ± 0.02). Correlations between fatness at selection (TFAT) or mating (29FT) and LADI were negative but not significantly different from 0. Overall, these data suggest that there is exploitable genetic variation for feed intake during lactation, and that selection is possible if lactation feed intakes are recorded. However, genetic correlations suggest that early growth seems to be related to lactation feed intake capacity. There was generally no strong evidence that selection for lean growth potential in dam lines will substantially diminish sow lactation intake capacity as a correlated response.  相似文献   

12.
Summary Interspecific heritability values were estimated using parent-offspring regression analyses for 11 morphological traits differentiating Clarkia nitens and C. speciosa subsp. polyantha. Estimates ranged from near 0 for anther color and germination percentage, to 0.8 for calyx length and petal tip color. Phenotypic, genetic, and environmental correlation matrices were computed to determine the extent of interspecific correlations of traits. Cluster analyses of the genetic and environmental correlation matrices each resulted in three clusters of correlated traits; however, the clusters derived from the two matrices were different. The clusters produced by analysis of the environmental correlation matrix were similar to the factors obtained from principal component analysis of the phenotypic correlation matrix. Genetic correlations may result from strong linkage due to interspecific chromosomal differences.  相似文献   

13.
Estimates of genetic components are important for our understanding of how individual characteristics are transferred between generations. We show that the level of heritability varies between 0.12 and 0.68 in six morphological traits in house sparrows (Passer domesticus L.) in northern Norway. Positive and negative genetic correlations were present among traits, suggesting evolutionary constraints on the evolution of some of these characters. A sexual difference in the amount of heritable genetic variation was found in tarsus length, wing length, bill depth and body condition index, with generally higher heritability in females. In addition, the structure of the genetic variance-covariance matrix for the traits differed between the sexes. Genetic correlations between males and females for the morphological traits were however large and not significantly different from one, indicating that sex-specific responses to selection will be influenced by intersexual differences in selection differentials. Despite this, some traits had heritability above 0.1 in females, even after conditioning on the additive genetic covariance between sexes and the additive genetic variances in males. Moreover, a meta-analysis indicated that higher heritability in females than in males may be common in birds. Thus, this indicates sexual differences in the genetic architecture of birds. Consequently, as in house sparrows, the evolutionary responses to selection will often be larger in females than males. Hence, our results suggest that sex-specific additive genetic variances and covariances, although ignored in most studies, should be included when making predictions of evolutionary changes from standard quantitative genetic models.  相似文献   

14.
The aim of the present study was to estimate genetic parameters for calcium (Ca), phosphorus (P) and titratable acidity (TA) in bovine milk predicted by mid-IR spectroscopy (MIRS). Data consisted of 2458 Italian Holstein−Friesian cows sampled once in 220 farms. Information per sample on protein and fat percentage, pH and somatic cell count, as well as test-day milk yield, was also available. (Co)variance components were estimated using univariate and bivariate animal linear mixed models. Fixed effects considered in the analyses were herd of sampling, parity, lactation stage and a two-way interaction between parity and lactation stage; an additive genetic and residual term were included in the models as random effects. Estimates of heritability for Ca, P and TA were 0.10, 0.12 and 0.26, respectively. Positive moderate to strong phenotypic correlations (0.33 to 0.82) existed between Ca, P and TA, whereas phenotypic weak to moderate correlations (0.00 to 0.45) existed between these traits with both milk quality and yield. Moderate to strong genetic correlations (0.28 to 0.92) existed between Ca, P and TA, and between these predicted traits with both fat and protein percentage (0.35 to 0.91). The existence of heritable genetic variation for Ca, P and TA, coupled with the potential to predict these components for routine cow milk testing, imply that genetic gain in these traits is indeed possible.  相似文献   

15.
This study investigated the profile of locomotion score and lameness before the first calving and throughout the first (n=237) and second (n=66) lactation of 303 Holstein cows raised on a commercial farm. Weekly heritability estimates of locomotion score and lameness, and their genetic and phenotypic correlations with milk yield, body condition score, BW and reproduction traits were derived. Daughter future locomotion score and lameness predictions from their sires’ breeding values for conformation traits were also calculated. First-lactation cows were monitored weekly from 6 weeks before calving to the end of lactation. Second-lactation cows were monitored weekly throughout lactation. Cows were locomotion scored on a scale from one (sound) to five (severely lame); a score greater than or equal to two defined presence of lameness. Cows’ weekly body condition score and BW was also recorded. These records were matched to corresponding milk yield records, where the latter were 7-day averages on the week of inspection. The total number of repeated records amounted to 12 221. Data were also matched to the farm’s reproduction database, from which five traits were derived. Statistical analyses were based on uni- and bivariate random regression models. The profile analysis showed that locomotion and lameness problems in first lactation were fewer before and immediately after calving, and increased as lactation progressed. The profile of the two traits remained relatively constant across the second lactation. Highest heritability estimates were observed in the weeks before first calving (0.66 for locomotion score and 0.54 for lameness). Statistically significant genetic correlations were found for first lactation weekly locomotion score and lameness with body condition score, ranging from −0.31 to −0.65 and from −0.44 to −0.76, respectively, suggesting that cows genetically pre-disposed for high body condition score have fewer locomotion and lameness issues. Negative (favourable) phenotypic correlations between first lactation weekly locomotion score/lameness and milk yield averaged −0.27 and −0.17, respectively, and were attributed to management factors. Also a phenotypic correlation between lameness and conception rate of −0.19 indicated that lame cows were associated with lower success at conceiving. First-lactation daughter locomotion score and/or lameness predictions from sires’ estimated breeding values for conformation traits revealed a significant linear effect of rear leg side view, rear leg rear view, overall conformation, body condition score and locomotion, and a quadratic effect of foot angle.  相似文献   

16.
High-yielding cows may suffer from negative energy balance during early lactation, which can lead to ketosis and delayed ability of returning to cyclicity after calving. Fast recovery after calving is essential when breeding for improved fertility. Traditionally used fertility traits, such as the interval from calving to first insemination (CFI), have low heritabilities and are highly influenced by management decisions. Herd Navigator™ management program samples and analyses milk progesterone and β-hydroxybutyrate (BHB) automatically during milking. In this study, the genetic parameters of endocrine fertility traits (measured from milk progesterone) and hyperketonemia (measured from milk BHB) in early lactation were evaluated and compared with traditional fertility traits (CFI, interval from calving to the last insemination and interval from first to last insemination) and the milk yield in red dairy cattle herds in Finland. Data included observations from 14 farms from 2014 to 2017. Data were analyzed with linear animal models using DMU software and analyses were done for first parity cows. Heritability estimates for traditional fertility traits were low and varied between 0.03 and 0.07. Estimated heritabilities for endocrine fertility traits (interval from calving to the first heat (CFH) and commencement of luteal activity (C-LA)) were higher than for traditional fertility traits (0.19 to 0.33). Five slightly different hyperketonemia traits divided into two or three classes were studied. Linear model heritability estimates for hyperketonemia traits were low, however, when the threshold model was used for binary traits the estimates became slightly higher (0.07 to 0.15). Genetic correlation between CFH and C-LA for first parity cows was high (0.97) as expected since traits are quite similar. Moderate genetic correlations (0.47 to 0.52) were found between the endocrine fertility traits and early lactation milk yield. Results suggest that the data on endocrine fertility traits measured by automatic systems is a promising tool for improving fertility, specifically when more data is available. For hyperketonemia traits, dividing values into three classes instead of two seemed to work better. Based on the current study and previous studies, where higher heritabilities have been found for milk BHB traits than for clinical ketosis, milk BHB traits are a promising indicator trait for resistance to ketosis and should be studied more. It is important that this kind of data from automatic devices is made available to recording and breeding organizations in the future.  相似文献   

17.
The objective of this study was to describe the genetic and phenotypic relationship between milk urea nitrogen (MUN) and reproductive traits in Iranian Holstein dairy cows. Test-day MUN data obtained from 57 301 dairy cows on 20 large dairy herds in Iran between January 2005 and June 2009. Genetic parameters for MUN and reproductive traits were estimated with a five-trait model using ASREML program. Random regression test-day models were used to estimate heritabilities separately for MUN from first, second and third lactations. Regression curves were modeled using Legendre polynomials of order 3. Herd-year-season along with age at calving was included as fixed effects in all models for reproductive traits. Heritabilities for MUN and reproductive traits were estimated separately for first lactation, second lactation and third lactation. The estimated heritabilities for MUN varied from 0.18 to 0.22. The heritability estimate was low for reproductive traits, which ranged from 0.02 to 0.06 for different traits and across parities. Except for days open, phenotypic and genetic correlations of MUN with reproductive performance traits were close to zero. Genetic correlations between MUN and days open were 0.23, 0.35 and 0.45 in first, second and third lactation, respectively. However, the phenotypic correlation between MUN at different parities was moderate (0.28 to 0.35), but the genetic correlation between MUN at different parities was high and ranged from 0.84 to 0.97. This study shows a limited application of MUN for use in selection programs to improve reproductive performance.  相似文献   

18.
This study investigated a marker-assisted introgression programme in Australian Merino sheep. The goal was to introgress an allele with a large negative effect on fibre diameter into a Merino flock possessing medium average fibre diameter. The influence of two factors was explored: the strategy used to select animals from the purebred and backcross line for backcrossing purposes and the use of selection on background markers to accelerate the return to the purebred line''s genome. The results were compared to introgression based on EBVs only. Introgression using EBVs only produced almost the same response in the dollar index as marker-based introgression methods. However, this study did not account for some of the costs associated with implementing the programmes, including the costs of phenotyping and genotyping. Given that the cost of measuring fibre diameter is low, it was concluded that introgression on EBVs only would be the preferred method since the marginal profit of marker-assisted introgression would not be large enough to cover the additional cost of genotyping. In marker-assisted introgression, reciprocal crossing of male and female selection candidates from the backcross and the purebred line was the most advantageous strategy from a practical and profit point of view. Selection for background markers was less profitable in this study than recovering the donor genome by selection on phenotype.  相似文献   

19.
The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.  相似文献   

20.
Residual feed intake (RFI) and feed conversion ratio (FCR) can be incorporated into a breeding program as traits to select for feed efficiency. Alternatively, the direct measures used to calculate RFI and FCR can be analyzed to determine the underlying variation in the traits that impact overall efficiency. These constituent traits can then be appropriately weighted in an index to achieve genetic gain. To investigate feed efficiency in the turkey, feed intake and weight gain were measured on male primary breeder line turkeys housed in individual feeding cages from 15 to 19 weeks of age. The FCR and RFI showed moderate heritability values of 0.16 and 0.21, respectively. Feed intake, body weight, and weight gain were also moderately heritable (0.25, 0.35, and 0.18, respectively). Weight gain was negatively correlated to feed conversion ratio and was not genetically correlated to RFI. Body weight had a small and positive genetic correlation to RFI (0.09) and FCR (0.12). Feed intake was positively genetically correlated to RFI (0.62); however, there was no genetic correlation between feed intake and FCR. These estimates of heritability and the genetic correlations can be used in the development of an index to improve feed efficiency and reduce the cost of production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号